Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / Support / StringRef.cpp
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/OwningPtr.h"
14 #include "llvm/ADT/edit_distance.h"
15 #include <bitset>
16
17 using namespace llvm;
18
19 // MSVC emits references to this into the translation units which reference it.
20 #ifndef _MSC_VER
21 const size_t StringRef::npos;
22 #endif
23
24 static char ascii_tolower(char x) {
25   if (x >= 'A' && x <= 'Z')
26     return x - 'A' + 'a';
27   return x;
28 }
29
30 static char ascii_toupper(char x) {
31   if (x >= 'a' && x <= 'z')
32     return x - 'a' + 'A';
33   return x;
34 }
35
36 static bool ascii_isdigit(char x) {
37   return x >= '0' && x <= '9';
38 }
39
40 /// compare_lower - Compare strings, ignoring case.
41 int StringRef::compare_lower(StringRef RHS) const {
42   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
43     unsigned char LHC = ascii_tolower(Data[I]);
44     unsigned char RHC = ascii_tolower(RHS.Data[I]);
45     if (LHC != RHC)
46       return LHC < RHC ? -1 : 1;
47   }
48
49   if (Length == RHS.Length)
50     return 0;
51   return Length < RHS.Length ? -1 : 1;
52 }
53
54 /// compare_numeric - Compare strings, handle embedded numbers.
55 int StringRef::compare_numeric(StringRef RHS) const {
56   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
57     // Check for sequences of digits.
58     if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
59       // The longer sequence of numbers is considered larger.
60       // This doesn't really handle prefixed zeros well.
61       size_t J;
62       for (J = I + 1; J != E + 1; ++J) {
63         bool ld = J < Length && ascii_isdigit(Data[J]);
64         bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
65         if (ld != rd)
66           return rd ? -1 : 1;
67         if (!rd)
68           break;
69       }
70       // The two number sequences have the same length (J-I), just memcmp them.
71       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
72         return Res < 0 ? -1 : 1;
73       // Identical number sequences, continue search after the numbers.
74       I = J - 1;
75       continue;
76     }
77     if (Data[I] != RHS.Data[I])
78       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
79   }
80   if (Length == RHS.Length)
81     return 0;
82   return Length < RHS.Length ? -1 : 1;
83 }
84
85 // Compute the edit distance between the two given strings.
86 unsigned StringRef::edit_distance(llvm::StringRef Other,
87                                   bool AllowReplacements,
88                                   unsigned MaxEditDistance) {
89   return llvm::ComputeEditDistance(
90       llvm::ArrayRef<char>(data(), size()),
91       llvm::ArrayRef<char>(Other.data(), Other.size()),
92       AllowReplacements, MaxEditDistance);
93 }
94
95 //===----------------------------------------------------------------------===//
96 // String Operations
97 //===----------------------------------------------------------------------===//
98
99 std::string StringRef::lower() const {
100   std::string Result(size(), char());
101   for (size_type i = 0, e = size(); i != e; ++i) {
102     Result[i] = ascii_tolower(Data[i]);
103   }
104   return Result;
105 }
106
107 std::string StringRef::upper() const {
108   std::string Result(size(), char());
109   for (size_type i = 0, e = size(); i != e; ++i) {
110     Result[i] = ascii_toupper(Data[i]);
111   }
112   return Result;
113 }
114
115 //===----------------------------------------------------------------------===//
116 // String Searching
117 //===----------------------------------------------------------------------===//
118
119
120 /// find - Search for the first string \arg Str in the string.
121 ///
122 /// \return - The index of the first occurrence of \arg Str, or npos if not
123 /// found.
124 size_t StringRef::find(StringRef Str, size_t From) const {
125   size_t N = Str.size();
126   if (N > Length)
127     return npos;
128
129   // For short haystacks or unsupported needles fall back to the naive algorithm
130   if (Length < 16 || N > 255 || N == 0) {
131     for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
132       if (substr(i, N).equals(Str))
133         return i;
134     return npos;
135   }
136
137   if (From >= Length)
138     return npos;
139
140   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
141   uint8_t BadCharSkip[256];
142   std::memset(BadCharSkip, N, 256);
143   for (unsigned i = 0; i != N-1; ++i)
144     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
145
146   unsigned Len = Length-From, Pos = From;
147   while (Len >= N) {
148     if (substr(Pos, N).equals(Str)) // See if this is the correct substring.
149       return Pos;
150
151     // Otherwise skip the appropriate number of bytes.
152     uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]];
153     Len -= Skip;
154     Pos += Skip;
155   }
156
157   return npos;
158 }
159
160 /// rfind - Search for the last string \arg Str in the string.
161 ///
162 /// \return - The index of the last occurrence of \arg Str, or npos if not
163 /// found.
