Compute A-B when A or B is weak.
[oota-llvm.git] / lib / MC / MCAssembler.cpp
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSectionELF.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Support/TargetRegistry.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <tuple>
33 using namespace llvm;
34
35 #define DEBUG_TYPE "assembler"
36
37 namespace {
38 namespace stats {
39 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
40 STATISTIC(EmittedRelaxableFragments,
41           "Number of emitted assembler fragments - relaxable");
42 STATISTIC(EmittedDataFragments,
43           "Number of emitted assembler fragments - data");
44 STATISTIC(EmittedCompactEncodedInstFragments,
45           "Number of emitted assembler fragments - compact encoded inst");
46 STATISTIC(EmittedAlignFragments,
47           "Number of emitted assembler fragments - align");
48 STATISTIC(EmittedFillFragments,
49           "Number of emitted assembler fragments - fill");
50 STATISTIC(EmittedOrgFragments,
51           "Number of emitted assembler fragments - org");
52 STATISTIC(evaluateFixup, "Number of evaluated fixups");
53 STATISTIC(FragmentLayouts, "Number of fragment layouts");
54 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
55 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
56 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
57 }
58 }
59
60 // FIXME FIXME FIXME: There are number of places in this file where we convert
61 // what is a 64-bit assembler value used for computation into a value in the
62 // object file, which may truncate it. We should detect that truncation where
63 // invalid and report errors back.
64
65 /* *** */
66
67 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
68   : Assembler(Asm), LastValidFragment()
69  {
70   // Compute the section layout order. Virtual sections must go last.
71   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
72     if (!it->getSection().isVirtualSection())
73       SectionOrder.push_back(&*it);
74   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it)
75     if (it->getSection().isVirtualSection())
76       SectionOrder.push_back(&*it);
77 }
78
79 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
80   const MCSectionData &SD = *F->getParent();
81   const MCFragment *LastValid = LastValidFragment.lookup(&SD);
82   if (!LastValid)
83     return false;
84   assert(LastValid->getParent() == F->getParent());
85   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
86 }
87
88 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
89   // If this fragment wasn't already valid, we don't need to do anything.
90   if (!isFragmentValid(F))
91     return;
92
93   // Otherwise, reset the last valid fragment to the previous fragment
94   // (if this is the first fragment, it will be NULL).
95   const MCSectionData &SD = *F->getParent();
96   LastValidFragment[&SD] = F->getPrevNode();
97 }
98
99 void MCAsmLayout::ensureValid(const MCFragment *F) const {
100   MCSectionData &SD = *F->getParent();
101
102   MCFragment *Cur = LastValidFragment[&SD];
103   if (!Cur)
104     Cur = &*SD.begin();
105   else
106     Cur = Cur->getNextNode();
107
108   // Advance the layout position until the fragment is valid.
109   while (!isFragmentValid(F)) {
110     assert(Cur && "Layout bookkeeping error");
111     const_cast<MCAsmLayout*>(this)->layoutFragment(Cur);
112     Cur = Cur->getNextNode();
113   }
114 }
115
116 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
117   ensureValid(F);
118   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
119   return F->Offset;
120 }
121
122 // Simple getSymbolOffset helper for the non-varibale case.
123 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbolData &SD,
124                            bool ReportError, uint64_t &Val) {
125   if (!SD.getFragment()) {
126     if (ReportError)
127       report_fatal_error("unable to evaluate offset to undefined symbol '" +
128                          SD.getSymbol().getName() + "'");
129     return false;
130   }
131   Val = Layout.getFragmentOffset(SD.getFragment()) + SD.getOffset();
132   return true;
133 }
134
135 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout,
136                                 const MCSymbolData *SD, bool ReportError,
137                                 uint64_t &Val) {
138   const MCSymbol &S = SD->getSymbol();
139
140   if (!S.isVariable())
141     return getLabelOffset(Layout, *SD, ReportError, Val);
142
143   // If SD is a variable, evaluate it.
144   MCValue Target;
145   if (!S.getVariableValue()->EvaluateAsRelocatable(Target, &Layout, nullptr))
146     report_fatal_error("unable to evaluate offset for variable '" +
147                        S.getName() + "'");
148
149   uint64_t Offset = Target.getConstant();
150
151   const MCAssembler &Asm = Layout.getAssembler();
152
153   const MCSymbolRefExpr *A = Target.getSymA();
154   if (A) {
155     uint64_t ValA;
156     if (!getLabelOffset(Layout, Asm.getSymbolData(A->getSymbol()), ReportError,
157                         ValA))
158       return false;
159     Offset += ValA;
160   }
161
162   const MCSymbolRefExpr *B = Target.getSymB();
163   if (B) {
164     uint64_t ValB;
165     if (!getLabelOffset(Layout, Asm.getSymbolData(B->getSymbol()), ReportError,
166                         ValB))
167       return false;
168     Offset -= ValB;
169   }
170
171   Val = Offset;
172   return true;
173 }
174
175 bool MCAsmLayout::getSymbolOffset(const MCSymbolData *SD, uint64_t &Val) const {
176   return getSymbolOffsetImpl(*this, SD, false, Val);
177 }
178
179 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbolData *SD) const {
180   uint64_t Val;
181   getSymbolOffsetImpl(*this, SD, true, Val);
182   return Val;
183 }
184
185 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
186   if (!Symbol.isVariable())
187     return &Symbol;
188
189   const MCExpr *Expr = Symbol.getVariableValue();
190   MCValue Value;
191   if (!Expr->evaluateAsValue(Value, *this))
192     llvm_unreachable("Invalid Expression");
193
194   const MCSymbolRefExpr *RefB = Value.getSymB();
195   if (RefB)
196     Assembler.getContext().FatalError(
197         SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
198                      "' could not be evaluated in a subtraction expression");
199
200   const MCSymbolRefExpr *A = Value.getSymA();
201   if (!A)
202     return nullptr;
203
204   const MCSymbol &ASym = A->getSymbol();
205   const MCAssembler &Asm = getAssembler();
206   const MCSymbolData &ASD = Asm.getSymbolData(ASym);
207   if (ASD.isCommon()) {
208     // FIXME: we should probably add a SMLoc to MCExpr.
