Fix comment typo (test commit). NFC
[oota-llvm.git] / lib / Target / AArch64 / AArch64CollectLOH.cpp
1 //===---------- AArch64CollectLOH.cpp - AArch64 collect LOH pass --*- C++ -*-=//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains a pass that collect the Linker Optimization Hint (LOH).
11 // This pass should be run at the very end of the compilation flow, just before
12 // assembly printer.
13 // To be useful for the linker, the LOH must be printed into the assembly file.
14 //
15 // A LOH describes a sequence of instructions that may be optimized by the
16 // linker.
17 // This same sequence cannot be optimized by the compiler because some of
18 // the information will be known at link time.
19 // For instance, consider the following sequence:
20 //     L1: adrp xA, sym@PAGE
21 //     L2: add xB, xA, sym@PAGEOFF
22 //     L3: ldr xC, [xB, #imm]
23 // This sequence can be turned into:
24 // A literal load if sym@PAGE + sym@PAGEOFF + #imm - address(L3) is < 1MB:
25 //     L3: ldr xC, sym+#imm
26 // It may also be turned into either the following more efficient
27 // code sequences:
28 // - If sym@PAGEOFF + #imm fits the encoding space of L3.
29 //     L1: adrp xA, sym@PAGE
30 //     L3: ldr xC, [xB, sym@PAGEOFF + #imm]
31 // - If sym@PAGE + sym@PAGEOFF - address(L1) < 1MB:
32 //     L1: adr xA, sym
33 //     L3: ldr xC, [xB, #imm]
34 //
35 // To be valid a LOH must meet all the requirements needed by all the related
36 // possible linker transformations.
37 // For instance, using the running example, the constraints to emit
38 // ".loh AdrpAddLdr" are:
39 // - L1, L2, and L3 instructions are of the expected type, i.e.,
40 //   respectively ADRP, ADD (immediate), and LD.
41 // - The result of L1 is used only by L2.
42 // - The register argument (xA) used in the ADD instruction is defined
43 //   only by L1.
44 // - The result of L2 is used only by L3.
45 // - The base address (xB) in L3 is defined only L2.
46 // - The ADRP in L1 and the ADD in L2 must reference the same symbol using
47 //   @PAGE/@PAGEOFF with no additional constants
48 //
49 // Currently supported LOHs are:
50 // * So called non-ADRP-related:
51 //   - .loh AdrpAddLdr L1, L2, L3:
52 //     L1: adrp xA, sym@PAGE
53 //     L2: add xB, xA, sym@PAGEOFF
54 //     L3: ldr xC, [xB, #imm]
55 //   - .loh AdrpLdrGotLdr L1, L2, L3:
56 //     L1: adrp xA, sym@GOTPAGE
57 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
58 //     L3: ldr xC, [xB, #imm]
59 //   - .loh AdrpLdr L1, L3:
60 //     L1: adrp xA, sym@PAGE
61 //     L3: ldr xC, [xA, sym@PAGEOFF]
62 //   - .loh AdrpAddStr L1, L2, L3:
63 //     L1: adrp xA, sym@PAGE
64 //     L2: add xB, xA, sym@PAGEOFF
65 //     L3: str xC, [xB, #imm]
66 //   - .loh AdrpLdrGotStr L1, L2, L3:
67 //     L1: adrp xA, sym@GOTPAGE
68 //     L2: ldr xB, [xA, sym@GOTPAGEOFF]
69 //     L3: str xC, [xB, #imm]
70 //   - .loh AdrpAdd L1, L2:
71 //     L1: adrp xA, sym@PAGE
72 //     L2: add xB, xA, sym@PAGEOFF
73 //   For all these LOHs, L1, L2, L3 form a simple chain:
74 //   L1 result is used only by L2 and L2 result by L3.
75 //   L3 LOH-related argument is defined only by L2 and L2 LOH-related argument
76 //   by L1.
77 // All these LOHs aim at using more efficient load/store patterns by folding
78 // some instructions used to compute the address directly into the load/store.
79 //
80 // * So called ADRP-related:
81 //  - .loh AdrpAdrp L2, L1:
82 //    L2: ADRP xA, sym1@PAGE
83 //    L1: ADRP xA, sym2@PAGE
84 //    L2 dominates L1 and xA is not redifined between L2 and L1
85 // This LOH aims at getting rid of redundant ADRP instructions.
86 //
87 // The overall design for emitting the LOHs is:
88 // 1. AArch64CollectLOH (this pass) records the LOHs in the AArch64FunctionInfo.
89 // 2. AArch64AsmPrinter reads the LOHs from AArch64FunctionInfo and it:
90 //     1. Associates them a label.
91 //     2. Emits them in a MCStreamer (EmitLOHDirective).
92 //         - The MCMachOStreamer records them into the MCAssembler.
93 //         - The MCAsmStreamer prints them.
94 //         - Other MCStreamers ignore them.
95 //     3. Closes the MCStreamer:
96 //         - The MachObjectWriter gets them from the MCAssembler and writes
97 //           them in the object file.
98 //         - Other ObjectWriters ignore them.
