dwarfdump: Added macro support to llvm-dwarfdump tool.
[oota-llvm.git] / lib / Support / StringRef.cpp
1 //===-- StringRef.cpp - Lightweight String References ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/ADT/StringRef.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/Hashing.h"
13 #include "llvm/ADT/edit_distance.h"
14 #include <bitset>
15
16 using namespace llvm;
17
18 // MSVC emits references to this into the translation units which reference it.
19 #ifndef _MSC_VER
20 const size_t StringRef::npos;
21 #endif
22
23 static char ascii_tolower(char x) {
24   if (x >= 'A' && x <= 'Z')
25     return x - 'A' + 'a';
26   return x;
27 }
28
29 static char ascii_toupper(char x) {
30   if (x >= 'a' && x <= 'z')
31     return x - 'a' + 'A';
32   return x;
33 }
34
35 static bool ascii_isdigit(char x) {
36   return x >= '0' && x <= '9';
37 }
38
39 // strncasecmp() is not available on non-POSIX systems, so define an
40 // alternative function here.
41 static int ascii_strncasecmp(const char *LHS, const char *RHS, size_t Length) {
42   for (size_t I = 0; I < Length; ++I) {
43     unsigned char LHC = ascii_tolower(LHS[I]);
44     unsigned char RHC = ascii_tolower(RHS[I]);
45     if (LHC != RHC)
46       return LHC < RHC ? -1 : 1;
47   }
48   return 0;
49 }
50
51 /// compare_lower - Compare strings, ignoring case.
52 int StringRef::compare_lower(StringRef RHS) const {
53   if (int Res = ascii_strncasecmp(Data, RHS.Data, std::min(Length, RHS.Length)))
54     return Res;
55   if (Length == RHS.Length)
56     return 0;
57   return Length < RHS.Length ? -1 : 1;
58 }
59
60 /// Check if this string starts with the given \p Prefix, ignoring case.
61 bool StringRef::startswith_lower(StringRef Prefix) const {
62   return Length >= Prefix.Length &&
63       ascii_strncasecmp(Data, Prefix.Data, Prefix.Length) == 0;
64 }
65
66 /// Check if this string ends with the given \p Suffix, ignoring case.
67 bool StringRef::endswith_lower(StringRef Suffix) const {
68   return Length >= Suffix.Length &&
69       ascii_strncasecmp(end() - Suffix.Length, Suffix.Data, Suffix.Length) == 0;
70 }
71
72 /// compare_numeric - Compare strings, handle embedded numbers.
73 int StringRef::compare_numeric(StringRef RHS) const {
74   for (size_t I = 0, E = std::min(Length, RHS.Length); I != E; ++I) {
75     // Check for sequences of digits.
76     if (ascii_isdigit(Data[I]) && ascii_isdigit(RHS.Data[I])) {
77       // The longer sequence of numbers is considered larger.
78       // This doesn't really handle prefixed zeros well.
79       size_t J;
80       for (J = I + 1; J != E + 1; ++J) {
81         bool ld = J < Length && ascii_isdigit(Data[J]);
82         bool rd = J < RHS.Length && ascii_isdigit(RHS.Data[J]);
83         if (ld != rd)
84           return rd ? -1 : 1;
85         if (!rd)
86           break;
87       }
88       // The two number sequences have the same length (J-I), just memcmp them.
89       if (int Res = compareMemory(Data + I, RHS.Data + I, J - I))
90         return Res < 0 ? -1 : 1;
91       // Identical number sequences, continue search after the numbers.
92       I = J - 1;
93       continue;
94     }
95     if (Data[I] != RHS.Data[I])
96       return (unsigned char)Data[I] < (unsigned char)RHS.Data[I] ? -1 : 1;
97   }
98   if (Length == RHS.Length)
99     return 0;
100   return Length < RHS.Length ? -1 : 1;
101 }
102
103 // Compute the edit distance between the two given strings.
104 unsigned StringRef::edit_distance(llvm::StringRef Other,
105                                   bool AllowReplacements,
106                                   unsigned MaxEditDistance) const {
107   return llvm::ComputeEditDistance(
108       makeArrayRef(data(), size()),
109       makeArrayRef(Other.data(), Other.size()),
110       AllowReplacements, MaxEditDistance);
111 }
112
113 //===----------------------------------------------------------------------===//
114 // String Operations
115 //===----------------------------------------------------------------------===//
116
117 std::string StringRef::lower() const {
118   std::string Result(size(), char());
119   for (size_type i = 0, e = size(); i != e; ++i) {
120     Result[i] = ascii_tolower(Data[i]);
121   }
122   return Result;
123 }
124
125 std::string StringRef::upper() const {
126   std::string Result(size(), char());
127   for (size_type i = 0, e = size(); i != e; ++i) {
128     Result[i] = ascii_toupper(Data[i]);
129   }
130   return Result;
131 }
132
133 //===----------------------------------------------------------------------===//
134 // String Searching
135 //===----------------------------------------------------------------------===//
136
137
138 /// find - Search for the first string \arg Str in the string.