209     Asm.getContext().FatalError(SMLoc(),
210                                 "Common symbol " + ASym.getName() +
211                                     " cannot be used in assignment expr");
212   }
213
214   return &ASym;
215 }
216
217 uint64_t MCAsmLayout::getSectionAddressSize(const MCSectionData *SD) const {
218   // The size is the last fragment's end offset.
219   const MCFragment &F = SD->getFragmentList().back();
220   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
221 }
222
223 uint64_t MCAsmLayout::getSectionFileSize(const MCSectionData *SD) const {
224   // Virtual sections have no file size.
225   if (SD->getSection().isVirtualSection())
226     return 0;
227
228   // Otherwise, the file size is the same as the address space size.
229   return getSectionAddressSize(SD);
230 }
231
232 uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler,
233                                     const MCFragment *F,
234                                     uint64_t FOffset, uint64_t FSize) {
235   uint64_t BundleSize = Assembler.getBundleAlignSize();
236   assert(BundleSize > 0 &&
237          "computeBundlePadding should only be called if bundling is enabled");
238   uint64_t BundleMask = BundleSize - 1;
239   uint64_t OffsetInBundle = FOffset & BundleMask;
240   uint64_t EndOfFragment = OffsetInBundle + FSize;
241
242   // There are two kinds of bundling restrictions:
243   //
244   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
245   //    *end* on a bundle boundary.
246   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
247   //    would, add padding until the end of the bundle so that the fragment
248   //    will start in a new one.
249   if (F->alignToBundleEnd()) {
250     // Three possibilities here:
251     //
252     // A) The fragment just happens to end at a bundle boundary, so we're good.
253     // B) The fragment ends before the current bundle boundary: pad it just
254     //    enough to reach the boundary.
255     // C) The fragment ends after the current bundle boundary: pad it until it
256     //    reaches the end of the next bundle boundary.
257     //
258     // Note: this code could be made shorter with some modulo trickery, but it's
259     // intentionally kept in its more explicit form for simplicity.
260     if (EndOfFragment == BundleSize)
261       return 0;
262     else if (EndOfFragment < BundleSize)
263       return BundleSize - EndOfFragment;
264     else { // EndOfFragment > BundleSize
265       return 2 * BundleSize - EndOfFragment;
266     }
267   } else if (EndOfFragment > BundleSize)
268     return BundleSize - OffsetInBundle;
269   else
270     return 0;
271 }
272
273 /* *** */
274
275 MCFragment::MCFragment() : Kind(FragmentType(~0)) {
276 }
277
278 MCFragment::~MCFragment() {
279 }
280
281 MCFragment::MCFragment(FragmentType Kind, MCSectionData *Parent)
282     : Kind(Kind), Parent(Parent), Atom(nullptr), Offset(~UINT64_C(0)) {
283   if (Parent)
284     Parent->getFragmentList().push_back(this);
285 }
286
287 /* *** */
288
289 MCEncodedFragment::~MCEncodedFragment() {
290 }
291
292 /* *** */
293
294 MCEncodedFragmentWithFixups::~MCEncodedFragmentWithFixups() {
295 }
296
297 /* *** */
298
299 MCSectionData::MCSectionData() : Section(nullptr) {}
300
301 MCSectionData::MCSectionData(const MCSection &Section, MCAssembler *A)
302     : Section(&Section), Ordinal(~UINT32_C(0)), Alignment(1),
303       BundleLockState(NotBundleLocked), BundleLockNestingDepth(0),
304       BundleGroupBeforeFirstInst(false), HasInstructions(false) {
305   if (A)
306     A->getSectionList().push_back(this);
307 }
308
309 MCSectionData::iterator
310 MCSectionData::getSubsectionInsertionPoint(unsigned Subsection) {
311   if (Subsection == 0 && SubsectionFragmentMap.empty())
312     return end();
313
314   SmallVectorImpl<std::pair<unsigned, MCFragment *> >::iterator MI =
315     std::lower_bound(SubsectionFragmentMap.begin(), SubsectionFragmentMap.end(),
316                      std::make_pair(Subsection, (MCFragment *)nullptr));
317   bool ExactMatch = false;
318   if (MI != SubsectionFragmentMap.end()) {
319     ExactMatch = MI->first == Subsection;
320     if (ExactMatch)
321       ++MI;
322   }
323   iterator IP;
324   if (MI == SubsectionFragmentMap.end())
325     IP = end();
326   else
327     IP = MI->second;
328   if (!ExactMatch && Subsection != 0) {
329     // The GNU as documentation claims that subsections have an alignment of 4,
330     // although this appears not to be the case.
331     MCFragment *F = new MCDataFragment();
332     SubsectionFragmentMap.insert(MI, std::make_pair(Subsection, F));
333     getFragmentList().insert(IP, F);
334     F->setParent(this);
335   }
336
337   return IP;
338 }
339
340 void MCSectionData::setBundleLockState(BundleLockStateType NewState) {
341   if (NewState == NotBundleLocked) {
342     if (BundleLockNestingDepth == 0) {
343       report_fatal_error("Mismatched bundle_lock/unlock directives");
344     }
345     if (--BundleLockNestingDepth == 0) {
346       BundleLockState = NotBundleLocked;
347     }
348     return;
349   }
350
351   // If any of the directives is an align_to_end directive, the whole nested
352   // group is align_to_end. So don't downgrade from align_to_end to just locked.
