Improve overflow detection in StringRef::getAsUnsignedInteger().
[oota-llvm.git] / lib / Support / StringRef.cpp
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/OwningPtr.h"
13 #include "llvm/ADT/Hashing.h"
14 #include "llvm/ADT/edit_distance.h"
15
16 #include <bitset>
17
18 using namespace llvm;
19
20 // MSVC emits references to this into the translation units which reference it.
21 #ifndef _MSC_VER
22 const size_t StringRef::npos;
23 #endif
24
25 static char ascii_tolower(char x) {
26   if (x >= 'A' && x <= 'Z')
27     return x - 'A' + 'a';
28   return x;
29 }
30
31 static char ascii_toupper(char x) {
32   if (x >= 'a' && x <= 'z')
33     return x - 'a' + 'A';
34   return x;
35 }
36
37 static bool ascii_isdigit(char x) {
38   return x >= '0' && x <= '9';
39 }
40
41 /// compare_lower - Compare strings, ignoring case.
42 int StringRef::compare_lower(StringRef RHS) const {
43   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
44     unsigned char LHC = ascii_tolower(Data[I]);
45     unsigned char RHC = ascii_tolower(RHS.Data[I]);
46     if (LHC != RHC)
47       return LHC < RHC ? -1 : 1;
48   }
49
50   if (Length == RHS.Length)
51     return 0;
52   return Length < RHS.Length ? -1 : 1;
53 }
54
55 /// compare_numeric - Compare strings, handle embedded numbers.
56 int StringRef::compare_numeric(StringRef RHS) const {
57   for (size_t I = 0, E = min(Length, RHS.Length); I != E; ++I) {
58     // Check for sequences of digits.
59     if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
60       // The longer sequence of numbers is considered larger.
61       // This doesn't really handle prefixed zeros well.
62       size_t J;
63       for (J = I + 1; J != E + 1; ++J) {
64         bool ld = J < Length && ascii_isdigit(Data[J]);
65         bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
66         if (ld != rd)
67           return rd ? -1 : 1;
68         if (!rd)
69           break;
70       }
71       // The two number sequences have the same length (J-I), just memcmp them.
72       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
73         return Res < 0 ? -1 : 1;
74       // Identical number sequences, continue search after the numbers.
75       I = J - 1;
76       continue;
77     }
78     if (Data[I] != RHS.Data[I])
79       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
80   }
81   if (Length == RHS.Length)
82     return 0;
83   return Length < RHS.Length ? -1 : 1;
84 }
85
86 // Compute the edit distance between the two given strings.
87 unsigned StringRef::edit_distance(llvm::StringRef Other,
88                                   bool AllowReplacements,
89                                   unsigned MaxEditDistance) {
90   return llvm::ComputeEditDistance(
91       llvm::ArrayRef<char>(data(), size()),
92       llvm::ArrayRef<char>(Other.data(), Other.size()),
93       AllowReplacements, MaxEditDistance);
94 }
95
96 //===----------------------------------------------------------------------===//
97 // String Operations
98 //===----------------------------------------------------------------------===//
99
100 std::string StringRef::lower() const {
101   std::string Result(size(), char());
102   for (size_type i = 0, e = size(); i != e; ++i) {
103     Result[i] = ascii_tolower(Data[i]);
104   }
105   return Result;
106 }
107
108 std::string StringRef::upper() const {
109   std::string Result(size(), char());
110   for (size_type i = 0, e = size(); i != e; ++i) {
111     Result[i] = ascii_toupper(Data[i]);
112   }
113   return Result;
114 }
115
116 //===----------------------------------------------------------------------===//
117 // String Searching
118 //===----------------------------------------------------------------------===//
119
120
121 /// find - Search for the first string \arg Str in the string.
122 ///
123 /// \return - The index of the first occurrence of \arg Str, or npos if not
124 /// found.
125 size_t StringRef::find(StringRef Str, size_t From) const {
126   size_t N = Str.size();
127   if (N > Length)
128     return npos;
129
130   // For short haystacks or unsupported needles fall back to the naive algorithm
131   if (Length < 16 || N > 255 || N == 0) {
132     for (size_t e = Length - N + 1, i = min(From, e); i != e; ++i)
133       if (substr(i, N).equals(Str))
134         return i;
135     return npos;
136   }
137
138   if (From >= Length)
139     return npos;
140
141   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
142   uint8_t BadCharSkip[256];
143   std::memset(BadCharSkip, N, 256);
144   for (unsigned i = 0; i != N-1; ++i)
145     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
146
147   unsigned Len = Length-From, Pos = From;
148   while (Len >= N) {
149     if (substr(Pos, N).equals(Str)) // See if this is the correct substring.
150       return Pos;
151
152     // Otherwise skip the appropriate number of bytes.
153     uint8_t Skip = BadCharSkip[(uint8_t)(*this)[Pos+N-1]];
154     Len -= Skip;
155     Pos += Skip;
156   }
157
158   return npos;
159 }
160
161 /// rfind - Search for the last string \arg Str in the string.