99 //===----------------------------------------------------------------------===//
100
101 #include "AArch64.h"
102 #include "AArch64InstrInfo.h"
103 #include "AArch64MachineFunctionInfo.h"
104 #include "AArch64Subtarget.h"
105 #include "MCTargetDesc/AArch64AddressingModes.h"
106 #include "llvm/ADT/BitVector.h"
107 #include "llvm/ADT/DenseMap.h"
108 #include "llvm/ADT/MapVector.h"
109 #include "llvm/ADT/SetVector.h"
110 #include "llvm/ADT/SmallVector.h"
111 #include "llvm/ADT/Statistic.h"
112 #include "llvm/CodeGen/MachineBasicBlock.h"
113 #include "llvm/CodeGen/MachineDominators.h"
114 #include "llvm/CodeGen/MachineFunctionPass.h"
115 #include "llvm/CodeGen/MachineInstr.h"
116 #include "llvm/CodeGen/MachineInstrBuilder.h"
117 #include "llvm/Support/CommandLine.h"
118 #include "llvm/Support/Debug.h"
119 #include "llvm/Support/ErrorHandling.h"
120 #include "llvm/Support/raw_ostream.h"
121 #include "llvm/Target/TargetInstrInfo.h"
122 #include "llvm/Target/TargetMachine.h"
123 #include "llvm/Target/TargetRegisterInfo.h"
124 using namespace llvm;
125
126 #define DEBUG_TYPE "aarch64-collect-loh"
127
128 static cl::opt<bool>
129 PreCollectRegister("aarch64-collect-loh-pre-collect-register", cl::Hidden,
130                    cl::desc("Restrict analysis to registers invovled"
131                             " in LOHs"),
132                    cl::init(true));
133
134 static cl::opt<bool>
135 BasicBlockScopeOnly("aarch64-collect-loh-bb-only", cl::Hidden,
136                     cl::desc("Restrict analysis at basic block scope"),
137                     cl::init(true));
138
139 STATISTIC(NumADRPSimpleCandidate,
140           "Number of simplifiable ADRP dominate by another");
141 STATISTIC(NumADRPComplexCandidate2,
142           "Number of simplifiable ADRP reachable by 2 defs");
143 STATISTIC(NumADRPComplexCandidate3,
144           "Number of simplifiable ADRP reachable by 3 defs");
145 STATISTIC(NumADRPComplexCandidateOther,
146           "Number of simplifiable ADRP reachable by 4 or more defs");
147 STATISTIC(NumADDToSTRWithImm,
148           "Number of simplifiable STR with imm reachable by ADD");
149 STATISTIC(NumLDRToSTRWithImm,
150           "Number of simplifiable STR with imm reachable by LDR");
151 STATISTIC(NumADDToSTR, "Number of simplifiable STR reachable by ADD");
152 STATISTIC(NumLDRToSTR, "Number of simplifiable STR reachable by LDR");
153 STATISTIC(NumADDToLDRWithImm,
154           "Number of simplifiable LDR with imm reachable by ADD");
155 STATISTIC(NumLDRToLDRWithImm,
156           "Number of simplifiable LDR with imm reachable by LDR");
157 STATISTIC(NumADDToLDR, "Number of simplifiable LDR reachable by ADD");
158 STATISTIC(NumLDRToLDR, "Number of simplifiable LDR reachable by LDR");
159 STATISTIC(NumADRPToLDR, "Number of simplifiable LDR reachable by ADRP");
160 STATISTIC(NumCplxLvl1, "Number of complex case of level 1");
161 STATISTIC(NumTooCplxLvl1, "Number of too complex case of level 1");
162 STATISTIC(NumCplxLvl2, "Number of complex case of level 2");
163 STATISTIC(NumTooCplxLvl2, "Number of too complex case of level 2");
164 STATISTIC(NumADRSimpleCandidate, "Number of simplifiable ADRP + ADD");
165 STATISTIC(NumADRComplexCandidate, "Number of too complex ADRP + ADD");
166
167 namespace llvm {
168 void initializeAArch64CollectLOHPass(PassRegistry &);
169 }
170
171 namespace {
172 struct AArch64CollectLOH : public MachineFunctionPass {
173   static char ID;
174   AArch64CollectLOH() : MachineFunctionPass(ID) {
175     initializeAArch64CollectLOHPass(*PassRegistry::getPassRegistry());
176   }
177
178   bool runOnMachineFunction(MachineFunction &MF) override;
179
180   const char *getPassName() const override {
181     return "AArch64 Collect Linker Optimization Hint (LOH)";
182   }
183
184   void getAnalysisUsage(AnalysisUsage &AU) const override {
185     AU.setPreservesAll();
186     MachineFunctionPass::getAnalysisUsage(AU);
187     AU.addRequired<MachineDominatorTree>();
188   }
189
190 private:
191 };
192
193 /// A set of MachineInstruction.
194 typedef SetVector<const MachineInstr *> SetOfMachineInstr;
195 /// Map a basic block to a set of instructions per register.
196 /// This is used to represent the exposed uses of a basic block
197 /// per register.
198 typedef MapVector<const MachineBasicBlock *,
199                   std::unique_ptr<SetOfMachineInstr[]>>
200 BlockToSetOfInstrsPerColor;
201 /// Map a basic block to an instruction per register.
202 /// This is used to represent the live-out definitions of a basic block
203 /// per register.
204 typedef MapVector<const MachineBasicBlock *,
205                   std::unique_ptr<const MachineInstr *[]>>
206 BlockToInstrPerColor;
207 /// Map an instruction to a set of instructions. Used to represent the
208 /// mapping def to reachable uses or use to definitions.
209 typedef MapVector<const MachineInstr *, SetOfMachineInstr> InstrToInstrs;
210 /// Map a basic block to a BitVector.
211 /// This is used to record the kill registers per basic block.
212 typedef MapVector<const MachineBasicBlock *, BitVector> BlockToRegSet;
213
214 /// Map a register to a dense id.
215 typedef DenseMap<unsigned, unsigned> MapRegToId;
216 /// Map a dense id to a register. Used for debug purposes.
217 typedef SmallVector<unsigned, 32> MapIdToReg;
218 } // end anonymous namespace.
219
220 char AArch64CollectLOH::ID = 0;
221
222 INITIALIZE_PASS_BEGIN(AArch64CollectLOH, "aarch64-collect-loh",
223                       "AArch64 Collect Linker Optimization Hint (LOH)", false,
224                       false)
225 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
226 INITIALIZE_PASS_END(AArch64CollectLOH, "aarch64-collect-loh",
227                     "AArch64 Collect Linker Optimization Hint (LOH)", false,
228                     false)
229
230 /// Given a couple (MBB, reg) get the corresponding set of instruction from
231 /// the given "sets".
232 /// If this couple does not reference any set, an empty set is added to "sets"
233 /// for this couple and returned.
234 /// \param nbRegs is used internally allocate some memory. It must be consistent
235 /// with the way sets is used.
236 static SetOfMachineInstr &getSet(BlockToSetOfInstrsPerColor &sets,
237                                  const MachineBasicBlock &MBB, unsigned reg,
238                                  unsigned nbRegs) {
239   SetOfMachineInstr *result;
240   BlockToSetOfInstrsPerColor::iterator it = sets.find(&MBB);
241   if (it != sets.end())
242     result = it->second.get();
243   else
244     result = (sets[&MBB] = make_unique<SetOfMachineInstr[]>(nbRegs)).get();
245
246   return result[reg];
247 }
248
249 /// Given a couple (reg, MI) get the corresponding set of instructions from the
250 /// the given "sets".
