Add AArch64 as an experimental target.
[oota-llvm.git] / lib / Target / AArch64 / AArch64CallingConv.td
1 //==-- AArch64CallingConv.td - Calling Conventions for ARM ----*- tblgen -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 // This describes the calling conventions for AArch64 architecture.
10 //===----------------------------------------------------------------------===//
11
12
13 // The AArch64 Procedure Call Standard is unfortunately specified at a slightly
14 // higher level of abstraction than LLVM's target interface presents. In
15 // particular, it refers (like other ABIs, in fact) directly to
16 // structs. However, generic LLVM code takes the liberty of lowering structure
17 // arguments to the component fields before we see them.
18 //
19 // As a result, the obvious direct map from LLVM IR to PCS concepts can't be
20 // implemented, so the goals of this calling convention are, in decreasing
21 // priority order:
22 //     1. Expose *some* way to express the concepts required to implement the
23 //        generic PCS from a front-end.
24 //     2. Provide a sane ABI for pure LLVM.
25 //     3. Follow the generic PCS as closely as is naturally possible.
26 //
27 // The suggested front-end implementation of PCS features is:
28 //     * Integer, float and vector arguments of all sizes which end up in
29 //       registers are passed and returned via the natural LLVM type.
30 //     * Structure arguments with size <= 16 bytes are passed and returned in
31 //       registers as similar integer or composite types. For example:
32 //       [1 x i64], [2 x i64] or [1 x i128] (if alignment 16 needed).
33 //     * HFAs in registers follow rules similar to small structs: appropriate
34 //       composite types.
35 //     * Structure arguments with size > 16 bytes are passed via a pointer,
36 //       handled completely by the front-end.
37 //     * Structure return values > 16 bytes via an sret pointer argument.
38 //     * Other stack-based arguments (not large structs) are passed using byval
39 //       pointers. Padding arguments are added beforehand to guarantee a large
40 //       struct doesn't later use integer registers.
41 //
42 // N.b. this means that it is the front-end's responsibility (if it cares about
43 // PCS compliance) to check whether enough registers are available for an
44 // argument when deciding how to pass it.
45
46 class CCIfAlign<int Align, CCAction A>:
47   CCIf<"ArgFlags.getOrigAlign() == " # Align, A>;
48
49 def CC_A64_APCS : CallingConv<[
50   // SRet is an LLVM-specific concept, so it takes precedence over general ABI
51   // concerns. However, this rule will be used by C/C++ frontends to implement
52   // structure return.
53   CCIfSRet<CCAssignToReg<[X8]>>,
54
55   // Put ByVal arguments directly on the stack. Minimum size and alignment of a
56   // slot is 64-bit.
57   CCIfByVal<CCPassByVal<8, 8>>,
58
59   // Canonicalise the various types that live in different floating-point
60   // registers. This makes sense because the PCS does not distinguish Short
61   // Vectors and Floating-point types.
62   CCIfType<[v2i8], CCBitConvertToType<f16>>,
63   CCIfType<[v4i8, v2i16], CCBitConvertToType<f32>>,
64   CCIfType<[v8i8, v4i16, v2i32, v2f32], CCBitConvertToType<f64>>,
65   CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
66            CCBitConvertToType<f128>>,
67
68   // PCS: "C.1: If the argument is a Half-, Single-, Double- or Quad- precision
69   // Floating-point or Short Vector Type and the NSRN is less than 8, then the
70   // argument is allocated to the least significant bits of register
71   // v[NSRN]. The NSRN is incremented by one. The argument has now been
72   // allocated."
73   CCIfType<[f16],  CCAssignToReg<[B0, B1, B2, B3, B4, B5, B6, B7]>>,
74   CCIfType<[f32],  CCAssignToReg<[S0, S1, S2, S3, S4, S5, S6, S7]>>,
75   CCIfType<[f64],  CCAssignToReg<[D0, D1, D2, D3, D4, D5, D6, D7]>>,
76   CCIfType<[f128], CCAssignToReg<[Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7]>>,
77
78   // PCS: "C.2: If the argument is an HFA and there are sufficient unallocated
79   // SIMD and Floating-point registers (NSRN - number of elements < 8), then the
80   // argument is allocated to SIMD and Floating-point registers (with one
81   // register per element of the HFA). The NSRN is incremented by the number of
82   // registers used. The argument has now been allocated."
83   //
84   // N.b. As above, this rule is the responsibility of the front-end.
85
86   // "C.3: If the argument is an HFA then the NSRN is set to 8 and the size of
87   // the argument is rounded up to the nearest multiple of 8 bytes."
88   //
89   // "C.4: If the argument is an HFA, a Quad-precision Floating-point or Short
90   // Vector Type then the NSAA is rounded up to the larger of 8 or the Natural
91   // Alignment of the Argument's type."
92   //
93   // It is expected that these will be satisfied by adding dummy arguments to
94   // the prototype.
95
96   // PCS: "C.5: If the argument is a Half- or Single- precision Floating-point
97   // type then the size of the argument is set to 8 bytes. The effect is as if
98   // the argument had been copied to the least significant bits of a 64-bit
99   // register and the remaining bits filled with unspecified values."
