Use the new script to sort the includes of every file under lib.
[oota-llvm.git] / lib / Support / FoldingSet.cpp
1 //===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements a hash set that can be used to remove duplication of
11 // nodes in a graph.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Support/Allocator.h"
18 #include "llvm/Support/ErrorHandling.h"
19 #include "llvm/Support/Host.h"
20 #include "llvm/Support/MathExtras.h"
21 #include <cassert>
22 #include <cstring>
23 using namespace llvm;
24
25 //===----------------------------------------------------------------------===//
26 // FoldingSetNodeIDRef Implementation
27
28 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
29 /// used to lookup the node in the FoldingSetImpl.
30 unsigned FoldingSetNodeIDRef::ComputeHash() const {
31   return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
32 }
33
34 bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
35   if (Size != RHS.Size) return false;
36   return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
37 }
38
39 /// Used to compare the "ordering" of two nodes as defined by the
40 /// profiled bits and their ordering defined by memcmp().
41 bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
42   if (Size != RHS.Size)
43     return Size < RHS.Size;
44   return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
45 }
46
47 //===----------------------------------------------------------------------===//
48 // FoldingSetNodeID Implementation
49
50 /// Add* - Add various data types to Bit data.
51 ///
52 void FoldingSetNodeID::AddPointer(const void *Ptr) {
53   // Note: this adds pointers to the hash using sizes and endianness that
54   // depend on the host.  It doesn't matter however, because hashing on
55   // pointer values in inherently unstable.  Nothing  should depend on the 
56   // ordering of nodes in the folding set.
57   Bits.append(reinterpret_cast<unsigned *>(&Ptr),
58               reinterpret_cast<unsigned *>(&Ptr+1));
59 }
60 void FoldingSetNodeID::AddInteger(signed I) {
61   Bits.push_back(I);
62 }
63 void FoldingSetNodeID::AddInteger(unsigned I) {
64   Bits.push_back(I);
65 }
66 void FoldingSetNodeID::AddInteger(long I) {
67   AddInteger((unsigned long)I);
68 }
69 void FoldingSetNodeID::AddInteger(unsigned long I) {
70   if (sizeof(long) == sizeof(int))
71     AddInteger(unsigned(I));
72   else if (sizeof(long) == sizeof(long long)) {
73     AddInteger((unsigned long long)I);
74   } else {
75     llvm_unreachable("unexpected sizeof(long)");
76   }
77 }
78 void FoldingSetNodeID::AddInteger(long long I) {
79   AddInteger((unsigned long long)I);
80 }
81 void FoldingSetNodeID::AddInteger(unsigned long long I) {
82   AddInteger(unsigned(I));
83   if ((uint64_t)(unsigned)I != I)
84     Bits.push_back(unsigned(I >> 32));
85 }
86
87 void FoldingSetNodeID::AddString(StringRef String) {
88   unsigned Size =  String.size();
89   Bits.push_back(Size);
90   if (!Size) return;
91
92   unsigned Units = Size / 4;
93   unsigned Pos = 0;
94   const unsigned *Base = (const unsigned*) String.data();
95   
96   // If the string is aligned do a bulk transfer.
97   if (!((intptr_t)Base & 3)) {
98     Bits.append(Base, Base + Units);
99     Pos = (Units + 1) * 4;
100   } else {
101     // Otherwise do it the hard way.
102     // To be compatible with above bulk transfer, we need to take endianness
103     // into account.
104     if (sys::isBigEndianHost()) {
105       for (Pos += 4; Pos <= Size; Pos += 4) {
106         unsigned V = ((unsigned char)String[Pos - 4] << 24) |
107                      ((unsigned char)String[Pos - 3] << 16) |
108                      ((unsigned char)String[Pos - 2] << 8) |
109                       (unsigned char)String[Pos - 1];
110         Bits.push_back(V);
111       }
112     } else {
113       assert(sys::isLittleEndianHost() && "Unexpected host endianness");
114       for (Pos += 4; Pos <= Size; Pos += 4) {
115         unsigned V = ((unsigned char)String[Pos - 1] << 24) |
116                      ((unsigned char)String[Pos - 2] << 16) |
117                      ((unsigned char)String[Pos - 3] << 8) |
118                       (unsigned char)String[Pos - 4];
119         Bits.push_back(V);
120       }
121     }
122   }
123   
124   // With the leftover bits.
125   unsigned V = 0;
126   // Pos will have overshot size by 4 - #bytes left over.
127   // No need to take endianness into account here - this is always executed.
128   switch (Pos - Size) {
129   case 1: V = (V << 8) | (unsigned char)String[Size - 3]; // Fall thru.
130   case 2: V = (V << 8) | (unsigned char)String[Size - 2]; // Fall thru.
131   case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
132   default: return; // Nothing left.
133   }
134
135   Bits.push_back(V);
136 }
137
138 // AddNodeID - Adds the Bit data of another ID to *this.