251 /// This is used to get the uses record in sets of a definition identified by
252 /// MI and reg, i.e., MI defines reg.
253 /// If the couple does not reference anything, an empty set is added to
254 /// "sets[reg]".
255 /// \pre set[reg] is valid.
256 static SetOfMachineInstr &getUses(InstrToInstrs *sets, unsigned reg,
257                                   const MachineInstr &MI) {
258   return sets[reg][&MI];
259 }
260
261 /// Same as getUses but does not modify the input map: sets.
262 /// \return NULL if the couple (reg, MI) is not in sets.
263 static const SetOfMachineInstr *getUses(const InstrToInstrs *sets, unsigned reg,
264                                         const MachineInstr &MI) {
265   InstrToInstrs::const_iterator Res = sets[reg].find(&MI);
266   if (Res != sets[reg].end())
267     return &(Res->second);
268   return nullptr;
269 }
270
271 /// Initialize the reaching definition algorithm:
272 /// For each basic block BB in MF, record:
273 /// - its kill set.
274 /// - its reachable uses (uses that are exposed to BB's predecessors).
275 /// - its the generated definitions.
276 /// \param DummyOp if not NULL, specifies a Dummy Operation to be added to
277 /// the list of uses of exposed defintions.
278 /// \param ADRPMode specifies to only consider ADRP instructions for generated
279 /// definition. It also consider definitions of ADRP instructions as uses and
280 /// ignore other uses. The ADRPMode is used to collect the information for LHO
281 /// that involve ADRP operation only.
282 static void initReachingDef(const MachineFunction &MF,
283                             InstrToInstrs *ColorOpToReachedUses,
284                             BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
285                             BlockToSetOfInstrsPerColor &ReachableUses,
286                             const MapRegToId &RegToId,
287                             const MachineInstr *DummyOp, bool ADRPMode) {
288   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
289   unsigned NbReg = RegToId.size();
290
291   for (const MachineBasicBlock &MBB : MF) {
292     auto &BBGen = Gen[&MBB];
293     BBGen = make_unique<const MachineInstr *[]>(NbReg);
294     std::fill(BBGen.get(), BBGen.get() + NbReg, nullptr);
295
296     BitVector &BBKillSet = Kill[&MBB];
297     BBKillSet.resize(NbReg);
298     for (const MachineInstr &MI : MBB) {
299       bool IsADRP = MI.getOpcode() == AArch64::ADRP;
300
301       // Process uses first.
302       if (IsADRP || !ADRPMode)
303         for (const MachineOperand &MO : MI.operands()) {
304           // Treat ADRP def as use, as the goal of the analysis is to find
305           // ADRP defs reached by other ADRP defs.
306           if (!MO.isReg() || (!ADRPMode && !MO.isUse()) ||
307               (ADRPMode && (!IsADRP || !MO.isDef())))
308             continue;
309           unsigned CurReg = MO.getReg();
310           MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
311           if (ItCurRegId == RegToId.end())
312             continue;
313           CurReg = ItCurRegId->second;
314
315           // if CurReg has not been defined, this use is reachable.
316           if (!BBGen[CurReg] && !BBKillSet.test(CurReg))
317             getSet(ReachableUses, MBB, CurReg, NbReg).insert(&MI);
318           // current basic block definition for this color, if any, is in Gen.
319           if (BBGen[CurReg])
320             getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(&MI);
321         }
322
323       // Process clobbers.
324       for (const MachineOperand &MO : MI.operands()) {
325         if (!MO.isRegMask())
326           continue;
327         // Clobbers kill the related colors.
328         const uint32_t *PreservedRegs = MO.getRegMask();
329
330         // Set generated regs.
331         for (const auto &Entry : RegToId) {
332           unsigned Reg = Entry.second;
333           // Use the global register ID when querying APIs external to this
334           // pass.
335           if (MachineOperand::clobbersPhysReg(PreservedRegs, Entry.first)) {
336             // Do not register clobbered definition for no ADRP.
337             // This definition is not used anyway (otherwise register
338             // allocation is wrong).
339             BBGen[Reg] = ADRPMode ? &MI : nullptr;
340             BBKillSet.set(Reg);
341           }
342         }
343       }
344
345       // Process register defs.
346       for (const MachineOperand &MO : MI.operands()) {
347         if (!MO.isReg() || !MO.isDef())
348           continue;
349         unsigned CurReg = MO.getReg();
350         MapRegToId::const_iterator ItCurRegId = RegToId.find(CurReg);
351         if (ItCurRegId == RegToId.end())
352           continue;
353
354         for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI) {
355           MapRegToId::const_iterator ItRegId = RegToId.find(*AI);
356           assert(ItRegId != RegToId.end() &&
357                  "Sub-register of an "
358                  "involved register, not recorded as involved!");
359           BBKillSet.set(ItRegId->second);
360           BBGen[ItRegId->second] = &MI;
361         }
362         BBGen[ItCurRegId->second] = &MI;
363       }
364     }
365
366     // If we restrict our analysis to basic block scope, conservatively add a
367     // dummy
368     // use for each generated value.