162 ///
163 /// \return - The index of the last occurrence of \arg Str, or npos if not
164 /// found.
165 size_t StringRef::rfind(StringRef Str) const {
166   size_t N = Str.size();
167   if (N > Length)
168     return npos;
169   for (size_t i = Length - N + 1, e = 0; i != e;) {
170     --i;
171     if (substr(i, N).equals(Str))
172       return i;
173   }
174   return npos;
175 }
176
177 /// find_first_of - Find the first character in the string that is in \arg
178 /// Chars, or npos if not found.
179 ///
180 /// Note: O(size() + Chars.size())
181 StringRef::size_type StringRef::find_first_of(StringRef Chars,
182                                               size_t From) const {
183   std::bitset<1 << CHAR_BIT> CharBits;
184   for (size_type i = 0; i != Chars.size(); ++i)
185     CharBits.set((unsigned char)Chars[i]);
186
187   for (size_type i = min(From, Length), e = Length; i != e; ++i)
188     if (CharBits.test((unsigned char)Data[i]))
189       return i;
190   return npos;
191 }
192
193 /// find_first_not_of - Find the first character in the string that is not
194 /// \arg C or npos if not found.
195 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
196   for (size_type i = min(From, Length), e = Length; i != e; ++i)
197     if (Data[i] != C)
198       return i;
199   return npos;
200 }
201
202 /// find_first_not_of - Find the first character in the string that is not
203 /// in the string \arg Chars, or npos if not found.
204 ///
205 /// Note: O(size() + Chars.size())
206 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
207                                                   size_t From) const {
208   std::bitset<1 << CHAR_BIT> CharBits;
209   for (size_type i = 0; i != Chars.size(); ++i)
210     CharBits.set((unsigned char)Chars[i]);
211
212   for (size_type i = min(From, Length), e = Length; i != e; ++i)
213     if (!CharBits.test((unsigned char)Data[i]))
214       return i;
215   return npos;
216 }
217
218 /// find_last_of - Find the last character in the string that is in \arg C,
219 /// or npos if not found.
220 ///
221 /// Note: O(size() + Chars.size())
222 StringRef::size_type StringRef::find_last_of(StringRef Chars,
223                                              size_t From) const {
224   std::bitset<1 << CHAR_BIT> CharBits;
225   for (size_type i = 0; i != Chars.size(); ++i)
226     CharBits.set((unsigned char)Chars[i]);
227
228   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
229     if (CharBits.test((unsigned char)Data[i]))
230       return i;
231   return npos;
232 }
233
234 /// find_last_not_of - Find the last character in the string that is not
235 /// \arg C, or npos if not found.
236 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
237   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
238     if (Data[i] != C)
239       return i;
240   return npos;
241 }
242
243 /// find_last_not_of - Find the last character in the string that is not in
244 /// \arg Chars, or npos if not found.
245 ///
246 /// Note: O(size() + Chars.size())
247 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
248                                                  size_t From) const {
249   std::bitset<1 << CHAR_BIT> CharBits;
250   for (size_type i = 0, e = Chars.size(); i != e; ++i)
251     CharBits.set((unsigned char)Chars[i]);
252
253   for (size_type i = min(From, Length) - 1, e = -1; i != e; --i)
254     if (!CharBits.test((unsigned char)Data[i]))
255       return i;
256   return npos;
257 }
258
259 void StringRef::split(SmallVectorImpl<StringRef> &A,
260                       StringRef Separators, int MaxSplit,
261                       bool KeepEmpty) const {
262   StringRef rest = *this;
263
264   // rest.data() is used to distinguish cases like "a," that splits into
265   // "a" + "" and "a" that splits into "a" + 0.
266   for (int splits = 0;
267        rest.data() != NULL && (MaxSplit < 0 || splits < MaxSplit);
268        ++splits) {
269     std::pair<StringRef, StringRef> p = rest.split(Separators);
270
271     if (KeepEmpty || p.first.size() != 0)
272       A.push_back(p.first);
273     rest = p.second;
274   }
275   // If we have a tail left, add it.
276   if (rest.data() != NULL && (rest.size() != 0 || KeepEmpty))
277     A.push_back(rest);
278 }
279
280 //===----------------------------------------------------------------------===//
281 // Helpful Algorithms
282 //===----------------------------------------------------------------------===//
283
284 /// count - Return the number of non-overlapped occurrences of \arg Str in
285 /// the string.
286 size_t StringRef::count(StringRef Str) const {
287   size_t Count = 0;
288   size_t N = Str.size();
289   if (N > Length)
290     return 0;
291   for (size_t i = 0, e = Length - N + 1; i != e; ++i)
292     if (substr(i, N).equals(Str))
293       ++Count;
294   return Count;
295 }
296
297 static unsigned GetAutoSenseRadix(StringRef &Str) {
298   if (Str.startswith("0x")) {
299     Str = Str.substr(2);
300     return 16;
301   }
302   
303   if (Str.startswith("0b")) {
304     Str = Str.substr(2);
305     return 2;
306   }
307
308   if (Str.startswith("0o")) {
309     Str = Str.substr(2);
310     return 8;
311   }
312
313   if (Str.startswith("0"))
314     return 8;
315   
316   return 10;
317 }
318
319
320 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
321 /// sequence of radix up to 36 to an unsigned long long value.
