[MC] Don't use the architecture to govern which object file format to use
[oota-llvm.git] / lib / MC / MCAssembler.cpp
1 //===- lib/MC/MCAssembler.cpp - Assembler Backend Implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "llvm/MC/MCAssembler.h"
11 #include "llvm/ADT/Statistic.h"
12 #include "llvm/ADT/StringExtras.h"
13 #include "llvm/ADT/Twine.h"
14 #include "llvm/MC/MCAsmBackend.h"
15 #include "llvm/MC/MCAsmInfo.h"
16 #include "llvm/MC/MCAsmLayout.h"
17 #include "llvm/MC/MCCodeEmitter.h"
18 #include "llvm/MC/MCContext.h"
19 #include "llvm/MC/MCDwarf.h"
20 #include "llvm/MC/MCExpr.h"
21 #include "llvm/MC/MCFixupKindInfo.h"
22 #include "llvm/MC/MCObjectWriter.h"
23 #include "llvm/MC/MCSection.h"
24 #include "llvm/MC/MCSectionELF.h"
25 #include "llvm/MC/MCSymbol.h"
26 #include "llvm/MC/MCValue.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/ErrorHandling.h"
29 #include "llvm/Support/LEB128.h"
30 #include "llvm/Support/TargetRegistry.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <tuple>
33 using namespace llvm;
34
35 #define DEBUG_TYPE "assembler"
36
37 namespace {
38 namespace stats {
39 STATISTIC(EmittedFragments, "Number of emitted assembler fragments - total");
40 STATISTIC(EmittedRelaxableFragments,
41           "Number of emitted assembler fragments - relaxable");
42 STATISTIC(EmittedDataFragments,
43           "Number of emitted assembler fragments - data");
44 STATISTIC(EmittedCompactEncodedInstFragments,
45           "Number of emitted assembler fragments - compact encoded inst");
46 STATISTIC(EmittedAlignFragments,
47           "Number of emitted assembler fragments - align");
48 STATISTIC(EmittedFillFragments,
49           "Number of emitted assembler fragments - fill");
50 STATISTIC(EmittedOrgFragments,
51           "Number of emitted assembler fragments - org");
52 STATISTIC(evaluateFixup, "Number of evaluated fixups");
53 STATISTIC(FragmentLayouts, "Number of fragment layouts");
54 STATISTIC(ObjectBytes, "Number of emitted object file bytes");
55 STATISTIC(RelaxationSteps, "Number of assembler layout and relaxation steps");
56 STATISTIC(RelaxedInstructions, "Number of relaxed instructions");
57 }
58 }
59
60 // FIXME FIXME FIXME: There are number of places in this file where we convert
61 // what is a 64-bit assembler value used for computation into a value in the
62 // object file, which may truncate it. We should detect that truncation where
63 // invalid and report errors back.
64
65 /* *** */
66
67 MCAsmLayout::MCAsmLayout(MCAssembler &Asm)
68   : Assembler(Asm), LastValidFragment()
69  {
70   // Compute the section layout order. Virtual sections must go last.
71   for (MCSection &Sec : Asm)
72     if (!Sec.isVirtualSection())
73       SectionOrder.push_back(&Sec);
74   for (MCSection &Sec : Asm)
75     if (Sec.isVirtualSection())
76       SectionOrder.push_back(&Sec);
77 }
78
79 bool MCAsmLayout::isFragmentValid(const MCFragment *F) const {
80   const MCSection *Sec = F->getParent();
81   const MCFragment *LastValid = LastValidFragment.lookup(Sec);
82   if (!LastValid)
83     return false;
84   assert(LastValid->getParent() == Sec);
85   return F->getLayoutOrder() <= LastValid->getLayoutOrder();
86 }
87
88 void MCAsmLayout::invalidateFragmentsFrom(MCFragment *F) {
89   // If this fragment wasn't already valid, we don't need to do anything.
90   if (!isFragmentValid(F))
91     return;
92
93   // Otherwise, reset the last valid fragment to the previous fragment
94   // (if this is the first fragment, it will be NULL).
95   LastValidFragment[F->getParent()] = F->getPrevNode();
96 }
97
98 void MCAsmLayout::ensureValid(const MCFragment *F) const {
99   MCSection *Sec = F->getParent();
100   MCSection::iterator I;
101   if (MCFragment *Cur = LastValidFragment[Sec])
102     I = ++MCSection::iterator(Cur);
103   else
104     I = Sec->begin();
105
106   // Advance the layout position until the fragment is valid.