353   if (BundleLockState != BundleLockedAlignToEnd) {
354     BundleLockState = NewState;
355   }
356   ++BundleLockNestingDepth;
357 }
358
359 /* *** */
360
361 MCSymbolData::MCSymbolData() : Symbol(nullptr) {}
362
363 MCSymbolData::MCSymbolData(const MCSymbol &Symbol, MCFragment *Fragment,
364                            uint64_t Offset, MCAssembler *A)
365     : Symbol(&Symbol), Fragment(Fragment), Offset(Offset), SymbolSize(nullptr),
366       CommonAlign(-1U), Flags(0), Index(0) {
367   if (A)
368     A->getSymbolList().push_back(this);
369 }
370
371 /* *** */
372
373 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
374                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_,
375                          raw_ostream &OS_)
376     : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
377       OS(OS_), BundleAlignSize(0), RelaxAll(false),
378       SubsectionsViaSymbols(false), ELFHeaderEFlags(0) {
379   VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
380 }
381
382 MCAssembler::~MCAssembler() {
383 }
384
385 void MCAssembler::reset() {
386   Sections.clear();
387   Symbols.clear();
388   SectionMap.clear();
389   SymbolMap.clear();
390   IndirectSymbols.clear();
391   DataRegions.clear();
392   LinkerOptions.clear();
393   FileNames.clear();
394   ThumbFuncs.clear();
395   BundleAlignSize = 0;
396   RelaxAll = false;
397   SubsectionsViaSymbols = false;
398   ELFHeaderEFlags = 0;
399   LOHContainer.reset();
400   VersionMinInfo.Major = 0;
401
402   // reset objects owned by us
403   getBackend().reset();
404   getEmitter().reset();
405   getWriter().reset();
406   getLOHContainer().reset();
407 }
408
409 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
410   if (ThumbFuncs.count(Symbol))
411     return true;
412
413   if (!Symbol->isVariable())
414     return false;
415
416   // FIXME: It looks like gas supports some cases of the form "foo + 2". It
417   // is not clear if that is a bug or a feature.
418   const MCExpr *Expr = Symbol->getVariableValue();
419   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
420   if (!Ref)
421     return false;
422
423   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
424     return false;
425
426   const MCSymbol &Sym = Ref->getSymbol();
427   if (!isThumbFunc(&Sym))
428     return false;
429
430   ThumbFuncs.insert(Symbol); // Cache it.
431   return true;
432 }
433
434 void MCAssembler::addLocalUsedInReloc(const MCSymbol &Sym) {
435   assert(Sym.isTemporary());
436   LocalsUsedInReloc.insert(&Sym);
437 }
438
439 bool MCAssembler::isLocalUsedInReloc(const MCSymbol &Sym) const {
440   assert(Sym.isTemporary());
441   return LocalsUsedInReloc.count(&Sym);
442 }
443
444 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
445   // Non-temporary labels should always be visible to the linker.
446   if (!Symbol.isTemporary())
447     return true;
448
449   // Absolute temporary labels are never visible.
450   if (!Symbol.isInSection())
451     return false;
452
453   if (isLocalUsedInReloc(Symbol))
454     return true;
455
456   return false;
457 }
458
459 const MCSymbolData *MCAssembler::getAtom(const MCSymbolData *SD) const {
460   // Linker visible symbols define atoms.
461   if (isSymbolLinkerVisible(SD->getSymbol()))
462     return SD;
463
464   // Absolute and undefined symbols have no defining atom.
465   if (!SD->getFragment())
466     return nullptr;
467
468   // Non-linker visible symbols in sections which can't be atomized have no
469   // defining atom.
470   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
471           SD->getFragment()->getParent()->getSection()))
472     return nullptr;
473
474   // Otherwise, return the atom for the containing fragment.
475   return SD->getFragment()->getAtom();
476 }
477
478 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
479                                 const MCFixup &Fixup, const MCFragment *DF,
480                                 MCValue &Target, uint64_t &Value) const {
481   ++stats::evaluateFixup;
482
483   // FIXME: This code has some duplication with RecordRelocation. We should
484   // probably merge the two into a single callback that tries to evaluate a
485   // fixup and records a relocation if one is needed.
486   const MCExpr *Expr = Fixup.getValue();
487   if (!Expr->EvaluateAsRelocatable(Target, &Layout, &Fixup))
488     getContext().FatalError(Fixup.getLoc(), "expected relocatable expression");
489
490   bool IsPCRel = Backend.getFixupKindInfo(
491     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
492
493   bool IsResolved;
494   if (IsPCRel) {
495     if (Target.getSymB()) {
496       IsResolved = false;
497     } else if (!Target.getSymA()) {
498       IsResolved = false;
499     } else {
500       const MCSymbolRefExpr *A = Target.getSymA();
501       const MCSymbol &SA = A->getSymbol();
502       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
503         IsResolved = false;
504       } else {
505         const MCSymbolData &DataA = getSymbolData(SA);
506         IsResolved = getWriter().IsSymbolRefDifferenceFullyResolvedImpl(
507             *this, DataA, *DF, false, true);
508       }
509     }
510   } else {
511     IsResolved = Target.isAbsolute();
512   }
513
514   Value = Target.getConstant();
515
516   if (const MCSymbolRefExpr *A = Target.getSymA()) {
517     const MCSymbol &Sym = A->getSymbol();
518     if (Sym.isDefined())
519       Value += Layout.getSymbolOffset(&getSymbolData(Sym));
520   }
521   if (const MCSymbolRefExpr *B = Target.getSymB()) {
522     const MCSymbol &Sym = B->getSymbol();
523     if (Sym.isDefined())
524       Value -= Layout.getSymbolOffset(&getSymbolData(Sym));
525   }
526
527
528   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
529                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
530   assert((ShouldAlignPC ? IsPCRel : true) &&
531     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
532
533   if (IsPCRel) {
534     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
535
536     // A number of ARM fixups in Thumb mode require that the effective PC
537     // address be determined as the 32-bit aligned version of the actual offset.
