Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / Support / StringMap.cpp
1 //===--- StringMap.cpp - String Hash table map implementation -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the StringMap class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ADT/StringMap.h"
15 #include "llvm/ADT/StringExtras.h"
16 #include "llvm/Support/Compiler.h"
17 #include <cassert>
18 using namespace llvm;
19
20 StringMapImpl::StringMapImpl(unsigned InitSize, unsigned itemSize) {
21   ItemSize = itemSize;
22   
23   // If a size is specified, initialize the table with that many buckets.
24   if (InitSize) {
25     init(InitSize);
26     return;
27   }
28   
29   // Otherwise, initialize it with zero buckets to avoid the allocation.
30   TheTable = nullptr;
31   NumBuckets = 0;
32   NumItems = 0;
33   NumTombstones = 0;
34 }
35
36 void StringMapImpl::init(unsigned InitSize) {
37   assert((InitSize & (InitSize-1)) == 0 &&
38          "Init Size must be a power of 2 or zero!");
39   NumBuckets = InitSize ? InitSize : 16;
40   NumItems = 0;
41   NumTombstones = 0;
42   
43   TheTable = (StringMapEntryBase **)calloc(NumBuckets+1,
44                                            sizeof(StringMapEntryBase **) +
45                                            sizeof(unsigned));
46
47   // Allocate one extra bucket, set it to look filled so the iterators stop at
48   // end.
49   TheTable[NumBuckets] = (StringMapEntryBase*)2;
50 }
51
52
53 /// LookupBucketFor - Look up the bucket that the specified string should end
54 /// up in.  If it already exists as a key in the map, the Item pointer for the
55 /// specified bucket will be non-null.  Otherwise, it will be null.  In either
56 /// case, the FullHashValue field of the bucket will be set to the hash value
57 /// of the string.
58 unsigned StringMapImpl::LookupBucketFor(StringRef Name) {
59   unsigned HTSize = NumBuckets;
60   if (HTSize == 0) {  // Hash table unallocated so far?
61     init(16);
62     HTSize = NumBuckets;
63   }
64   unsigned FullHashValue = HashString(Name);
65   unsigned BucketNo = FullHashValue & (HTSize-1);
66   unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
67
68   unsigned ProbeAmt = 1;
69   int FirstTombstone = -1;
70   while (1) {
71     StringMapEntryBase *BucketItem = TheTable[BucketNo];
72     // If we found an empty bucket, this key isn't in the table yet, return it.
73     if (LLVM_LIKELY(!BucketItem)) {
74       // If we found a tombstone, we want to reuse the tombstone instead of an
75       // empty bucket.  This reduces probing.
76       if (FirstTombstone != -1) {
77         HashTable[FirstTombstone] = FullHashValue;
78         return FirstTombstone;
79       }
80       
81       HashTable[BucketNo] = FullHashValue;
82       return BucketNo;
83     }
84     
85     if (BucketItem == getTombstoneVal()) {
86       // Skip over tombstones.  However, remember the first one we see.
87       if (FirstTombstone == -1) FirstTombstone = BucketNo;
88     } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
89       // If the full hash value matches, check deeply for a match.  The common
90       // case here is that we are only looking at the buckets (for item info
91       // being non-null and for the full hash value) not at the items.  This
92       // is important for cache locality.
93       
94       // Do the comparison like this because Name isn't necessarily
95       // null-terminated!
96       char *ItemStr = (char*)BucketItem+ItemSize;
97       if (Name == StringRef(ItemStr, BucketItem->getKeyLength())) {
98         // We found a match!
99         return BucketNo;
100       }
101     }
102     
103     // Okay, we didn't find the item.  Probe to the next bucket.
104     BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
105     
106     // Use quadratic probing, it has fewer clumping artifacts than linear
107     // probing and has good cache behavior in the common case.
108     ++ProbeAmt;
109   }
110 }
111
112
113 /// FindKey - Look up the bucket that contains the specified key. If it exists
114 /// in the map, return the bucket number of the key.  Otherwise return -1.
115 /// This does not modify the map.
116 int StringMapImpl::FindKey(StringRef Key) const {
117   unsigned HTSize = NumBuckets;
118   if (HTSize == 0) return -1;  // Really empty table?
119   unsigned FullHashValue = HashString(Key);
120   unsigned BucketNo = FullHashValue & (HTSize-1);
121   unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
122
123   unsigned ProbeAmt = 1;
124   while (1) {
125     StringMapEntryBase *BucketItem = TheTable[BucketNo];
126     // If we found an empty bucket, this key isn't in the table yet, return.
127     if (LLVM_LIKELY(!BucketItem))
128       return -1;
129     
130     if (BucketItem == getTombstoneVal()) {
131       // Ignore tombstones.