164 size_t StringRef::rfind(StringRef Str) const {
165   size_t N = Str.size();
166   if (N > Length)
167     return npos;
168   for (size_t i = Length - N + 1, e = 0; i != e;) {
169     --i;
170     if (substr(i, N).equals(Str))
171       return i;
172   }
173   return npos;
174 }
175
176 /// find_first_of - Find the first character in the string that is in \arg
177 /// Chars, or npos if not found.
178 ///
179 /// Note: O(size() + Chars.size())
180 StringRef::size_type StringRef::find_first_of(StringRef Chars,
181                                               size_t From) const {
182   std::bitset<1 << CHAR_BIT> CharBits;
183   for (size_type i = 0; i != Chars.size(); ++i)
184     CharBits.set((unsigned char)Chars[i]);
185
186   for (size_type i = min(From, Length), e = Length; i != e; ++i)
187     if (CharBits.test((unsigned char)Data[i]))
188       return i;
189   return npos;
190 }
191
192 /// find_first_not_of - Find the first character in the string that is not
193 /// \arg C or npos if not found.
194 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
195   for (size_type i = min(From, Length), e = Length; i != e; ++i)
196     if (Data[i] != C)
197       return i;
198   return npos;
199 }
200
201 /// find_first_not_of - Find the first character in the string that is not
202 /// in the string \arg Chars, or npos if not found.
203 ///
204 /// Note: O(size() + Chars.size())
205 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
206                                                   size_t From) const {
207   std::bitset<1 << CHAR_BIT> CharBits;
208   for (size_type i = 0; i != Chars.size(); ++i)
209     CharBits.set((unsigned char)Chars[i]);
210
211   for (size_type i = min(From, Length), e = Length; i != e; ++i)
212     if (!CharBits.test((unsigned char)Data[i]))
213       return i;
214   return npos;
215 }
216
217 /// find_last_of - Find the last character in the string that is in \arg C,
218 /// or npos if not found.
219 ///
220 /// Note: O(size() + Chars.size())
221 StringRef::size_type StringRef::find_last_of(StringRef Chars,
222                                              size_t From) const {
223   std::bitset<1 << CHAR_BIT> CharBits;
224   for (size_type i = 0; i != Chars.size(); ++i)
225     CharBits.set((unsigned char)Chars[i]);
226
227   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
228     if (CharBits.test((unsigned char)Data[i]))
229       return i;
230   return npos;
231 }
232
233 /// find_last_not_of - Find the last character in the string that is not
234 /// \arg C, or npos if not found.
235 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
236   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
237     if (Data[i] != C)
238       return i;
239   return npos;
240 }
241
242 /// find_last_not_of - Find the last character in the string that is not in
243 /// \arg Chars, or npos if not found.
244 ///
245 /// Note: O(size() + Chars.size())
246 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
247                                                  size_t From) const {
248   std::bitset<1 << CHAR_BIT> CharBits;
249   for (size_type i = 0, e = Chars.size(); i != e; ++i)
250     CharBits.set((unsigned char)Chars[i]);
251
252   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
253     if (!CharBits.test((unsigned char)Data[i]))
254       return i;
255   return npos;
256 }
257
258 void StringRef::split(SmallVectorImpl<StringRef> &A,
259                       StringRef Separators, int MaxSplit,
260                       bool KeepEmpty) const {
261   StringRef rest = *this;
262
263   // rest.data() is used to distinguish cases like "a," that splits into
264   // "a" + "" and "a" that splits into "a" + 0.
265   for (int splits = 0;
266        rest.data() != NULL && (MaxSplit < 0 || splits < MaxSplit);
267        ++splits) {
268     std::pair<StringRef, StringRef> p = rest.split(Separators);
269
270     if (KeepEmpty || p.first.size() != 0)
271       A.push_back(p.first);
272     rest = p.second;
273   }
274   // If we have a tail left, add it.
275   if (rest.data() != NULL && (rest.size() != 0 || KeepEmpty))
276     A.push_back(rest);
277 }
278
279 //===----------------------------------------------------------------------===//
280 // Helpful Algorithms
281 //===----------------------------------------------------------------------===//
282
283 /// count - Return the number of non-overlapped occurrences of \arg Str in
284 /// the string.
285 size_t StringRef::count(StringRef Str) const {
286   size_t Count = 0;
287   size_t N = Str.size();
288   if (N > Length)
289     return 0;
290   for (size_t i = 0, e = Length - N + 1; i != e; ++i)
291     if (substr(i, N).equals(Str))
292       ++Count;
293   return Count;
294 }
295
296 static unsigned GetAutoSenseRadix(StringRef &Str) {
297   if (Str.startswith("0x")) {
298     Str = Str.substr(2);
299     return 16;
300   }
301   
302   if (Str.startswith("0b")) {
303     Str = Str.substr(2);
304     return 2;
305   }
306
307   if (Str.startswith("0o")) {
308     Str = Str.substr(2);
309     return 8;
310   }
311
312   if (Str.startswith("0"))
313     return 8;
314   
315   return 10;
316 }
317
318
319 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
320 /// sequence of radix up to 36 to an unsigned long long value.