139 ///
140 /// \return - The index of the first occurrence of \arg Str, or npos if not
141 /// found.
142 size_t StringRef::find(StringRef Str, size_t From) const {
143   if (From > Length)
144     return npos;
145
146   const char *Needle = Str.data();
147   size_t N = Str.size();
148   if (N == 0)
149     return From;
150
151   size_t Size = Length - From;
152   if (Size < N)
153     return npos;
154
155   const char *Start = Data + From;
156   const char *Stop = Start + (Size - N + 1);
157
158   // For short haystacks or unsupported needles fall back to the naive algorithm
159   if (Size < 16 || N > 255) {
160     do {
161       if (std::memcmp(Start, Needle, N) == 0)
162         return Start - Data;
163       ++Start;
164     } while (Start < Stop);
165     return npos;
166   }
167
168   // Build the bad char heuristic table, with uint8_t to reduce cache thrashing.
169   uint8_t BadCharSkip[256];
170   std::memset(BadCharSkip, N, 256);
171   for (unsigned i = 0; i != N-1; ++i)
172     BadCharSkip[(uint8_t)Str[i]] = N-1-i;
173
174   do {
175     if (std::memcmp(Start, Needle, N) == 0)
176       return Start - Data;
177
178     // Otherwise skip the appropriate number of bytes.
179     Start += BadCharSkip[(uint8_t)Start[N-1]];
180   } while (Start < Stop);
181
182   return npos;
183 }
184
185 /// rfind - Search for the last string \arg Str in the string.
186 ///
187 /// \return - The index of the last occurrence of \arg Str, or npos if not
188 /// found.
189 size_t StringRef::rfind(StringRef Str) const {
190   size_t N = Str.size();
191   if (N > Length)
192     return npos;
193   for (size_t i = Length - N + 1, e = 0; i != e;) {
194     --i;
195     if (substr(i, N).equals(Str))
196       return i;
197   }
198   return npos;
199 }
200
201 /// find_first_of - Find the first character in the string that is in \arg
202 /// Chars, or npos if not found.
203 ///
204 /// Note: O(size() + Chars.size())
205 StringRef::size_type StringRef::find_first_of(StringRef Chars,
206                                               size_t From) const {
207   std::bitset<1 << CHAR_BIT> CharBits;
208   for (size_type i = 0; i != Chars.size(); ++i)
209     CharBits.set((unsigned char)Chars[i]);
210
211   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
212     if (CharBits.test((unsigned char)Data[i]))
213       return i;
214   return npos;
215 }
216
217 /// find_first_not_of - Find the first character in the string that is not
218 /// \arg C or npos if not found.
219 StringRef::size_type StringRef::find_first_not_of(char C, size_t From) const {
220   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
221     if (Data[i] != C)
222       return i;
223   return npos;
224 }
225
226 /// find_first_not_of - Find the first character in the string that is not
227 /// in the string \arg Chars, or npos if not found.
228 ///
229 /// Note: O(size() + Chars.size())
230 StringRef::size_type StringRef::find_first_not_of(StringRef Chars,
231                                                   size_t From) const {
232   std::bitset<1 << CHAR_BIT> CharBits;
233   for (size_type i = 0; i != Chars.size(); ++i)
234     CharBits.set((unsigned char)Chars[i]);
235
236   for (size_type i = std::min(From, Length), e = Length; i != e; ++i)
237     if (!CharBits.test((unsigned char)Data[i]))
238       return i;
239   return npos;
240 }
241
242 /// find_last_of - Find the last character in the string that is in \arg C,
243 /// or npos if not found.
244 ///
245 /// Note: O(size() + Chars.size())
246 StringRef::size_type StringRef::find_last_of(StringRef Chars,
247                                              size_t From) const {
248   std::bitset<1 << CHAR_BIT> CharBits;
249   for (size_type i = 0; i != Chars.size(); ++i)
250     CharBits.set((unsigned char)Chars[i]);
251
252   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
253     if (CharBits.test((unsigned char)Data[i]))
254       return i;
255   return npos;
256 }
257
258 /// find_last_not_of - Find the last character in the string that is not
259 /// \arg C, or npos if not found.