139 void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
140   Bits.append(ID.Bits.begin(), ID.Bits.end());
141 }
142
143 /// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to 
144 /// lookup the node in the FoldingSetImpl.
145 unsigned FoldingSetNodeID::ComputeHash() const {
146   return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
147 }
148
149 /// operator== - Used to compare two nodes to each other.
150 ///
151 bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS)const{
152   return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
153 }
154
155 /// operator== - Used to compare two nodes to each other.
156 ///
157 bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
158   return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
159 }
160
161 /// Used to compare the "ordering" of two nodes as defined by the
162 /// profiled bits and their ordering defined by memcmp().
163 bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS)const{
164   return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
165 }
166
167 bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
168   return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
169 }
170
171 /// Intern - Copy this node's data to a memory region allocated from the
172 /// given allocator and return a FoldingSetNodeIDRef describing the
173 /// interned data.
174 FoldingSetNodeIDRef
175 FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
176   unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
177   std::uninitialized_copy(Bits.begin(), Bits.end(), New);
178   return FoldingSetNodeIDRef(New, Bits.size());
179 }
180
181 //===----------------------------------------------------------------------===//
182 /// Helper functions for FoldingSetImpl.
183
184 /// GetNextPtr - In order to save space, each bucket is a
185 /// singly-linked-list. In order to make deletion more efficient, we make
186 /// the list circular, so we can delete a node without computing its hash.
187 /// The problem with this is that the start of the hash buckets are not
188 /// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
189 /// use GetBucketPtr when this happens.
190 static FoldingSetImpl::Node *GetNextPtr(void *NextInBucketPtr) {
191   // The low bit is set if this is the pointer back to the bucket.
192   if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
193     return 0;
194   
195   return static_cast<FoldingSetImpl::Node*>(NextInBucketPtr);
196 }
197
198
199 /// testing.
200 static void **GetBucketPtr(void *NextInBucketPtr) {
201   intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
202   assert((Ptr & 1) && "Not a bucket pointer");
203   return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
204 }
205
206 /// GetBucketFor - Hash the specified node ID and return the hash bucket for
207 /// the specified ID.
208 static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
209   // NumBuckets is always a power of 2.
210   unsigned BucketNum = Hash & (NumBuckets-1);
211   return Buckets + BucketNum;
212 }
213
214 /// AllocateBuckets - Allocated initialized bucket memory.
215 static void **AllocateBuckets(unsigned NumBuckets) {
216   void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
217   // Set the very last bucket to be a non-null "pointer".
218   Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
219   return Buckets;
220 }
221
222 //===----------------------------------------------------------------------===//
223 // FoldingSetImpl Implementation
224
225 FoldingSetImpl::FoldingSetImpl(unsigned Log2InitSize) {
226   assert(5 < Log2InitSize && Log2InitSize < 32 &&
227          "Initial hash table size out of range");
228   NumBuckets = 1 << Log2InitSize;
229   Buckets = AllocateBuckets(NumBuckets);
230   NumNodes = 0;
231 }
232 FoldingSetImpl::~FoldingSetImpl() {
233   free(Buckets);
234 }
235 void FoldingSetImpl::clear() {
236   // Set all but the last bucket to null pointers.
237   memset(Buckets, 0, NumBuckets*sizeof(void*));
238
239   // Set the very last bucket to be a non-null "pointer".
240   Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
241
242   // Reset the node count to zero.
243   NumNodes = 0;
244 }
245
246 /// GrowHashTable - Double the size of the hash table and rehash everything.
247 ///
248 void FoldingSetImpl::GrowHashTable() {
249   void **OldBuckets = Buckets;
250   unsigned OldNumBuckets = NumBuckets;
251   NumBuckets <<= 1;
252   
253   // Clear out new buckets.
254   Buckets = AllocateBuckets(NumBuckets);
255   NumNodes = 0;
256
257   // Walk the old buckets, rehashing nodes into their new place.
258   FoldingSetNodeID TempID;
259   for (unsigned i = 0; i != OldNumBuckets; ++i) {
260     void *Probe = OldBuckets[i];
261     if (!Probe) continue;
262     while (Node *NodeInBucket = GetNextPtr(Probe)) {
263       // Figure out the next link, remove NodeInBucket from the old link.
264       Probe = NodeInBucket->getNextInBucket();
265       NodeInBucket->SetNextInBucket(0);
266
267       // Insert the node into the new bucket, after recomputing the hash.
268       InsertNode(NodeInBucket,
269                  GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
270                               Buckets, NumBuckets));
271       TempID.clear();
272     }
273   }
274   
275   free(OldBuckets);
276 }
277
278 /// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
279 /// return it.  If not, return the insertion token that will make insertion
280 /// faster.