107   while (!isFragmentValid(F)) {
108     assert(I != Sec->end() && "Layout bookkeeping error");
109     const_cast<MCAsmLayout *>(this)->layoutFragment(&*I);
110     ++I;
111   }
112 }
113
114 uint64_t MCAsmLayout::getFragmentOffset(const MCFragment *F) const {
115   ensureValid(F);
116   assert(F->Offset != ~UINT64_C(0) && "Address not set!");
117   return F->Offset;
118 }
119
120 // Simple getSymbolOffset helper for the non-varibale case.
121 static bool getLabelOffset(const MCAsmLayout &Layout, const MCSymbol &S,
122                            bool ReportError, uint64_t &Val) {
123   if (!S.getFragment()) {
124     if (ReportError)
125       report_fatal_error("unable to evaluate offset to undefined symbol '" +
126                          S.getName() + "'");
127     return false;
128   }
129   Val = Layout.getFragmentOffset(S.getFragment()) + S.getOffset();
130   return true;
131 }
132
133 static bool getSymbolOffsetImpl(const MCAsmLayout &Layout, const MCSymbol &S,
134                                 bool ReportError, uint64_t &Val) {
135   if (!S.isVariable())
136     return getLabelOffset(Layout, S, ReportError, Val);
137
138   // If SD is a variable, evaluate it.
139   MCValue Target;
140   if (!S.getVariableValue()->evaluateAsValue(Target, Layout))
141     report_fatal_error("unable to evaluate offset for variable '" +
142                        S.getName() + "'");
143
144   uint64_t Offset = Target.getConstant();
145
146   const MCSymbolRefExpr *A = Target.getSymA();
147   if (A) {
148     uint64_t ValA;
149     if (!getLabelOffset(Layout, A->getSymbol(), ReportError, ValA))
150       return false;
151     Offset += ValA;
152   }
153
154   const MCSymbolRefExpr *B = Target.getSymB();
155   if (B) {
156     uint64_t ValB;
157     if (!getLabelOffset(Layout, B->getSymbol(), ReportError, ValB))
158       return false;
159     Offset -= ValB;
160   }
161
162   Val = Offset;
163   return true;
164 }
165
166 bool MCAsmLayout::getSymbolOffset(const MCSymbol &S, uint64_t &Val) const {
167   return getSymbolOffsetImpl(*this, S, false, Val);
168 }
169
170 uint64_t MCAsmLayout::getSymbolOffset(const MCSymbol &S) const {
171   uint64_t Val;
172   getSymbolOffsetImpl(*this, S, true, Val);
173   return Val;
174 }
175
176 const MCSymbol *MCAsmLayout::getBaseSymbol(const MCSymbol &Symbol) const {
177   if (!Symbol.isVariable())
178     return &Symbol;
179
180   const MCExpr *Expr = Symbol.getVariableValue();
181   MCValue Value;
182   if (!Expr->evaluateAsValue(Value, *this)) {
183     Assembler.getContext().reportError(
184         SMLoc(), "expression could not be evaluated");
185     return nullptr;
186   }
187
188   const MCSymbolRefExpr *RefB = Value.getSymB();
189   if (RefB) {
190     Assembler.getContext().reportError(
191         SMLoc(), Twine("symbol '") + RefB->getSymbol().getName() +
192                      "' could not be evaluated in a subtraction expression");
193     return nullptr;
194   }
195
196   const MCSymbolRefExpr *A = Value.getSymA();
197   if (!A)
198     return nullptr;
199
200   const MCSymbol &ASym = A->getSymbol();
201   const MCAssembler &Asm = getAssembler();
202   if (ASym.isCommon()) {
203     // FIXME: we should probably add a SMLoc to MCExpr.
204     Asm.getContext().reportError(SMLoc(),
205                                  "Common symbol '" + ASym.getName() +
206                                      "' cannot be used in assignment expr");
207     return nullptr;
208   }
209
210   return &ASym;
211 }
212
213 uint64_t MCAsmLayout::getSectionAddressSize(const MCSection *Sec) const {
214   // The size is the last fragment's end offset.
215   const MCFragment &F = Sec->getFragmentList().back();
216   return getFragmentOffset(&F) + getAssembler().computeFragmentSize(*this, F);
217 }
218
219 uint64_t MCAsmLayout::getSectionFileSize(const MCSection *Sec) const {
220   // Virtual sections have no file size.
221   if (Sec->isVirtualSection())
222     return 0;
223
224   // Otherwise, the file size is the same as the address space size.