260 StringRef::size_type StringRef::find_last_not_of(char C, size_t From) const {
261   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
262     if (Data[i] != C)
263       return i;
264   return npos;
265 }
266
267 /// find_last_not_of - Find the last character in the string that is not in
268 /// \arg Chars, or npos if not found.
269 ///
270 /// Note: O(size() + Chars.size())
271 StringRef::size_type StringRef::find_last_not_of(StringRef Chars,
272                                                  size_t From) const {
273   std::bitset<1 << CHAR_BIT> CharBits;
274   for (size_type i = 0, e = Chars.size(); i != e; ++i)
275     CharBits.set((unsigned char)Chars[i]);
276
277   for (size_type i = std::min(From, Length) - 1, e = -1; i != e; --i)
278     if (!CharBits.test((unsigned char)Data[i]))
279       return i;
280   return npos;
281 }
282
283 void StringRef::split(SmallVectorImpl<StringRef> &A,
284                       StringRef Separator, int MaxSplit,
285                       bool KeepEmpty) const {
286   StringRef S = *this;
287
288   // Count down from MaxSplit. When MaxSplit is -1, this will just split
289   // "forever". This doesn't support splitting more than 2^31 times
290   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
291   // but that seems unlikely to be useful.
292   while (MaxSplit-- != 0) {
293     size_t Idx = S.find(Separator);
294     if (Idx == npos)
295       break;
296
297     // Push this split.
298     if (KeepEmpty || Idx > 0)
299       A.push_back(S.slice(0, Idx));
300
301     // Jump forward.
302     S = S.slice(Idx + Separator.size(), npos);
303   }
304
305   // Push the tail.
306   if (KeepEmpty || !S.empty())
307     A.push_back(S);
308 }
309
310 void StringRef::split(SmallVectorImpl<StringRef> &A, char Separator,
311                       int MaxSplit, bool KeepEmpty) const {
312   StringRef S = *this;
313
314   // Count down from MaxSplit. When MaxSplit is -1, this will just split
315   // "forever". This doesn't support splitting more than 2^31 times
316   // intentionally; if we ever want that we can make MaxSplit a 64-bit integer
317   // but that seems unlikely to be useful.
318   while (MaxSplit-- != 0) {
319     size_t Idx = S.find(Separator);
320     if (Idx == npos)
321       break;
322
323     // Push this split.
324     if (KeepEmpty || Idx > 0)
325       A.push_back(S.slice(0, Idx));
326
327     // Jump forward.
328     S = S.slice(Idx + 1, npos);
329   }
330
331   // Push the tail.
332   if (KeepEmpty || !S.empty())
333     A.push_back(S);
334 }
335
336 //===----------------------------------------------------------------------===//
337 // Helpful Algorithms
338 //===----------------------------------------------------------------------===//
339
340 /// count - Return the number of non-overlapped occurrences of \arg Str in
341 /// the string.
342 size_t StringRef::count(StringRef Str) const {
343   size_t Count = 0;
344   size_t N = Str.size();
345   if (N > Length)
346     return 0;
347   for (size_t i = 0, e = Length - N + 1; i != e; ++i)
348     if (substr(i, N).equals(Str))
349       ++Count;
350   return Count;
351 }
352
353 static unsigned GetAutoSenseRadix(StringRef &Str) {
354   if (Str.startswith("0x")) {
355     Str = Str.substr(2);
356     return 16;
357   }
358   
359   if (Str.startswith("0b")) {
360     Str = Str.substr(2);
361     return 2;
362   }
363
364   if (Str.startswith("0o")) {
365     Str = Str.substr(2);
366     return 8;
367   }
368
369   if (Str.startswith("0"))
370     return 8;
371   
372   return 10;
373 }
374
375
376 /// GetAsUnsignedInteger - Workhorse method that converts a integer character
377 /// sequence of radix up to 36 to an unsigned long long value.
378 bool llvm::getAsUnsignedInteger(StringRef Str, unsigned Radix,
379                                 unsigned long long &Result) {
380   // Autosense radix if not specified.
381   if (Radix == 0)
382     Radix = GetAutoSenseRadix(Str);
383
384   // Empty strings (after the radix autosense) are invalid.
385   if (Str.empty()) return true;
386
387   // Parse all the bytes of the string given this radix.  Watch for overflow.