369     if (!ADRPMode && DummyOp && !MBB.succ_empty())
370       for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg)
371         if (BBGen[CurReg])
372           getUses(ColorOpToReachedUses, CurReg, *BBGen[CurReg]).insert(DummyOp);
373   }
374 }
375
376 /// Reaching def core algorithm:
377 /// while an Out has changed
378 ///    for each bb
379 ///       for each color
380 ///           In[bb][color] = U Out[bb.predecessors][color]
381 ///           insert reachableUses[bb][color] in each in[bb][color]
382 ///                 op.reachedUses
383 ///
384 ///           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
385 static void reachingDefAlgorithm(const MachineFunction &MF,
386                                  InstrToInstrs *ColorOpToReachedUses,
387                                  BlockToSetOfInstrsPerColor &In,
388                                  BlockToSetOfInstrsPerColor &Out,
389                                  BlockToInstrPerColor &Gen, BlockToRegSet &Kill,
390                                  BlockToSetOfInstrsPerColor &ReachableUses,
391                                  unsigned NbReg) {
392   bool HasChanged;
393   do {
394     HasChanged = false;
395     for (const MachineBasicBlock &MBB : MF) {
396       unsigned CurReg;
397       for (CurReg = 0; CurReg < NbReg; ++CurReg) {
398         SetOfMachineInstr &BBInSet = getSet(In, MBB, CurReg, NbReg);
399         SetOfMachineInstr &BBReachableUses =
400             getSet(ReachableUses, MBB, CurReg, NbReg);
401         SetOfMachineInstr &BBOutSet = getSet(Out, MBB, CurReg, NbReg);
402         unsigned Size = BBOutSet.size();
403         //   In[bb][color] = U Out[bb.predecessors][color]
404         for (const MachineBasicBlock *PredMBB : MBB.predecessors()) {
405           SetOfMachineInstr &PredOutSet = getSet(Out, *PredMBB, CurReg, NbReg);
406           BBInSet.insert(PredOutSet.begin(), PredOutSet.end());
407         }
408         //   insert reachableUses[bb][color] in each in[bb][color] op.reachedses
409         for (const MachineInstr *MI : BBInSet) {
410           SetOfMachineInstr &OpReachedUses =
411               getUses(ColorOpToReachedUses, CurReg, *MI);
412           OpReachedUses.insert(BBReachableUses.begin(), BBReachableUses.end());
413         }
414         //           Out[bb] = Gen[bb] U (In[bb] - Kill[bb])
415         if (!Kill[&MBB].test(CurReg))
416           BBOutSet.insert(BBInSet.begin(), BBInSet.end());
417         if (Gen[&MBB][CurReg])
418           BBOutSet.insert(Gen[&MBB][CurReg]);
419         HasChanged |= BBOutSet.size() != Size;
420       }
421     }
422   } while (HasChanged);
423 }
424
425 /// Reaching definition algorithm.
426 /// \param MF function on which the algorithm will operate.
427 /// \param[out] ColorOpToReachedUses will contain the result of the reaching
428 /// def algorithm.
429 /// \param ADRPMode specify whether the reaching def algorithm should be tuned
430 /// for ADRP optimization. \see initReachingDef for more details.
431 /// \param DummyOp if not NULL, the algorithm will work at
432 /// basic block scope and will set for every exposed definition a use to
433 /// @p DummyOp.
434 /// \pre ColorOpToReachedUses is an array of at least number of registers of
435 /// InstrToInstrs.
436 static void reachingDef(const MachineFunction &MF,
437                         InstrToInstrs *ColorOpToReachedUses,
438                         const MapRegToId &RegToId, bool ADRPMode = false,
439                         const MachineInstr *DummyOp = nullptr) {
440   // structures:
441   // For each basic block.
442   // Out: a set per color of definitions that reach the
443   //      out boundary of this block.
444   // In: Same as Out but for in boundary.
445   // Gen: generated color in this block (one operation per color).
446   // Kill: register set of killed color in this block.
447   // ReachableUses: a set per color of uses (operation) reachable
448   //                for "In" definitions.
449   BlockToSetOfInstrsPerColor Out, In, ReachableUses;
450   BlockToInstrPerColor Gen;
451   BlockToRegSet Kill;
452
453   // Initialize Gen, kill and reachableUses.
454   initReachingDef(MF, ColorOpToReachedUses, Gen, Kill, ReachableUses, RegToId,
455                   DummyOp, ADRPMode);
456
457   // Algo.
458   if (!DummyOp)
459     reachingDefAlgorithm(MF, ColorOpToReachedUses, In, Out, Gen, Kill,
460                          ReachableUses, RegToId.size());
461 }
462
463 #ifndef NDEBUG
464 /// print the result of the reaching definition algorithm.
465 static void printReachingDef(const InstrToInstrs *ColorOpToReachedUses,
466                              unsigned NbReg, const TargetRegisterInfo *TRI,
467                              const MapIdToReg &IdToReg) {
468   unsigned CurReg;
469   for (CurReg = 0; CurReg < NbReg; ++CurReg) {
470     if (ColorOpToReachedUses[CurReg].empty())
471       continue;
472     DEBUG(dbgs() << "*** Reg " << PrintReg(IdToReg[CurReg], TRI) << " ***\n");
473
474     for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
475       DEBUG(dbgs() << "Def:\n");
476       DEBUG(DefsIt.first->print(dbgs()));
477       DEBUG(dbgs() << "Reachable uses:\n");
478       for (const MachineInstr *MI : DefsIt.second) {
479         DEBUG(MI->print(dbgs()));
480       }
481     }
482   }
483 }
484 #endif // NDEBUG
485
486 /// Answer the following question: Can Def be one of the definition
487 /// involved in a part of a LOH?
488 static bool canDefBePartOfLOH(const MachineInstr *Def) {
489   unsigned Opc = Def->getOpcode();
490   // Accept ADRP, ADDLow and LOADGot.
491   switch (Opc) {
492   default:
493     return false;
494   case AArch64::ADRP:
495     return true;
496   case AArch64::ADDXri:
497     // Check immediate to see if the immediate is an address.
498     switch (Def->getOperand(2).getType()) {
499     default:
500       return false;
501     case MachineOperand::MO_GlobalAddress:
502     case MachineOperand::MO_JumpTableIndex:
503     case MachineOperand::MO_ConstantPoolIndex:
504     case MachineOperand::MO_BlockAddress:
505       return true;
506     }
507   case AArch64::LDRXui:
508     // Check immediate to see if the immediate is an address.
509     switch (Def->getOperand(2).getType()) {
510     default:
511       return false;
512     case MachineOperand::MO_GlobalAddress:
513       return true;
514     }
515   }
516   // Unreachable.
517   return false;
518 }
519
520 /// Check whether the given instruction can the end of a LOH chain involving a
521 /// store.