321 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
322                                 unsigned long long &Result) {
323   // Autosense radix if not specified.
324   if (Radix == 0)
325     Radix = GetAutoSenseRadix(Str);
326
327   // Empty strings (after the radix autosense) are invalid.
328   if (Str.empty()) return true;
329
330   // Parse all the bytes of the string given this radix.  Watch for overflow.
331   Result = 0;
332   while (!Str.empty()) {
333     unsigned CharVal;
334     if (Str[0] >= '0' && Str[0] <= '9')
335       CharVal = Str[0]-'0';
336     else if (Str[0] >= 'a' && Str[0] <= 'z')
337       CharVal = Str[0]-'a'+10;
338     else if (Str[0] >= 'A' && Str[0] <= 'Z')
339       CharVal = Str[0]-'A'+10;
340     else
341       return true;
342
343     // If the parsed value is larger than the integer radix, the string is
344     // invalid.
345     if (CharVal >= Radix)
346       return true;
347
348     // Add in this character.
349     unsigned long long PrevResult = Result;
350     Result = Result*Radix+CharVal;
351
352     // Check for overflow by shifting back and seeing if bits were lost.
353     if (Result/Radix < PrevResult)
354       return true;
355
356     Str = Str.substr(1);
357   }
358
359   return false;
360 }
361
362 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
363                               long long &Result) {
364   unsigned long long ULLVal;
365
366   // Handle positive strings first.
367   if (Str.empty() || Str.front() != '-') {
368     if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
369         // Check for value so large it overflows a signed value.
370         (long long)ULLVal < 0)
371       return true;
372     Result = ULLVal;
373     return false;
374   }
375
376   // Get the positive part of the value.
377   if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
378       // Reject values so large they'd overflow as negative signed, but allow
379       // "-0".  This negates the unsigned so that the negative isn't undefined
380       // on signed overflow.
381       (long long)-ULLVal > 0)
382     return true;
383
384   Result = -ULLVal;
385   return false;
386 }
387
388 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
389   StringRef Str = *this;
390
391   // Autosense radix if not specified.
392   if (Radix == 0)
393     Radix = GetAutoSenseRadix(Str);
394
395   assert(Radix > 1 && Radix <= 36);
396
397   // Empty strings (after the radix autosense) are invalid.
398   if (Str.empty()) return true;
399
400   // Skip leading zeroes.  This can be a significant improvement if
401   // it means we don't need > 64 bits.
402   while (!Str.empty() && Str.front() == '0')
403     Str = Str.substr(1);
404
405   // If it was nothing but zeroes....
406   if (Str.empty()) {
407     Result = APInt(64, 0);
408     return false;
409   }
410
411   // (Over-)estimate the required number of bits.
412   unsigned Log2Radix = 0;
413   while ((1U << Log2Radix) < Radix) Log2Radix++;
414   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
415
416   unsigned BitWidth = Log2Radix * Str.size();
417   if (BitWidth < Result.getBitWidth())
418     BitWidth = Result.getBitWidth(); // don't shrink the result
419   else if (BitWidth > Result.getBitWidth())
420     Result = Result.zext(BitWidth);
421
422   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
423   if (!IsPowerOf2Radix) {
424     // These must have the same bit-width as Result.
425     RadixAP = APInt(BitWidth, Radix);
426     CharAP = APInt(BitWidth, 0);
427   }
428
429   // Parse all the bytes of the string given this radix.
430   Result = 0;
431   while (!Str.empty()) {
432     unsigned CharVal;
433     if (Str[0] >= '0' && Str[0] <= '9')
434       CharVal = Str[0]-'0';
435     else if (Str[0] >= 'a' && Str[0] <= 'z')
436       CharVal = Str[0]-'a'+10;
437     else if (Str[0] >= 'A' && Str[0] <= 'Z')
438       CharVal = Str[0]-'A'+10;
439     else
440       return true;
441
442     // If the parsed value is larger than the integer radix, the string is
443     // invalid.
444     if (CharVal >= Radix)
445       return true;
446
447     // Add in this character.
448     if (IsPowerOf2Radix) {
449       Result <<= Log2Radix;
450       Result |= CharVal;
451     } else {
452       Result *= RadixAP;
453       CharAP = CharVal;
454       Result += CharAP;
455     }
456
457     Str = Str.substr(1);
458   }
459
460   return false;
461 }
462
463
464 // Implementation of StringRef hashing.
465 hash_code llvm::hash_value(StringRef S) {
466   return hash_combine_range(S.begin(), S.end());
467 }