322 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
323                                 unsigned long long &Result) {
324   // Autosense radix if not specified.
325   if (Radix == 0)
326     Radix = GetAutoSenseRadix(Str);
327
328   // Empty strings (after the radix autosense) are invalid.
329   if (Str.empty()) return true;
330
331   // Parse all the bytes of the string given this radix.  Watch for overflow.
332   Result = 0;
333   while (!Str.empty()) {
334     unsigned CharVal;
335     if (Str[0] >= '0' && Str[0] <= '9')
336       CharVal = Str[0]-'0';
337     else if (Str[0] >= 'a' && Str[0] <= 'z')
338       CharVal = Str[0]-'a'+10;
339     else if (Str[0] >= 'A' && Str[0] <= 'Z')
340       CharVal = Str[0]-'A'+10;
341     else
342       return true;
343
344     // If the parsed value is larger than the integer radix, the string is
345     // invalid.
346     if (CharVal >= Radix)
347       return true;
348
349     // Add in this character.
350     unsigned long long PrevResult = Result;
351     Result = Result*Radix+CharVal;
352
353     // Check for overflow by shifting back and seeing if bits were lost.
354     if (Result/Radix < PrevResult)
355       return true;
356
357     Str = Str.substr(1);
358   }
359
360   return false;
361 }
362
363 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
364                               long long &Result) {
365   unsigned long long ULLVal;
366
367   // Handle positive strings first.
368   if (Str.empty() || Str.front() != '-') {
369     if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
370         // Check for value so large it overflows a signed value.
371         (long long)ULLVal < 0)
372       return true;
373     Result = ULLVal;
374     return false;
375   }
376
377   // Get the positive part of the value.
378   if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
379       // Reject values so large they'd overflow as negative signed, but allow
380       // "-0".  This negates the unsigned so that the negative isn't undefined
381       // on signed overflow.
382       (long long)-ULLVal > 0)
383     return true;
384
385   Result = -ULLVal;
386   return false;
387 }
388
389 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
390   StringRef Str = *this;
391
392   // Autosense radix if not specified.
393   if (Radix == 0)
394     Radix = GetAutoSenseRadix(Str);
395
396   assert(Radix > 1 && Radix <= 36);
397
398   // Empty strings (after the radix autosense) are invalid.
399   if (Str.empty()) return true;
400
401   // Skip leading zeroes.  This can be a significant improvement if
402   // it means we don't need > 64 bits.
403   while (!Str.empty() && Str.front() == '0')
404     Str = Str.substr(1);
405
406   // If it was nothing but zeroes....
407   if (Str.empty()) {
408     Result = APInt(64, 0);
409     return false;
410   }
411
412   // (Over-)estimate the required number of bits.
413   unsigned Log2Radix = 0;
414   while ((1U << Log2Radix) < Radix) Log2Radix++;
415   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
416
417   unsigned BitWidth = Log2Radix * Str.size();
418   if (BitWidth < Result.getBitWidth())
419     BitWidth = Result.getBitWidth(); // don't shrink the result
420   else if (BitWidth > Result.getBitWidth())
421     Result = Result.zext(BitWidth);
422
423   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
424   if (!IsPowerOf2Radix) {
425     // These must have the same bit-width as Result.
426     RadixAP = APInt(BitWidth, Radix);
427     CharAP = APInt(BitWidth, 0);
428   }
429
430   // Parse all the bytes of the string given this radix.
431   Result = 0;
432   while (!Str.empty()) {
433     unsigned CharVal;
434     if (Str[0] >= '0' && Str[0] <= '9')
435       CharVal = Str[0]-'0';
436     else if (Str[0] >= 'a' && Str[0] <= 'z')
437       CharVal = Str[0]-'a'+10;
438     else if (Str[0] >= 'A' && Str[0] <= 'Z')
439       CharVal = Str[0]-'A'+10;
440     else
441       return true;
442
443     // If the parsed value is larger than the integer radix, the string is
444     // invalid.
445     if (CharVal >= Radix)
446       return true;
447
448     // Add in this character.
449     if (IsPowerOf2Radix) {
450       Result <<= Log2Radix;
451       Result |= CharVal;
452     } else {
453       Result *= RadixAP;
454       CharAP = CharVal;
455       Result += CharAP;
456     }
457
458     Str = Str.substr(1);
459   }
460
461   return false;
462 }
463
464
465 // Implementation of StringRef hashing.
466 hash_code llvm::hash_value(StringRef S) {
467   return hash_combine_range(S.begin(), S.end());
468 }