538     if (ShouldAlignPC) Offset &= ~0x3;
539     Value -= Offset;
540   }
541
542   // Let the backend adjust the fixup value if necessary, including whether
543   // we need a relocation.
544   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
545                             IsResolved);
546
547   return IsResolved;
548 }
549
550 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
551                                           const MCFragment &F) const {
552   switch (F.getKind()) {
553   case MCFragment::FT_Data:
554   case MCFragment::FT_Relaxable:
555   case MCFragment::FT_CompactEncodedInst:
556     return cast<MCEncodedFragment>(F).getContents().size();
557   case MCFragment::FT_Fill:
558     return cast<MCFillFragment>(F).getSize();
559
560   case MCFragment::FT_LEB:
561     return cast<MCLEBFragment>(F).getContents().size();
562
563   case MCFragment::FT_Align: {
564     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
565     unsigned Offset = Layout.getFragmentOffset(&AF);
566     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
567     // If we are padding with nops, force the padding to be larger than the
568     // minimum nop size.
569     if (Size > 0 && AF.hasEmitNops()) {
570       while (Size % getBackend().getMinimumNopSize())
571         Size += AF.getAlignment();
572     }
573     if (Size > AF.getMaxBytesToEmit())
574       return 0;
575     return Size;
576   }
577
578   case MCFragment::FT_Org: {
579     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
580     int64_t TargetLocation;
581     if (!OF.getOffset().EvaluateAsAbsolute(TargetLocation, Layout))
582       report_fatal_error("expected assembly-time absolute expression");
583
584     // FIXME: We need a way to communicate this error.
585     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
586     int64_t Size = TargetLocation - FragmentOffset;
587     if (Size < 0 || Size >= 0x40000000)
588       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
589                          "' (at offset '" + Twine(FragmentOffset) + "')");
590     return Size;
591   }
592
593   case MCFragment::FT_Dwarf:
594     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
595   case MCFragment::FT_DwarfFrame:
596     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
597   }
598
599   llvm_unreachable("invalid fragment kind");
600 }
601
602 void MCAsmLayout::layoutFragment(MCFragment *F) {
603   MCFragment *Prev = F->getPrevNode();
604
605   // We should never try to recompute something which is valid.
606   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
607   // We should never try to compute the fragment layout if its predecessor
608   // isn't valid.
609   assert((!Prev || isFragmentValid(Prev)) &&
610          "Attempt to compute fragment before its predecessor!");
611
612   ++stats::FragmentLayouts;
613
614   // Compute fragment offset and size.
615   if (Prev)
616     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
617   else
618     F->Offset = 0;
619   LastValidFragment[F->getParent()] = F;
620
621   // If bundling is enabled and this fragment has instructions in it, it has to
622   // obey the bundling restrictions. With padding, we'll have:
623   //
624   //
625   //        BundlePadding
626   //             |||
627   // -------------------------------------
628   //   Prev  |##########|       F        |
629   // -------------------------------------
630   //                    ^
631   //                    |
632   //                    F->Offset
633   //
634   // The fragment's offset will point to after the padding, and its computed
635   // size won't include the padding.
636   //
637   // When the -mc-relax-all flag is used, we optimize bundling by writting the
638   // bundle padding directly into fragments when the instructions are emitted
639   // inside the streamer.
640   //
641   if (Assembler.isBundlingEnabled() && !Assembler.getRelaxAll() &&
642       F->hasInstructions()) {
643     assert(isa<MCEncodedFragment>(F) &&
644            "Only MCEncodedFragment implementations have instructions");
645     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
646
647     if (FSize > Assembler.getBundleAlignSize())
648       report_fatal_error("Fragment can't be larger than a bundle size");
649
650     uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
651                                                           F->Offset, FSize);
652     if (RequiredBundlePadding > UINT8_MAX)
653       report_fatal_error("Padding cannot exceed 255 bytes");
654     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
655     F->Offset += RequiredBundlePadding;
656   }
657 }
658
659 /// \brief Write the contents of a fragment to the given object writer. Expects
660 ///        a MCEncodedFragment.
661 static void writeFragmentContents(const MCFragment &F, MCObjectWriter *OW) {
662   const MCEncodedFragment &EF = cast<MCEncodedFragment>(F);
663   OW->WriteBytes(EF.getContents());
664 }
665
666 void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
667                                        MCObjectWriter *OW) const {
668   // Should NOP padding be written out before this fragment?
669   unsigned BundlePadding = F.getBundlePadding();
670   if (BundlePadding > 0) {
671     assert(isBundlingEnabled() &&
672            "Writing bundle padding with disabled bundling");
673     assert(F.hasInstructions() &&
674            "Writing bundle padding for a fragment without instructions");
675
676     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
677     if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
678       // If the padding itself crosses a bundle boundary, it must be emitted
679       // in 2 pieces, since even nop instructions must not cross boundaries.