522 static bool isCandidateStore(const MachineInstr *Instr) {
523   switch (Instr->getOpcode()) {
524   default:
525     return false;
526   case AArch64::STRBui:
527   case AArch64::STRHui:
528   case AArch64::STRWui:
529   case AArch64::STRXui:
530   case AArch64::STRSui:
531   case AArch64::STRDui:
532   case AArch64::STRQui:
533     // In case we have str xA, [xA, #imm], this is two different uses
534     // of xA and we cannot fold, otherwise the xA stored may be wrong,
535     // even if #imm == 0.
536     if (Instr->getOperand(0).getReg() != Instr->getOperand(1).getReg())
537       return true;
538   }
539   return false;
540 }
541
542 /// Given the result of a reaching definition algorithm in ColorOpToReachedUses,
543 /// Build the Use to Defs information and filter out obvious non-LOH candidates.
544 /// In ADRPMode, non-LOH candidates are "uses" with non-ADRP definitions.
545 /// In non-ADRPMode, non-LOH candidates are "uses" with several definition,
546 /// i.e., no simple chain.
547 /// \param ADRPMode -- \see initReachingDef.
548 static void reachedUsesToDefs(InstrToInstrs &UseToReachingDefs,
549                               const InstrToInstrs *ColorOpToReachedUses,
550                               const MapRegToId &RegToId,
551                               bool ADRPMode = false) {
552
553   SetOfMachineInstr NotCandidate;
554   unsigned NbReg = RegToId.size();
555   MapRegToId::const_iterator EndIt = RegToId.end();
556   for (unsigned CurReg = 0; CurReg < NbReg; ++CurReg) {
557     // If this color is never defined, continue.
558     if (ColorOpToReachedUses[CurReg].empty())
559       continue;
560
561     for (const auto &DefsIt : ColorOpToReachedUses[CurReg]) {
562       for (const MachineInstr *MI : DefsIt.second) {
563         const MachineInstr *Def = DefsIt.first;
564         MapRegToId::const_iterator It;
565         // if all the reaching defs are not adrp, this use will not be
566         // simplifiable.
567         if ((ADRPMode && Def->getOpcode() != AArch64::ADRP) ||
568             (!ADRPMode && !canDefBePartOfLOH(Def)) ||
569             (!ADRPMode && isCandidateStore(MI) &&
570              // store are LOH candidate iff the end of the chain is used as
571              // base.
572              ((It = RegToId.find((MI)->getOperand(1).getReg())) == EndIt ||
573               It->second != CurReg))) {
574           NotCandidate.insert(MI);
575           continue;
576         }
577         // Do not consider self reaching as a simplifiable case for ADRP.
578         if (!ADRPMode || MI != DefsIt.first) {
579           UseToReachingDefs[MI].insert(DefsIt.first);
580           // If UsesIt has several reaching definitions, it is not
581           // candidate for simplificaton in non-ADRPMode.
582           if (!ADRPMode && UseToReachingDefs[MI].size() > 1)
583             NotCandidate.insert(MI);
584         }
585       }
586     }
587   }
588   for (const MachineInstr *Elem : NotCandidate) {
589     DEBUG(dbgs() << "Too many reaching defs: " << *Elem << "\n");
590     // It would have been better if we could just remove the entry
591     // from the map.  Because of that, we have to filter the garbage
592     // (second.empty) in the subsequence analysis.
593     UseToReachingDefs[Elem].clear();
594   }
595 }
596
597 /// Based on the use to defs information (in ADRPMode), compute the
598 /// opportunities of LOH ADRP-related.
599 static void computeADRP(const InstrToInstrs &UseToDefs,
600                         AArch64FunctionInfo &AArch64FI,
601                         const MachineDominatorTree *MDT) {
602   DEBUG(dbgs() << "*** Compute LOH for ADRP\n");
603   for (const auto &Entry : UseToDefs) {
604     unsigned Size = Entry.second.size();
605     if (Size == 0)
606       continue;
607     if (Size == 1) {
608       const MachineInstr *L2 = *Entry.second.begin();
609       const MachineInstr *L1 = Entry.first;
610       if (!MDT->dominates(L2, L1)) {
611         DEBUG(dbgs() << "Dominance check failed:\n" << *L2 << '\n' << *L1
612                      << '\n');
613         continue;
614       }
615       DEBUG(dbgs() << "Record AdrpAdrp:\n" << *L2 << '\n' << *L1 << '\n');
616       SmallVector<const MachineInstr *, 2> Args;
617       Args.push_back(L2);
618       Args.push_back(L1);
619       AArch64FI.addLOHDirective(MCLOH_AdrpAdrp, Args);
620       ++NumADRPSimpleCandidate;
621     }
622 #ifdef DEBUG
623     else if (Size == 2)
624       ++NumADRPComplexCandidate2;
625     else if (Size == 3)
626       ++NumADRPComplexCandidate3;
627     else
628       ++NumADRPComplexCandidateOther;
629 #endif
630     // if Size < 1, the use should have been removed from the candidates
631     assert(Size >= 1 && "No reaching defs for that use!");
632   }
633 }
634
635 /// Check whether the given instruction can be the end of a LOH chain
636 /// involving a load.
637 static bool isCandidateLoad(const MachineInstr *Instr) {
638   switch (Instr->getOpcode()) {
639   default:
640     return false;
641   case AArch64::LDRSBWui:
642   case AArch64::LDRSBXui:
643   case AArch64::LDRSHWui:
644   case AArch64::LDRSHXui:
645   case AArch64::LDRSWui:
646   case AArch64::LDRBui:
647   case AArch64::LDRHui:
648   case AArch64::LDRWui:
649   case AArch64::LDRXui:
650   case AArch64::LDRSui:
651   case AArch64::LDRDui:
652   case AArch64::LDRQui:
653     if (Instr->getOperand(2).getTargetFlags() & AArch64II::MO_GOT)
654       return false;
655     return true;
656   }
657   // Unreachable.
658   return false;
659 }
660
661 /// Check whether the given instruction can load a litteral.
662 static bool supportLoadFromLiteral(const MachineInstr *Instr) {
663   switch (Instr->getOpcode()) {
664   default:
665     return false;
666   case AArch64::LDRSWui:
667   case AArch64::LDRWui:
668   case AArch64::LDRXui:
669   case AArch64::LDRSui:
670   case AArch64::LDRDui:
671   case AArch64::LDRQui:
672     return true;
673   }
674   // Unreachable.