225   return getSectionAddressSize(Sec);
226 }
227
228 uint64_t llvm::computeBundlePadding(const MCAssembler &Assembler,
229                                     const MCFragment *F,
230                                     uint64_t FOffset, uint64_t FSize) {
231   uint64_t BundleSize = Assembler.getBundleAlignSize();
232   assert(BundleSize > 0 &&
233          "computeBundlePadding should only be called if bundling is enabled");
234   uint64_t BundleMask = BundleSize - 1;
235   uint64_t OffsetInBundle = FOffset & BundleMask;
236   uint64_t EndOfFragment = OffsetInBundle + FSize;
237
238   // There are two kinds of bundling restrictions:
239   //
240   // 1) For alignToBundleEnd(), add padding to ensure that the fragment will
241   //    *end* on a bundle boundary.
242   // 2) Otherwise, check if the fragment would cross a bundle boundary. If it
243   //    would, add padding until the end of the bundle so that the fragment
244   //    will start in a new one.
245   if (F->alignToBundleEnd()) {
246     // Three possibilities here:
247     //
248     // A) The fragment just happens to end at a bundle boundary, so we're good.
249     // B) The fragment ends before the current bundle boundary: pad it just
250     //    enough to reach the boundary.
251     // C) The fragment ends after the current bundle boundary: pad it until it
252     //    reaches the end of the next bundle boundary.
253     //
254     // Note: this code could be made shorter with some modulo trickery, but it's
255     // intentionally kept in its more explicit form for simplicity.
256     if (EndOfFragment == BundleSize)
257       return 0;
258     else if (EndOfFragment < BundleSize)
259       return BundleSize - EndOfFragment;
260     else { // EndOfFragment > BundleSize
261       return 2 * BundleSize - EndOfFragment;
262     }
263   } else if (OffsetInBundle > 0 && EndOfFragment > BundleSize)
264     return BundleSize - OffsetInBundle;
265   else
266     return 0;
267 }
268
269 /* *** */
270
271 void ilist_node_traits<MCFragment>::deleteNode(MCFragment *V) {
272   V->destroy();
273 }
274
275 MCFragment::MCFragment() : Kind(FragmentType(~0)), HasInstructions(false),
276                            AlignToBundleEnd(false), BundlePadding(0) {
277 }
278
279 MCFragment::~MCFragment() { }
280
281 MCFragment::MCFragment(FragmentType Kind, bool HasInstructions,
282                        uint8_t BundlePadding, MCSection *Parent)
283     : Kind(Kind), HasInstructions(HasInstructions), AlignToBundleEnd(false),
284       BundlePadding(BundlePadding), Parent(Parent), Atom(nullptr),
285       Offset(~UINT64_C(0)) {
286   if (Parent && !isDummy())
287     Parent->getFragmentList().push_back(this);
288 }
289
290 void MCFragment::destroy() {
291   // First check if we are the sentinal.
292   if (Kind == FragmentType(~0)) {
293     delete this;
294     return;
295   }
296
297   switch (Kind) {
298     case FT_Align:
299       delete cast<MCAlignFragment>(this);
300       return;
301     case FT_Data:
302       delete cast<MCDataFragment>(this);
303       return;
304     case FT_CompactEncodedInst:
305       delete cast<MCCompactEncodedInstFragment>(this);
306       return;
307     case FT_Fill:
308       delete cast<MCFillFragment>(this);
309       return;
310     case FT_Relaxable:
311       delete cast<MCRelaxableFragment>(this);
312       return;
313     case FT_Org:
314       delete cast<MCOrgFragment>(this);
315       return;
316     case FT_Dwarf:
317       delete cast<MCDwarfLineAddrFragment>(this);
318       return;
319     case FT_DwarfFrame:
320       delete cast<MCDwarfCallFrameFragment>(this);
321       return;
322     case FT_LEB:
323       delete cast<MCLEBFragment>(this);
324       return;
325     case FT_SafeSEH:
326       delete cast<MCSafeSEHFragment>(this);
327       return;
328     case FT_Dummy:
329       delete cast<MCDummyFragment>(this);
330       return;
331   }
332 }
333
334 /* *** */
335
336 MCAssembler::MCAssembler(MCContext &Context_, MCAsmBackend &Backend_,
337                          MCCodeEmitter &Emitter_, MCObjectWriter &Writer_)
338     : Context(Context_), Backend(Backend_), Emitter(Emitter_), Writer(Writer_),
339       BundleAlignSize(0), RelaxAll(false), SubsectionsViaSymbols(false),