680       //             v--------------v   <- BundleAlignSize
681       //        v---------v             <- BundlePadding
682       // ----------------------------
683       // | Prev |####|####|    F    |
684       // ----------------------------
685       //        ^-------------------^   <- TotalLength
686       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
687       if (!getBackend().writeNopData(DistanceToBoundary, OW))
688           report_fatal_error("unable to write NOP sequence of " +
689                              Twine(DistanceToBoundary) + " bytes");
690       BundlePadding -= DistanceToBoundary;
691     }
692     if (!getBackend().writeNopData(BundlePadding, OW))
693       report_fatal_error("unable to write NOP sequence of " +
694                          Twine(BundlePadding) + " bytes");
695   }
696 }
697
698 /// \brief Write the fragment \p F to the output file.
699 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
700                           const MCFragment &F) {
701   MCObjectWriter *OW = &Asm.getWriter();
702
703   // FIXME: Embed in fragments instead?
704   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
705
706   Asm.writeFragmentPadding(F, FragmentSize, OW);
707
708   // This variable (and its dummy usage) is to participate in the assert at
709   // the end of the function.
710   uint64_t Start = OW->getStream().tell();
711   (void) Start;
712
713   ++stats::EmittedFragments;
714
715   switch (F.getKind()) {
716   case MCFragment::FT_Align: {
717     ++stats::EmittedAlignFragments;
718     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
719     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
720
721     uint64_t Count = FragmentSize / AF.getValueSize();
722
723     // FIXME: This error shouldn't actually occur (the front end should emit
724     // multiple .align directives to enforce the semantics it wants), but is
725     // severe enough that we want to report it. How to handle this?
726     if (Count * AF.getValueSize() != FragmentSize)
727       report_fatal_error("undefined .align directive, value size '" +
728                         Twine(AF.getValueSize()) +
729                         "' is not a divisor of padding size '" +
730                         Twine(FragmentSize) + "'");
731
732     // See if we are aligning with nops, and if so do that first to try to fill
733     // the Count bytes.  Then if that did not fill any bytes or there are any
734     // bytes left to fill use the Value and ValueSize to fill the rest.
735     // If we are aligning with nops, ask that target to emit the right data.
736     if (AF.hasEmitNops()) {
737       if (!Asm.getBackend().writeNopData(Count, OW))
738         report_fatal_error("unable to write nop sequence of " +
739                           Twine(Count) + " bytes");
740       break;
741     }
742
743     // Otherwise, write out in multiples of the value size.
744     for (uint64_t i = 0; i != Count; ++i) {
745       switch (AF.getValueSize()) {
746       default: llvm_unreachable("Invalid size!");
747       case 1: OW->Write8 (uint8_t (AF.getValue())); break;
748       case 2: OW->Write16(uint16_t(AF.getValue())); break;
749       case 4: OW->Write32(uint32_t(AF.getValue())); break;
750       case 8: OW->Write64(uint64_t(AF.getValue())); break;
751       }
752     }
753     break;
754   }
755
756   case MCFragment::FT_Data: 
757     ++stats::EmittedDataFragments;
758     writeFragmentContents(F, OW);
759     break;
760
761   case MCFragment::FT_Relaxable:
762     ++stats::EmittedRelaxableFragments;
763     writeFragmentContents(F, OW);
764     break;
765
766   case MCFragment::FT_CompactEncodedInst:
767     ++stats::EmittedCompactEncodedInstFragments;
768     writeFragmentContents(F, OW);
769     break;
770
771   case MCFragment::FT_Fill: {
772     ++stats::EmittedFillFragments;
773     const MCFillFragment &FF = cast<MCFillFragment>(F);
774
775     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
776
777     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
778       switch (FF.getValueSize()) {
779       default: llvm_unreachable("Invalid size!");
780       case 1: OW->Write8 (uint8_t (FF.getValue())); break;
781       case 2: OW->Write16(uint16_t(FF.getValue())); break;
782       case 4: OW->Write32(uint32_t(FF.getValue())); break;
783       case 8: OW->Write64(uint64_t(FF.getValue())); break;
784       }
785     }
786     break;
787   }
788
789   case MCFragment::FT_LEB: {
790     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
791     OW->WriteBytes(LF.getContents());
792     break;
793   }
794
795   case MCFragment::FT_Org: {
796     ++stats::EmittedOrgFragments;
797     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
798
799     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
800       OW->Write8(uint8_t(OF.getValue()));
801
802     break;
803   }
804
805   case MCFragment::FT_Dwarf: {
806     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
807     OW->WriteBytes(OF.getContents());
808     break;
809   }
810   case MCFragment::FT_DwarfFrame: {
811     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
812     OW->WriteBytes(CF.getContents());
813     break;
814   }
815   }
816
817   assert(OW->getStream().tell() - Start == FragmentSize &&
818          "The stream should advance by fragment size");
819 }
820
821 void MCAssembler::writeSectionData(const MCSectionData *SD,
822                                    const MCAsmLayout &Layout) const {
823   // Ignore virtual sections.
824   if (SD->getSection().isVirtualSection()) {
825     assert(Layout.getSectionFileSize(SD) == 0 && "Invalid size for section!");
826
827     // Check that contents are only things legal inside a virtual section.
828     for (MCSectionData::const_iterator it = SD->begin(),
829            ie = SD->end(); it != ie; ++it) {
830       switch (it->getKind()) {
831       default: llvm_unreachable("Invalid fragment in virtual section!");
832       case MCFragment::FT_Data: {
833         // Check that we aren't trying to write a non-zero contents (or fixups)
834         // into a virtual section. This is to support clients which use standard
835         // directives to fill the contents of virtual sections.