675   return false;
676 }
677
678 /// Check whether the given instruction is a LOH candidate.
679 /// \param UseToDefs is used to check that Instr is at the end of LOH supported
680 /// chain.
681 /// \pre UseToDefs contains only on def per use, i.e., obvious non candidate are
682 /// already been filtered out.
683 static bool isCandidate(const MachineInstr *Instr,
684                         const InstrToInstrs &UseToDefs,
685                         const MachineDominatorTree *MDT) {
686   if (!isCandidateLoad(Instr) && !isCandidateStore(Instr))
687     return false;
688
689   const MachineInstr *Def = *UseToDefs.find(Instr)->second.begin();
690   if (Def->getOpcode() != AArch64::ADRP) {
691     // At this point, Def is ADDXri or LDRXui of the right type of
692     // symbol, because we filtered out the uses that were not defined
693     // by these kind of instructions (+ ADRP).
694
695     // Check if this forms a simple chain: each intermediate node must
696     // dominates the next one.
697     if (!MDT->dominates(Def, Instr))
698       return false;
699     // Move one node up in the simple chain.
700     if (UseToDefs.find(Def) ==
701             UseToDefs.end()
702             // The map may contain garbage we have to ignore.
703         ||
704         UseToDefs.find(Def)->second.empty())
705       return false;
706     Instr = Def;
707     Def = *UseToDefs.find(Def)->second.begin();
708   }
709   // Check if we reached the top of the simple chain:
710   // - top is ADRP.
711   // - check the simple chain property: each intermediate node must
712   // dominates the next one.
713   if (Def->getOpcode() == AArch64::ADRP)
714     return MDT->dominates(Def, Instr);
715   return false;
716 }
717
718 static bool registerADRCandidate(const MachineInstr &Use,
719                                  const InstrToInstrs &UseToDefs,
720                                  const InstrToInstrs *DefsPerColorToUses,
721                                  AArch64FunctionInfo &AArch64FI,
722                                  SetOfMachineInstr *InvolvedInLOHs,
723                                  const MapRegToId &RegToId) {
724   // Look for opportunities to turn ADRP -> ADD or
725   // ADRP -> LDR GOTPAGEOFF into ADR.
726   // If ADRP has more than one use. Give up.
727   if (Use.getOpcode() != AArch64::ADDXri &&
728       (Use.getOpcode() != AArch64::LDRXui ||
729        !(Use.getOperand(2).getTargetFlags() & AArch64II::MO_GOT)))
730     return false;
731   InstrToInstrs::const_iterator It = UseToDefs.find(&Use);
732   // The map may contain garbage that we need to ignore.
733   if (It == UseToDefs.end() || It->second.empty())
734     return false;
735   const MachineInstr &Def = **It->second.begin();
736   if (Def.getOpcode() != AArch64::ADRP)
737     return false;
738   // Check the number of users of ADRP.
739   const SetOfMachineInstr *Users =
740       getUses(DefsPerColorToUses,
741               RegToId.find(Def.getOperand(0).getReg())->second, Def);
742   if (Users->size() > 1) {
743     ++NumADRComplexCandidate;
744     return false;
745   }
746   ++NumADRSimpleCandidate;
747   assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Def)) &&
748          "ADRP already involved in LOH.");
749   assert((!InvolvedInLOHs || InvolvedInLOHs->insert(&Use)) &&
750          "ADD already involved in LOH.");
751   DEBUG(dbgs() << "Record AdrpAdd\n" << Def << '\n' << Use << '\n');
752
753   SmallVector<const MachineInstr *, 2> Args;
754   Args.push_back(&Def);
755   Args.push_back(&Use);
756
757   AArch64FI.addLOHDirective(Use.getOpcode() == AArch64::ADDXri ? MCLOH_AdrpAdd
758                                                            : MCLOH_AdrpLdrGot,
759                           Args);
760   return true;
761 }
762
763 /// Based on the use to defs information (in non-ADRPMode), compute the
764 /// opportunities of LOH non-ADRP-related
765 static void computeOthers(const InstrToInstrs &UseToDefs,
766                           const InstrToInstrs *DefsPerColorToUses,
767                           AArch64FunctionInfo &AArch64FI, const MapRegToId &RegToId,
768                           const MachineDominatorTree *MDT) {
769   SetOfMachineInstr *InvolvedInLOHs = nullptr;
770 #ifdef DEBUG
771   SetOfMachineInstr InvolvedInLOHsStorage;
772   InvolvedInLOHs = &InvolvedInLOHsStorage;
773 #endif // DEBUG
774   DEBUG(dbgs() << "*** Compute LOH for Others\n");
775   // ADRP -> ADD/LDR -> LDR/STR pattern.
776   // Fall back to ADRP -> ADD pattern if we fail to catch the bigger pattern.
777
778   // FIXME: When the statistics are not important,
779   // This initial filtering loop can be merged into the next loop.
780   // Currently, we didn't do it to have the same code for both DEBUG and
781   // NDEBUG builds. Indeed, the iterator of the second loop would need
782   // to be changed.
783   SetOfMachineInstr PotentialCandidates;
784   SetOfMachineInstr PotentialADROpportunities;
785   for (auto &Use : UseToDefs) {
786     // If no definition is available, this is a non candidate.
787     if (Use.second.empty())
788       continue;
789     // Keep only instructions that are load or store and at the end of
790     // a ADRP -> ADD/LDR/Nothing chain.
791     // We already filtered out the no-chain cases.
792     if (!isCandidate(Use.first, UseToDefs, MDT)) {
793       PotentialADROpportunities.insert(Use.first);
794       continue;
795     }
796     PotentialCandidates.insert(Use.first);
797   }
798
799   // Make the following distinctions for statistics as the linker does
800   // know how to decode instructions:
801   // - ADD/LDR/Nothing make there different patterns.
802   // - LDR/STR make two different patterns.
803   // Hence, 6 - 1 base patterns.
804   // (because ADRP-> Nothing -> STR is not simplifiable)
805
806   // The linker is only able to have a simple semantic, i.e., if pattern A
807   // do B.
808   // However, we want to see the opportunity we may miss if we were able to
809   // catch more complex cases.