100   CCIfType<[f16, f32], CCPromoteToType<f64>>,
101
102   // PCS: "C.6: If the argument is an HFA, a Half-, Single-, Double- or Quad-
103   // precision Floating-point or Short Vector Type, then the argument is copied
104   // to memory at the adjusted NSAA. The NSAA is incremented by the size of the
105   // argument. The argument has now been allocated."
106   CCIfType<[f64], CCAssignToStack<8, 8>>,
107   CCIfType<[f128], CCAssignToStack<16, 16>>,
108
109   // PCS: "C.7: If the argument is an Integral Type, the size of the argument is
110   // less than or equal to 8 bytes and the NGRN is less than 8, the argument is
111   // copied to the least significant bits of x[NGRN]. The NGRN is incremented by
112   // one. The argument has now been allocated."
113
114   // First we implement C.8 and C.9 (128-bit types get even registers). i128 is
115   // represented as two i64s, the first one being split. If we delayed this
116   // operation C.8 would never be reached.
117   CCIfType<[i64],
118         CCIfSplit<CCAssignToRegWithShadow<[X0, X2, X4, X6], [X0, X1, X3, X5]>>>,
119
120   // Note: the promotion also implements C.14.
121   CCIfType<[i8, i16, i32], CCPromoteToType<i64>>,
122
123   // And now the real implementation of C.7
124   CCIfType<[i64], CCAssignToReg<[X0, X1, X2, X3, X4, X5, X6, X7]>>,
125
126   // PCS: "C.8: If the argument has an alignment of 16 then the NGRN is rounded
127   // up to the next even number."
128   //
129   // "C.9: If the argument is an Integral Type, the size of the argument is
130   // equal to 16 and the NGRN is less than 7, the argument is copied to x[NGRN]
131   // and x[NGRN+1], x[NGRN] shall contain the lower addressed double-word of the
132   // memory representation of the argument. The NGRN is incremented by two. The
133   // argument has now been allocated."
134   //
135   // Subtlety here: what if alignment is 16 but it is not an integral type? All
136   // floating-point types have been allocated already, which leaves composite
137   // types: this is why a front-end may need to produce i128 for a struct <= 16
138   // bytes.
139
140   // PCS: "C.10 If the argument is a Composite Type and the size in double-words
141   // of the argument is not more than 8 minus NGRN, then the argument is copied
142   // into consecutive general-purpose registers, starting at x[NGRN]. The
143   // argument is passed as though it had been loaded into the registers from a
144   // double-word aligned address with an appropriate sequence of LDR
145   // instructions loading consecutive registers from memory (the contents of any
146   // unused parts of the registers are unspecified by this standard). The NGRN
147   // is incremented by the number of registers used. The argument has now been
148   // allocated."
149   //
150   // Another one that's the responsibility of the front-end (sigh).
151
152   // PCS: "C.11: The NGRN is set to 8."
153   CCCustom<"CC_AArch64NoMoreRegs">,
154
155   // PCS: "C.12: The NSAA is rounded up to the larger of 8 or the Natural
156   // Alignment of the argument's type."
157   //
158   // PCS: "C.13: If the argument is a composite type then the argument is copied
159   // to memory at the adjusted NSAA. The NSAA is by the size of the
160   // argument. The argument has now been allocated."
161   //
162   // Note that the effect of this corresponds to a memcpy rather than register
163   // stores so that the struct ends up correctly addressable at the adjusted
164   // NSAA.
165
166   // PCS: "C.14: If the size of the argument is less than 8 bytes then the size
167   // of the argument is set to 8 bytes. The effect is as if the argument was
168   // copied to the least significant bits of a 64-bit register and the remaining
169   // bits filled with unspecified values."
170   //
171   // Integer types were widened above. Floating-point and composite types have
172   // already been allocated completely. Nothing to do.
173
174   // PCS: "C.15: The argument is copied to memory at the adjusted NSAA. The NSAA
175   // is incremented by the size of the argument. The argument has now been
176   // allocated."
177   CCIfType<[i64], CCIfSplit<CCAssignToStack<8, 16>>>,
178   CCIfType<[i64], CCAssignToStack<8, 8>>
179
180 ]>;
181
182 // According to the PCS, X19-X30 are callee-saved, however only the low 64-bits
183 // of vector registers (8-15) are callee-saved. The order here is is picked up
184 // by PrologEpilogInserter.cpp to allocate stack slots, starting from top of
185 // stack upon entry. This gives the customary layout of x30 at [sp-8], x29 at
186 // [sp-16], ...
187 def CSR_PCS : CalleeSavedRegs<(add (sequence "X%u", 30, 19),
188                                    (sequence "D%u", 15, 8))>;
189
190
191 // TLS descriptor calls are extremely restricted in their changes, to allow
192 // optimisations in the (hopefully) more common fast path where no real action
193 // is needed. They actually have to preserve all registers, except for the
194 // unavoidable X30 and the return register X0.
195 def TLSDesc : CalleeSavedRegs<(add (sequence "X%u", 29, 1),
196                                    (sequence "Q%u", 31, 0))>;