836         const MCDataFragment &DF = cast<MCDataFragment>(*it);
837         assert(DF.fixup_begin() == DF.fixup_end() &&
838                "Cannot have fixups in virtual section!");
839         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
840           if (DF.getContents()[i]) {
841             if (auto *ELFSec = dyn_cast<const MCSectionELF>(&SD->getSection()))
842               report_fatal_error("non-zero initializer found in section '" +
843                   ELFSec->getSectionName() + "'");
844             else
845               report_fatal_error("non-zero initializer found in virtual section");
846           }
847         break;
848       }
849       case MCFragment::FT_Align:
850         // Check that we aren't trying to write a non-zero value into a virtual
851         // section.
852         assert((cast<MCAlignFragment>(it)->getValueSize() == 0 ||
853                 cast<MCAlignFragment>(it)->getValue() == 0) &&
854                "Invalid align in virtual section!");
855         break;
856       case MCFragment::FT_Fill:
857         assert((cast<MCFillFragment>(it)->getValueSize() == 0 ||
858                 cast<MCFillFragment>(it)->getValue() == 0) &&
859                "Invalid fill in virtual section!");
860         break;
861       }
862     }
863
864     return;
865   }
866
867   uint64_t Start = getWriter().getStream().tell();
868   (void)Start;
869
870   for (MCSectionData::const_iterator it = SD->begin(), ie = SD->end();
871        it != ie; ++it)
872     writeFragment(*this, Layout, *it);
873
874   assert(getWriter().getStream().tell() - Start ==
875          Layout.getSectionAddressSize(SD));
876 }
877
878 std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
879                                                    MCFragment &F,
880                                                    const MCFixup &Fixup) {
881   // Evaluate the fixup.
882   MCValue Target;
883   uint64_t FixedValue;
884   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
885                  MCFixupKindInfo::FKF_IsPCRel;
886   if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
887     // The fixup was unresolved, we need a relocation. Inform the object
888     // writer of the relocation, and give it an opportunity to adjust the
889     // fixup value if need be.
890     getWriter().RecordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
891                                  FixedValue);
892   }
893   return std::make_pair(FixedValue, IsPCRel);
894 }
895
896 void MCAssembler::Finish() {
897   DEBUG_WITH_TYPE("mc-dump", {
898       llvm::errs() << "assembler backend - pre-layout\n--\n";
899       dump(); });
900
901   // Create the layout object.
902   MCAsmLayout Layout(*this);
903
904   // Create dummy fragments and assign section ordinals.
905   unsigned SectionIndex = 0;
906   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
907     // Create dummy fragments to eliminate any empty sections, this simplifies
908     // layout.
909     if (it->getFragmentList().empty())
910       new MCDataFragment(it);
911
912     it->setOrdinal(SectionIndex++);
913   }
914
915   // Assign layout order indices to sections and fragments.
916   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
917     MCSectionData *SD = Layout.getSectionOrder()[i];
918     SD->setLayoutOrder(i);
919
920     unsigned FragmentIndex = 0;
921     for (MCSectionData::iterator iFrag = SD->begin(), iFragEnd = SD->end();
922          iFrag != iFragEnd; ++iFrag)
923       iFrag->setLayoutOrder(FragmentIndex++);
924   }
925
926   // Layout until everything fits.
927   while (layoutOnce(Layout))
928     continue;
929
930   DEBUG_WITH_TYPE("mc-dump", {
931       llvm::errs() << "assembler backend - post-relaxation\n--\n";
932       dump(); });
933
934   // Finalize the layout, including fragment lowering.
935   finishLayout(Layout);
936
937   DEBUG_WITH_TYPE("mc-dump", {
938       llvm::errs() << "assembler backend - final-layout\n--\n";
939       dump(); });
940
941   uint64_t StartOffset = OS.tell();
942
943   // Allow the object writer a chance to perform post-layout binding (for
944   // example, to set the index fields in the symbol data).
945   getWriter().ExecutePostLayoutBinding(*this, Layout);
946
947   // Evaluate and apply the fixups, generating relocation entries as necessary.
948   for (MCAssembler::iterator it = begin(), ie = end(); it != ie; ++it) {
949     for (MCSectionData::iterator it2 = it->begin(),
950            ie2 = it->end(); it2 != ie2; ++it2) {
951       MCEncodedFragmentWithFixups *F =
952         dyn_cast<MCEncodedFragmentWithFixups>(it2);
953       if (F) {
954         for (MCEncodedFragmentWithFixups::fixup_iterator it3 = F->fixup_begin(),
955              ie3 = F->fixup_end(); it3 != ie3; ++it3) {
956           MCFixup &Fixup = *it3;
957           uint64_t FixedValue;
958           bool IsPCRel;
959           std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
960           getBackend().applyFixup(Fixup, F->getContents().data(),
961                                   F->getContents().size(), FixedValue, IsPCRel);
962         }
963       }
964     }
965   }
966
967   // Write the object file.
968   getWriter().WriteObject(*this, Layout);
969
970   stats::ObjectBytes += OS.tell() - StartOffset;
971 }
972
973 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
974                                        const MCRelaxableFragment *DF,
975                                        const MCAsmLayout &Layout) const {
976   // If we cannot resolve the fixup value, it requires relaxation.
977   MCValue Target;
978   uint64_t Value;
979   if (!evaluateFixup(Layout, Fixup, DF, Target, Value))
980     return true;
981
982   return getBackend().fixupNeedsRelaxation(Fixup, Value, DF, Layout);
983 }
984
985 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
986                                           const MCAsmLayout &Layout) const {
987   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
988   // are intentionally pushing out inst fragments, or because we relaxed a
989   // previous instruction to one that doesn't need relaxation.