810
811   // PotentialCandidates are result of a chain ADRP -> ADD/LDR ->
812   // A potential candidate becomes a candidate, if its current immediate
813   // operand is zero and all nodes of the chain have respectively only one user
814 #ifdef DEBUG
815   SetOfMachineInstr DefsOfPotentialCandidates;
816 #endif
817   for (const MachineInstr *Candidate : PotentialCandidates) {
818     // Get the definition of the candidate i.e., ADD or LDR.
819     const MachineInstr *Def = *UseToDefs.find(Candidate)->second.begin();
820     // Record the elements of the chain.
821     const MachineInstr *L1 = Def;
822     const MachineInstr *L2 = nullptr;
823     unsigned ImmediateDefOpc = Def->getOpcode();
824     if (Def->getOpcode() != AArch64::ADRP) {
825       // Check the number of users of this node.
826       const SetOfMachineInstr *Users =
827           getUses(DefsPerColorToUses,
828                   RegToId.find(Def->getOperand(0).getReg())->second, *Def);
829       if (Users->size() > 1) {
830 #ifdef DEBUG
831         // if all the uses of this def are in potential candidate, this is
832         // a complex candidate of level 2.
833         bool IsLevel2 = true;
834         for (const MachineInstr *MI : *Users) {
835           if (!PotentialCandidates.count(MI)) {
836             ++NumTooCplxLvl2;
837             IsLevel2 = false;
838             break;
839           }
840         }
841         if (IsLevel2)
842           ++NumCplxLvl2;
843 #endif // DEBUG
844         PotentialADROpportunities.insert(Def);
845         continue;
846       }
847       L2 = Def;
848       Def = *UseToDefs.find(Def)->second.begin();
849       L1 = Def;
850     } // else the element in the middle of the chain is nothing, thus
851       // Def already contains the first element of the chain.
852
853     // Check the number of users of the first node in the chain, i.e., ADRP
854     const SetOfMachineInstr *Users =
855         getUses(DefsPerColorToUses,
856                 RegToId.find(Def->getOperand(0).getReg())->second, *Def);
857     if (Users->size() > 1) {
858 #ifdef DEBUG
859       // if all the uses of this def are in the defs of the potential candidate,
860       // this is a complex candidate of level 1
861       if (DefsOfPotentialCandidates.empty()) {
862         // lazy init
863         DefsOfPotentialCandidates = PotentialCandidates;
864         for (const MachineInstr *Candidate : PotentialCandidates) {
865           if (!UseToDefs.find(Candidate)->second.empty())
866             DefsOfPotentialCandidates.insert(
867                 *UseToDefs.find(Candidate)->second.begin());
868         }
869       }
870       bool Found = false;
871       for (auto &Use : *Users) {
872         if (!DefsOfPotentialCandidates.count(Use)) {
873           ++NumTooCplxLvl1;
874           Found = true;
875           break;
876         }
877       }
878       if (!Found)
879         ++NumCplxLvl1;
880 #endif // DEBUG
881       continue;
882     }
883
884     bool IsL2Add = (ImmediateDefOpc == AArch64::ADDXri);
885     // If the chain is three instructions long and ldr is the second element,
886     // then this ldr must load form GOT, otherwise this is not a correct chain.
887     if (L2 && !IsL2Add && L2->getOperand(2).getTargetFlags() != AArch64II::MO_GOT)
888       continue;
889     SmallVector<const MachineInstr *, 3> Args;
890     MCLOHType Kind;
891     if (isCandidateLoad(Candidate)) {
892       if (!L2) {
893         // At this point, the candidate LOH indicates that the ldr instruction
894         // may use a direct access to the symbol. There is not such encoding
895         // for loads of byte and half.
896         if (!supportLoadFromLiteral(Candidate))
897           continue;
898
899         DEBUG(dbgs() << "Record AdrpLdr:\n" << *L1 << '\n' << *Candidate
900                      << '\n');
901         Kind = MCLOH_AdrpLdr;
902         Args.push_back(L1);
903         Args.push_back(Candidate);
904         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
905                "L1 already involved in LOH.");
906         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
907                "Candidate already involved in LOH.");
908         ++NumADRPToLDR;
909       } else {
910         DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
911                      << "Ldr:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
912                      << '\n');
913
914         Kind = IsL2Add ? MCLOH_AdrpAddLdr : MCLOH_AdrpLdrGotLdr;
915         Args.push_back(L1);
916         Args.push_back(L2);
917         Args.push_back(Candidate);
918
919         PotentialADROpportunities.remove(L2);
920         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
921                "L1 already involved in LOH.");
922         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
923                "L2 already involved in LOH.");
924         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
925                "Candidate already involved in LOH.");
926 #ifdef DEBUG
927         // get the immediate of the load
928         if (Candidate->getOperand(2).getImm() == 0)
929           if (ImmediateDefOpc == AArch64::ADDXri)
930             ++NumADDToLDR;
931           else
932             ++NumLDRToLDR;
933         else if (ImmediateDefOpc == AArch64::ADDXri)
934           ++NumADDToLDRWithImm;
935         else
936           ++NumLDRToLDRWithImm;
937 #endif // DEBUG
938       }
939     } else {
940       if (ImmediateDefOpc == AArch64::ADRP)
941         continue;
942       else {
943
944         DEBUG(dbgs() << "Record Adrp" << (IsL2Add ? "Add" : "LdrGot")
945                      << "Str:\n" << *L1 << '\n' << *L2 << '\n' << *Candidate
946                      << '\n');
947
948         Kind = IsL2Add ? MCLOH_AdrpAddStr : MCLOH_AdrpLdrGotStr;
949         Args.push_back(L1);
950         Args.push_back(L2);
951         Args.push_back(Candidate);
952
953         PotentialADROpportunities.remove(L2);
954         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L1)) &&
955                "L1 already involved in LOH.");
956         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(L2)) &&
957                "L2 already involved in LOH.");
958         assert((!InvolvedInLOHs || InvolvedInLOHs->insert(Candidate)) &&
959                "Candidate already involved in LOH.");
960 #ifdef DEBUG
961         // get the immediate of the store
962         if (Candidate->getOperand(2).getImm() == 0)
963           if (ImmediateDefOpc == AArch64::ADDXri)
964             ++NumADDToSTR;
965           else
966             ++NumLDRToSTR;
967         else if (ImmediateDefOpc == AArch64::ADDXri)
968           ++NumADDToSTRWithImm;
969         else
970           ++NumLDRToSTRWithImm;
971 #endif // DEBUG
972       }
973     }
974     AArch64FI.addLOHDirective(Kind, Args);
975   }
976
977   // Now, we grabbed all the big patterns, check ADR opportunities.