388   Result = 0;
389   while (!Str.empty()) {
390     unsigned CharVal;
391     if (Str[0] >= '0' && Str[0] <= '9')
392       CharVal = Str[0]-'0';
393     else if (Str[0] >= 'a' && Str[0] <= 'z')
394       CharVal = Str[0]-'a'+10;
395     else if (Str[0] >= 'A' && Str[0] <= 'Z')
396       CharVal = Str[0]-'A'+10;
397     else
398       return true;
399
400     // If the parsed value is larger than the integer radix, the string is
401     // invalid.
402     if (CharVal >= Radix)
403       return true;
404
405     // Add in this character.
406     unsigned long long PrevResult = Result;
407     Result = Result*Radix+CharVal;
408
409     // Check for overflow by shifting back and seeing if bits were lost.
410     if (Result/Radix < PrevResult)
411       return true;
412
413     Str = Str.substr(1);
414   }
415
416   return false;
417 }
418
419 bool llvm::getAsSignedInteger(StringRef Str, unsigned Radix,
420                               long long &Result) {
421   unsigned long long ULLVal;
422
423   // Handle positive strings first.
424   if (Str.empty() || Str.front() != '-') {
425     if (getAsUnsignedInteger(Str, Radix, ULLVal) ||
426         // Check for value so large it overflows a signed value.
427         (long long)ULLVal < 0)
428       return true;
429     Result = ULLVal;
430     return false;
431   }
432
433   // Get the positive part of the value.
434   if (getAsUnsignedInteger(Str.substr(1), Radix, ULLVal) ||
435       // Reject values so large they'd overflow as negative signed, but allow
436       // "-0".  This negates the unsigned so that the negative isn't undefined
437       // on signed overflow.
438       (long long)-ULLVal > 0)
439     return true;
440
441   Result = -ULLVal;
442   return false;
443 }
444
445 bool StringRef::getAsInteger(unsigned Radix, APInt &Result) const {
446   StringRef Str = *this;
447
448   // Autosense radix if not specified.
449   if (Radix == 0)
450     Radix = GetAutoSenseRadix(Str);
451
452   assert(Radix > 1 && Radix <= 36);
453
454   // Empty strings (after the radix autosense) are invalid.
455   if (Str.empty()) return true;
456
457   // Skip leading zeroes.  This can be a significant improvement if
458   // it means we don't need > 64 bits.
459   while (!Str.empty() && Str.front() == '0')
460     Str = Str.substr(1);
461
462   // If it was nothing but zeroes....
463   if (Str.empty()) {
464     Result = APInt(64, 0);
465     return false;
466   }
467
468   // (Over-)estimate the required number of bits.
469   unsigned Log2Radix = 0;
470   while ((1U << Log2Radix) < Radix) Log2Radix++;
471   bool IsPowerOf2Radix = ((1U << Log2Radix) == Radix);
472
473   unsigned BitWidth = Log2Radix * Str.size();
474   if (BitWidth < Result.getBitWidth())
475     BitWidth = Result.getBitWidth(); // don't shrink the result
476   else if (BitWidth > Result.getBitWidth())
477     Result = Result.zext(BitWidth);
478
479   APInt RadixAP, CharAP; // unused unless !IsPowerOf2Radix
480   if (!IsPowerOf2Radix) {
481     // These must have the same bit-width as Result.
482     RadixAP = APInt(BitWidth, Radix);
483     CharAP = APInt(BitWidth, 0);
484   }
485
486   // Parse all the bytes of the string given this radix.
487   Result = 0;
488   while (!Str.empty()) {
489     unsigned CharVal;
490     if (Str[0] >= '0' && Str[0] <= '9')
491       CharVal = Str[0]-'0';
492     else if (Str[0] >= 'a' && Str[0] <= 'z')
493       CharVal = Str[0]-'a'+10;
494     else if (Str[0] >= 'A' && Str[0] <= 'Z')
495       CharVal = Str[0]-'A'+10;
496     else
497       return true;
498
499     // If the parsed value is larger than the integer radix, the string is
500     // invalid.
501     if (CharVal >= Radix)
502       return true;
503
504     // Add in this character.
505     if (IsPowerOf2Radix) {
506       Result <<= Log2Radix;
507       Result |= CharVal;
508     } else {
509       Result *= RadixAP;
510       CharAP = CharVal;
511       Result += CharAP;
512     }
513
514     Str = Str.substr(1);
515   }
516
517   return false;
518 }
519
520
521 // Implementation of StringRef hashing.
522 hash_code llvm::hash_value(StringRef S) {
523   return hash_combine_range(S.begin(), S.end());
524 }