990   if (!getBackend().mayNeedRelaxation(F->getInst()))
991     return false;
992
993   for (MCRelaxableFragment::const_fixup_iterator it = F->fixup_begin(),
994        ie = F->fixup_end(); it != ie; ++it)
995     if (fixupNeedsRelaxation(*it, F, Layout))
996       return true;
997
998   return false;
999 }
1000
1001 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
1002                                    MCRelaxableFragment &F) {
1003   if (!fragmentNeedsRelaxation(&F, Layout))
1004     return false;
1005
1006   ++stats::RelaxedInstructions;
1007
1008   // FIXME-PERF: We could immediately lower out instructions if we can tell
1009   // they are fully resolved, to avoid retesting on later passes.
1010
1011   // Relax the fragment.
1012
1013   MCInst Relaxed;
1014   getBackend().relaxInstruction(F.getInst(), Relaxed);
1015
1016   // Encode the new instruction.
1017   //
1018   // FIXME-PERF: If it matters, we could let the target do this. It can
1019   // probably do so more efficiently in many cases.
1020   SmallVector<MCFixup, 4> Fixups;
1021   SmallString<256> Code;
1022   raw_svector_ostream VecOS(Code);
1023   getEmitter().EncodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
1024   VecOS.flush();
1025
1026   // Update the fragment.
1027   F.setInst(Relaxed);
1028   F.getContents() = Code;
1029   F.getFixups() = Fixups;
1030
1031   return true;
1032 }
1033
1034 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
1035   uint64_t OldSize = LF.getContents().size();
1036   int64_t Value;
1037   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
1038   if (!Abs)
1039     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
1040   SmallString<8> &Data = LF.getContents();
1041   Data.clear();
1042   raw_svector_ostream OSE(Data);
1043   if (LF.isSigned())
1044     encodeSLEB128(Value, OSE);
1045   else
1046     encodeULEB128(Value, OSE);
1047   OSE.flush();
1048   return OldSize != LF.getContents().size();
1049 }
1050
1051 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1052                                      MCDwarfLineAddrFragment &DF) {
1053   MCContext &Context = Layout.getAssembler().getContext();
1054   uint64_t OldSize = DF.getContents().size();
1055   int64_t AddrDelta;
1056   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1057   assert(Abs && "We created a line delta with an invalid expression");
1058   (void) Abs;
1059   int64_t LineDelta;
1060   LineDelta = DF.getLineDelta();
1061   SmallString<8> &Data = DF.getContents();
1062   Data.clear();
1063   raw_svector_ostream OSE(Data);
1064   MCDwarfLineAddr::Encode(Context, LineDelta, AddrDelta, OSE);
1065   OSE.flush();
1066   return OldSize != Data.size();
1067 }
1068
1069 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1070                                               MCDwarfCallFrameFragment &DF) {
1071   MCContext &Context = Layout.getAssembler().getContext();
1072   uint64_t OldSize = DF.getContents().size();
1073   int64_t AddrDelta;
1074   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1075   assert(Abs && "We created call frame with an invalid expression");
1076   (void) Abs;
1077   SmallString<8> &Data = DF.getContents();
1078   Data.clear();
1079   raw_svector_ostream OSE(Data);
1080   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1081   OSE.flush();
1082   return OldSize != Data.size();
1083 }
1084
1085 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSectionData &SD) {
1086   // Holds the first fragment which needed relaxing during this layout. It will
1087   // remain NULL if none were relaxed.
1088   // When a fragment is relaxed, all the fragments following it should get
1089   // invalidated because their offset is going to change.
1090   MCFragment *FirstRelaxedFragment = nullptr;
1091
1092   // Attempt to relax all the fragments in the section.
1093   for (MCSectionData::iterator I = SD.begin(), IE = SD.end(); I != IE; ++I) {
1094     // Check if this is a fragment that needs relaxation.
1095     bool RelaxedFrag = false;
1096     switch(I->getKind()) {
1097     default:
1098       break;
1099     case MCFragment::FT_Relaxable:
1100       assert(!getRelaxAll() &&
1101              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1102       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1103       break;
1104     case MCFragment::FT_Dwarf:
1105       RelaxedFrag = relaxDwarfLineAddr(Layout,
1106                                        *cast<MCDwarfLineAddrFragment>(I));
1107       break;
1108     case MCFragment::FT_DwarfFrame:
1109       RelaxedFrag =
1110         relaxDwarfCallFrameFragment(Layout,
1111                                     *cast<MCDwarfCallFrameFragment>(I));
1112       break;
1113     case MCFragment::FT_LEB:
1114       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1115       break;
1116     }
1117     if (RelaxedFrag && !FirstRelaxedFragment)
1118       FirstRelaxedFragment = I;
1119   }
1120   if (FirstRelaxedFragment) {
1121     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1122     return true;
1123   }
1124   return false;
1125 }
1126
1127 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1128   ++stats::RelaxationSteps;
1129
1130   bool WasRelaxed = false;
1131   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1132     MCSectionData &SD = *it;
1133     while (layoutSectionOnce(Layout, SD))
1134       WasRelaxed = true;
1135   }
1136
1137   return WasRelaxed;
1138 }
1139
1140 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1141   // The layout is done. Mark every fragment as valid.