978   for (const MachineInstr *Candidate : PotentialADROpportunities)
979     registerADRCandidate(*Candidate, UseToDefs, DefsPerColorToUses, AArch64FI,
980                          InvolvedInLOHs, RegToId);
981 }
982
983 /// Look for every register defined by potential LOHs candidates.
984 /// Map these registers with dense id in @p RegToId and vice-versa in
985 /// @p IdToReg. @p IdToReg is populated only in DEBUG mode.
986 static void collectInvolvedReg(const MachineFunction &MF, MapRegToId &RegToId,
987                                MapIdToReg &IdToReg,
988                                const TargetRegisterInfo *TRI) {
989   unsigned CurRegId = 0;
990   if (!PreCollectRegister) {
991     unsigned NbReg = TRI->getNumRegs();
992     for (; CurRegId < NbReg; ++CurRegId) {
993       RegToId[CurRegId] = CurRegId;
994       DEBUG(IdToReg.push_back(CurRegId));
995       DEBUG(assert(IdToReg[CurRegId] == CurRegId && "Reg index mismatches"));
996     }
997     return;
998   }
999
1000   DEBUG(dbgs() << "** Collect Involved Register\n");
1001   for (const auto &MBB : MF) {
1002     for (const MachineInstr &MI : MBB) {
1003       if (!canDefBePartOfLOH(&MI))
1004         continue;
1005
1006       // Process defs
1007       for (MachineInstr::const_mop_iterator IO = MI.operands_begin(),
1008                                             IOEnd = MI.operands_end();
1009            IO != IOEnd; ++IO) {
1010         if (!IO->isReg() || !IO->isDef())
1011           continue;
1012         unsigned CurReg = IO->getReg();
1013         for (MCRegAliasIterator AI(CurReg, TRI, true); AI.isValid(); ++AI)
1014           if (RegToId.find(*AI) == RegToId.end()) {
1015             DEBUG(IdToReg.push_back(*AI);
1016                   assert(IdToReg[CurRegId] == *AI &&
1017                          "Reg index mismatches insertion index."));
1018             RegToId[*AI] = CurRegId++;
1019             DEBUG(dbgs() << "Register: " << PrintReg(*AI, TRI) << '\n');
1020           }
1021       }
1022     }
1023   }
1024 }
1025
1026 bool AArch64CollectLOH::runOnMachineFunction(MachineFunction &MF) {
1027   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1028   const MachineDominatorTree *MDT = &getAnalysis<MachineDominatorTree>();
1029
1030   MapRegToId RegToId;
1031   MapIdToReg IdToReg;
1032   AArch64FunctionInfo *AArch64FI = MF.getInfo<AArch64FunctionInfo>();
1033   assert(AArch64FI && "No MachineFunctionInfo for this function!");
1034
1035   DEBUG(dbgs() << "Looking for LOH in " << MF.getName() << '\n');
1036
1037   collectInvolvedReg(MF, RegToId, IdToReg, TRI);
1038   if (RegToId.empty())
1039     return false;
1040
1041   MachineInstr *DummyOp = nullptr;
1042   if (BasicBlockScopeOnly) {
1043     const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1044     // For local analysis, create a dummy operation to record uses that are not
1045     // local.
1046     DummyOp = MF.CreateMachineInstr(TII->get(AArch64::COPY), DebugLoc());
1047   }
1048
1049   unsigned NbReg = RegToId.size();
1050   bool Modified = false;
1051
1052   // Start with ADRP.
1053   InstrToInstrs *ColorOpToReachedUses = new InstrToInstrs[NbReg];
1054
1055   // Compute the reaching def in ADRP mode, meaning ADRP definitions
1056   // are first considered as uses.
1057   reachingDef(MF, ColorOpToReachedUses, RegToId, true, DummyOp);
1058   DEBUG(dbgs() << "ADRP reaching defs\n");
1059   DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
1060
1061   // Translate the definition to uses map into a use to definitions map to ease
1062   // statistic computation.
1063   InstrToInstrs ADRPToReachingDefs;
1064   reachedUsesToDefs(ADRPToReachingDefs, ColorOpToReachedUses, RegToId, true);
1065
1066   // Compute LOH for ADRP.
1067   computeADRP(ADRPToReachingDefs, *AArch64FI, MDT);
1068   delete[] ColorOpToReachedUses;
1069
1070   // Continue with general ADRP -> ADD/LDR -> LDR/STR pattern.
1071   ColorOpToReachedUses = new InstrToInstrs[NbReg];
1072
1073   // first perform a regular reaching def analysis.
1074   reachingDef(MF, ColorOpToReachedUses, RegToId, false, DummyOp);
1075   DEBUG(dbgs() << "All reaching defs\n");
1076   DEBUG(printReachingDef(ColorOpToReachedUses, NbReg, TRI, IdToReg));
1077
1078   // Turn that into a use to defs to ease statistic computation.
1079   InstrToInstrs UsesToReachingDefs;
1080   reachedUsesToDefs(UsesToReachingDefs, ColorOpToReachedUses, RegToId, false);
1081
1082   // Compute other than AdrpAdrp LOH.
1083   computeOthers(UsesToReachingDefs, ColorOpToReachedUses, *AArch64FI, RegToId,
1084                 MDT);
1085   delete[] ColorOpToReachedUses;
1086
1087   if (BasicBlockScopeOnly)
1088     MF.DeleteMachineInstr(DummyOp);
1089
1090   return Modified;
1091 }
1092
1093 /// createAArch64CollectLOHPass - returns an instance of the Statistic for
1094 /// linker optimization pass.
1095 FunctionPass *llvm::createAArch64CollectLOHPass() {
1096   return new AArch64CollectLOH();
1097 }