132     } else if (LLVM_LIKELY(HashTable[BucketNo] == FullHashValue)) {
133       // If the full hash value matches, check deeply for a match.  The common
134       // case here is that we are only looking at the buckets (for item info
135       // being non-null and for the full hash value) not at the items.  This
136       // is important for cache locality.
137       
138       // Do the comparison like this because NameStart isn't necessarily
139       // null-terminated!
140       char *ItemStr = (char*)BucketItem+ItemSize;
141       if (Key == StringRef(ItemStr, BucketItem->getKeyLength())) {
142         // We found a match!
143         return BucketNo;
144       }
145     }
146     
147     // Okay, we didn't find the item.  Probe to the next bucket.
148     BucketNo = (BucketNo+ProbeAmt) & (HTSize-1);
149     
150     // Use quadratic probing, it has fewer clumping artifacts than linear
151     // probing and has good cache behavior in the common case.
152     ++ProbeAmt;
153   }
154 }
155
156 /// RemoveKey - Remove the specified StringMapEntry from the table, but do not
157 /// delete it.  This aborts if the value isn't in the table.
158 void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
159   const char *VStr = (char*)V + ItemSize;
160   StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
161   (void)V2;
162   assert(V == V2 && "Didn't find key?");
163 }
164
165 /// RemoveKey - Remove the StringMapEntry for the specified key from the
166 /// table, returning it.  If the key is not in the table, this returns null.
167 StringMapEntryBase *StringMapImpl::RemoveKey(StringRef Key) {
168   int Bucket = FindKey(Key);
169   if (Bucket == -1) return nullptr;
170   
171   StringMapEntryBase *Result = TheTable[Bucket];
172   TheTable[Bucket] = getTombstoneVal();
173   --NumItems;
174   ++NumTombstones;
175   assert(NumItems + NumTombstones <= NumBuckets);
176
177   return Result;
178 }
179
180
181
182 /// RehashTable - Grow the table, redistributing values into the buckets with
183 /// the appropriate mod-of-hashtable-size.
184 unsigned StringMapImpl::RehashTable(unsigned BucketNo) {
185   unsigned NewSize;
186   unsigned *HashTable = (unsigned *)(TheTable + NumBuckets + 1);
187
188   // If the hash table is now more than 3/4 full, or if fewer than 1/8 of
189   // the buckets are empty (meaning that many are filled with tombstones),
190   // grow/rehash the table.
191   if (LLVM_UNLIKELY(NumItems * 4 > NumBuckets * 3)) {
192     NewSize = NumBuckets*2;
193   } else if (LLVM_UNLIKELY(NumBuckets - (NumItems + NumTombstones) <=
194                            NumBuckets / 8)) {
195     NewSize = NumBuckets;
196   } else {
197     return BucketNo;
198   }
199
200   unsigned NewBucketNo = BucketNo;
201   // Allocate one extra bucket which will always be non-empty.  This allows the
202   // iterators to stop at end.
203   StringMapEntryBase **NewTableArray =
204     (StringMapEntryBase **)calloc(NewSize+1, sizeof(StringMapEntryBase *) +
205                                              sizeof(unsigned));
206   unsigned *NewHashArray = (unsigned *)(NewTableArray + NewSize + 1);
207   NewTableArray[NewSize] = (StringMapEntryBase*)2;
208
209   // Rehash all the items into their new buckets.  Luckily :) we already have
210   // the hash values available, so we don't have to rehash any strings.
211   for (unsigned I = 0, E = NumBuckets; I != E; ++I) {
212     StringMapEntryBase *Bucket = TheTable[I];
213     if (Bucket && Bucket != getTombstoneVal()) {
214       // Fast case, bucket available.
215       unsigned FullHash = HashTable[I];
216       unsigned NewBucket = FullHash & (NewSize-1);
217       if (!NewTableArray[NewBucket]) {
218         NewTableArray[FullHash & (NewSize-1)] = Bucket;
219         NewHashArray[FullHash & (NewSize-1)] = FullHash;
220         if (I == BucketNo)
221           NewBucketNo = NewBucket;
222         continue;
223       }
224       
225       // Otherwise probe for a spot.
226       unsigned ProbeSize = 1;
227       do {
228         NewBucket = (NewBucket + ProbeSize++) & (NewSize-1);
229       } while (NewTableArray[NewBucket]);
230       
231       // Finally found a slot.  Fill it in.
232       NewTableArray[NewBucket] = Bucket;
233       NewHashArray[NewBucket] = FullHash;
234       if (I == BucketNo)
235         NewBucketNo = NewBucket;
236     }
237   }
238   
239   free(TheTable);
240   
241   TheTable = NewTableArray;
242   NumBuckets = NewSize;
243   NumTombstones = 0;
244   return NewBucketNo;
245 }