1142   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1143     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
1144   }
1145 }
1146
1147 // Debugging methods
1148
1149 namespace llvm {
1150
1151 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
1152   OS << "<MCFixup" << " Offset:" << AF.getOffset()
1153      << " Value:" << *AF.getValue()
1154      << " Kind:" << AF.getKind() << ">";
1155   return OS;
1156 }
1157
1158 }
1159
1160 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1161 void MCFragment::dump() {
1162   raw_ostream &OS = llvm::errs();
1163
1164   OS << "<";
1165   switch (getKind()) {
1166   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
1167   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
1168   case MCFragment::FT_CompactEncodedInst:
1169     OS << "MCCompactEncodedInstFragment"; break;
1170   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
1171   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
1172   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
1173   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1174   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1175   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
1176   }
1177
1178   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1179      << " Offset:" << Offset
1180      << " HasInstructions:" << hasInstructions() 
1181      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1182
1183   switch (getKind()) {
1184   case MCFragment::FT_Align: {
1185     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1186     if (AF->hasEmitNops())
1187       OS << " (emit nops)";
1188     OS << "\n       ";
1189     OS << " Alignment:" << AF->getAlignment()
1190        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1191        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1192     break;
1193   }
1194   case MCFragment::FT_Data:  {
1195     const MCDataFragment *DF = cast<MCDataFragment>(this);
1196     OS << "\n       ";
1197     OS << " Contents:[";
1198     const SmallVectorImpl<char> &Contents = DF->getContents();
1199     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1200       if (i) OS << ",";
1201       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1202     }
1203     OS << "] (" << Contents.size() << " bytes)";
1204
1205     if (DF->fixup_begin() != DF->fixup_end()) {
1206       OS << ",\n       ";
1207       OS << " Fixups:[";
1208       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1209              ie = DF->fixup_end(); it != ie; ++it) {
1210         if (it != DF->fixup_begin()) OS << ",\n                ";
1211         OS << *it;
1212       }
1213       OS << "]";
1214     }
1215     break;
1216   }
1217   case MCFragment::FT_CompactEncodedInst: {
1218     const MCCompactEncodedInstFragment *CEIF =
1219       cast<MCCompactEncodedInstFragment>(this);
1220     OS << "\n       ";
1221     OS << " Contents:[";
1222     const SmallVectorImpl<char> &Contents = CEIF->getContents();
1223     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1224       if (i) OS << ",";
1225       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1226     }
1227     OS << "] (" << Contents.size() << " bytes)";
1228     break;
1229   }
1230   case MCFragment::FT_Fill:  {
1231     const MCFillFragment *FF = cast<MCFillFragment>(this);
1232     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1233        << " Size:" << FF->getSize();
1234     break;
1235   }
1236   case MCFragment::FT_Relaxable:  {
1237     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1238     OS << "\n       ";
1239     OS << " Inst:";
1240     F->getInst().dump_pretty(OS);
1241     break;
1242   }
1243   case MCFragment::FT_Org:  {
1244     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1245     OS << "\n       ";
1246     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1247     break;
1248   }
1249   case MCFragment::FT_Dwarf:  {
1250     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1251     OS << "\n       ";
1252     OS << " AddrDelta:" << OF->getAddrDelta()
1253        << " LineDelta:" << OF->getLineDelta();
1254     break;
1255   }
1256   case MCFragment::FT_DwarfFrame:  {
1257     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1258     OS << "\n       ";
1259     OS << " AddrDelta:" << CF->getAddrDelta();
1260     break;
1261   }
1262   case MCFragment::FT_LEB: {
1263     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1264     OS << "\n       ";
1265     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1266     break;
1267   }
1268   }
1269   OS << ">";
1270 }
1271
1272 void MCSectionData::dump() {
1273   raw_ostream &OS = llvm::errs();
1274
1275   OS << "<MCSectionData";
1276   OS << " Alignment:" << getAlignment()
1277      << " Fragments:[\n      ";
1278   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1279     if (it != begin()) OS << ",\n      ";
1280     it->dump();
1281   }
1282   OS << "]>";
1283 }
1284
1285 void MCSymbolData::dump() const {
1286   raw_ostream &OS = llvm::errs();
1287
1288   OS << "<MCSymbolData Symbol:" << getSymbol()
1289      << " Fragment:" << getFragment();
1290   if (!isCommon())
1291     OS << " Offset:" << getOffset();
1292   OS << " Flags:" << getFlags() << " Index:" << getIndex();
1293   if (isCommon())
1294     OS << " (common, size:" << getCommonSize()
1295        << " align: " << getCommonAlignment() << ")";
1296   if (isExternal())
1297     OS << " (external)";
1298   if (isPrivateExtern())
1299     OS << " (private extern)";
1300   OS << ">";
1301 }
1302
1303 void MCAssembler::dump() {
1304   raw_ostream &OS = llvm::errs();
1305
1306   OS << "<MCAssembler\n";
1307   OS << "  Sections:[\n    ";
1308   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1309     if (it != begin()) OS << ",\n    ";
1310     it->dump();
1311   }
1312   OS << "],\n";
1313   OS << "  Symbols:[";
1314
1315   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1316     if (it != symbol_begin()) OS << ",\n           ";
1317     it->dump();
1318   }
1319   OS << "]>\n";
1320 }
1321 #endif
1322
1323 // anchors for MC*Fragment vtables
1324 void MCEncodedFragment::anchor() { }
1325 void MCEncodedFragmentWithFixups::anchor() { }
1326 void MCDataFragment::anchor() { }
1327 void MCCompactEncodedInstFragment::anchor() { }
1328 void MCRelaxableFragment::anchor() { }
1329 void MCAlignFragment::anchor() { }
1330 void MCFillFragment::anchor() { }
1331 void MCOrgFragment::anchor() { }
1332 void MCLEBFragment::anchor() { }
1333 void MCDwarfLineAddrFragment::anchor() { }
1334 void MCDwarfCallFrameFragment::anchor() { }