281 FoldingSetImpl::Node
282 *FoldingSetImpl::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
283                                      void *&InsertPos) {
284   unsigned IDHash = ID.ComputeHash();
285   void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
286   void *Probe = *Bucket;
287   
288   InsertPos = 0;
289   
290   FoldingSetNodeID TempID;
291   while (Node *NodeInBucket = GetNextPtr(Probe)) {
292     if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
293       return NodeInBucket;
294     TempID.clear();
295
296     Probe = NodeInBucket->getNextInBucket();
297   }
298   
299   // Didn't find the node, return null with the bucket as the InsertPos.
300   InsertPos = Bucket;
301   return 0;
302 }
303
304 /// InsertNode - Insert the specified node into the folding set, knowing that it
305 /// is not already in the map.  InsertPos must be obtained from 
306 /// FindNodeOrInsertPos.
307 void FoldingSetImpl::InsertNode(Node *N, void *InsertPos) {
308   assert(N->getNextInBucket() == 0);
309   // Do we need to grow the hashtable?
310   if (NumNodes+1 > NumBuckets*2) {
311     GrowHashTable();
312     FoldingSetNodeID TempID;
313     InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
314   }
315
316   ++NumNodes;
317   
318   /// The insert position is actually a bucket pointer.
319   void **Bucket = static_cast<void**>(InsertPos);
320   
321   void *Next = *Bucket;
322   
323   // If this is the first insertion into this bucket, its next pointer will be
324   // null.  Pretend as if it pointed to itself, setting the low bit to indicate
325   // that it is a pointer to the bucket.
326   if (Next == 0)
327     Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);
328
329   // Set the node's next pointer, and make the bucket point to the node.
330   N->SetNextInBucket(Next);
331   *Bucket = N;
332 }
333
334 /// RemoveNode - Remove a node from the folding set, returning true if one was
335 /// removed or false if the node was not in the folding set.
336 bool FoldingSetImpl::RemoveNode(Node *N) {
337   // Because each bucket is a circular list, we don't need to compute N's hash
338   // to remove it.
339   void *Ptr = N->getNextInBucket();
340   if (Ptr == 0) return false;  // Not in folding set.
341
342   --NumNodes;
343   N->SetNextInBucket(0);
344
345   // Remember what N originally pointed to, either a bucket or another node.
346   void *NodeNextPtr = Ptr;
347   
348   // Chase around the list until we find the node (or bucket) which points to N.
349   while (true) {
350     if (Node *NodeInBucket = GetNextPtr(Ptr)) {
351       // Advance pointer.
352       Ptr = NodeInBucket->getNextInBucket();
353       
354       // We found a node that points to N, change it to point to N's next node,
355       // removing N from the list.
356       if (Ptr == N) {
357         NodeInBucket->SetNextInBucket(NodeNextPtr);
358         return true;
359       }
360     } else {
361       void **Bucket = GetBucketPtr(Ptr);
362       Ptr = *Bucket;
363       
364       // If we found that the bucket points to N, update the bucket to point to
365       // whatever is next.
366       if (Ptr == N) {
367         *Bucket = NodeNextPtr;
368         return true;
369       }
370     }
371   }
372 }
373
374 /// GetOrInsertNode - If there is an existing simple Node exactly
375 /// equal to the specified node, return it.  Otherwise, insert 'N' and it
376 /// instead.
377 FoldingSetImpl::Node *FoldingSetImpl::GetOrInsertNode(FoldingSetImpl::Node *N) {
378   FoldingSetNodeID ID;
379   GetNodeProfile(N, ID);
380   void *IP;
381   if (Node *E = FindNodeOrInsertPos(ID, IP))
382     return E;
383   InsertNode(N, IP);
384   return N;
385 }
386
387 //===----------------------------------------------------------------------===//
388 // FoldingSetIteratorImpl Implementation
389
390 FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
391   // Skip to the first non-null non-self-cycle bucket.
392   while (*Bucket != reinterpret_cast<void*>(-1) &&
393          (*Bucket == 0 || GetNextPtr(*Bucket) == 0))
394     ++Bucket;
395   
396   NodePtr = static_cast<FoldingSetNode*>(*Bucket);
397 }
398
399 void FoldingSetIteratorImpl::advance() {
400   // If there is another link within this bucket, go to it.
401   void *Probe = NodePtr->getNextInBucket();
402
403   if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
404     NodePtr = NextNodeInBucket;
405   else {
406     // Otherwise, this is the last link in this bucket.  
407     void **Bucket = GetBucketPtr(Probe);
408
409     // Skip to the next non-null non-self-cycle bucket.
410     do {
411       ++Bucket;
412     } while (*Bucket != reinterpret_cast<void*>(-1) &&
413              (*Bucket == 0 || GetNextPtr(*Bucket) == 0));
414     
415     NodePtr = static_cast<FoldingSetNode*>(*Bucket);
416   }
417 }
418
419 //===----------------------------------------------------------------------===//
420 // FoldingSetBucketIteratorImpl Implementation
421
422 FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
423   Ptr = (*Bucket == 0 || GetNextPtr(*Bucket) == 0) ? (void*) Bucket : *Bucket;
424 }