340       IncrementalLinkerCompatible(false), ELFHeaderEFlags(0) {
341   VersionMinInfo.Major = 0; // Major version == 0 for "none specified"
342 }
343
344 MCAssembler::~MCAssembler() {
345 }
346
347 void MCAssembler::reset() {
348   Sections.clear();
349   Symbols.clear();
350   IndirectSymbols.clear();
351   DataRegions.clear();
352   LinkerOptions.clear();
353   FileNames.clear();
354   ThumbFuncs.clear();
355   BundleAlignSize = 0;
356   RelaxAll = false;
357   SubsectionsViaSymbols = false;
358   IncrementalLinkerCompatible = false;
359   ELFHeaderEFlags = 0;
360   LOHContainer.reset();
361   VersionMinInfo.Major = 0;
362
363   // reset objects owned by us
364   getBackend().reset();
365   getEmitter().reset();
366   getWriter().reset();
367   getLOHContainer().reset();
368 }
369
370 bool MCAssembler::registerSection(MCSection &Section) {
371   if (Section.isRegistered())
372     return false;
373   Sections.push_back(&Section);
374   Section.setIsRegistered(true);
375   return true;
376 }
377
378 bool MCAssembler::isThumbFunc(const MCSymbol *Symbol) const {
379   if (ThumbFuncs.count(Symbol))
380     return true;
381
382   if (!Symbol->isVariable())
383     return false;
384
385   // FIXME: It looks like gas supports some cases of the form "foo + 2". It
386   // is not clear if that is a bug or a feature.
387   const MCExpr *Expr = Symbol->getVariableValue();
388   const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr);
389   if (!Ref)
390     return false;
391
392   if (Ref->getKind() != MCSymbolRefExpr::VK_None)
393     return false;
394
395   const MCSymbol &Sym = Ref->getSymbol();
396   if (!isThumbFunc(&Sym))
397     return false;
398
399   ThumbFuncs.insert(Symbol); // Cache it.
400   return true;
401 }
402
403 bool MCAssembler::isSymbolLinkerVisible(const MCSymbol &Symbol) const {
404   // Non-temporary labels should always be visible to the linker.
405   if (!Symbol.isTemporary())
406     return true;
407
408   // Absolute temporary labels are never visible.
409   if (!Symbol.isInSection())
410     return false;
411
412   if (Symbol.isUsedInReloc())
413     return true;
414
415   return false;
416 }
417
418 const MCSymbol *MCAssembler::getAtom(const MCSymbol &S) const {
419   // Linker visible symbols define atoms.
420   if (isSymbolLinkerVisible(S))
421     return &S;
422
423   // Absolute and undefined symbols have no defining atom.
424   if (!S.isInSection())
425     return nullptr;
426
427   // Non-linker visible symbols in sections which can't be atomized have no
428   // defining atom.
429   if (!getContext().getAsmInfo()->isSectionAtomizableBySymbols(
430           *S.getFragment()->getParent()))
431     return nullptr;
432
433   // Otherwise, return the atom for the containing fragment.
434   return S.getFragment()->getAtom();
435 }
436
437 bool MCAssembler::evaluateFixup(const MCAsmLayout &Layout,
438                                 const MCFixup &Fixup, const MCFragment *DF,
439                                 MCValue &Target, uint64_t &Value) const {
440   ++stats::evaluateFixup;
441
442   // FIXME: This code has some duplication with recordRelocation. We should
443   // probably merge the two into a single callback that tries to evaluate a
444   // fixup and records a relocation if one is needed.
445   const MCExpr *Expr = Fixup.getValue();
446   if (!Expr->evaluateAsRelocatable(Target, &Layout, &Fixup)) {
447     getContext().reportError(Fixup.getLoc(), "expected relocatable expression");
448     // Claim to have completely evaluated the fixup, to prevent any further
449     // processing from being done.
450     Value = 0;
451     return true;
452   }
453
454   bool IsPCRel = Backend.getFixupKindInfo(
455     Fixup.getKind()).Flags & MCFixupKindInfo::FKF_IsPCRel;
456
457   bool IsResolved;
458   if (IsPCRel) {
459     if (Target.getSymB()) {
460       IsResolved = false;
461     } else if (!Target.getSymA()) {
462       IsResolved = false;
463     } else {
464       const MCSymbolRefExpr *A = Target.getSymA();
465       const MCSymbol &SA = A->getSymbol();
466       if (A->getKind() != MCSymbolRefExpr::VK_None || SA.isUndefined()) {
467         IsResolved = false;
468       } else {
469         IsResolved = getWriter().isSymbolRefDifferenceFullyResolvedImpl(
470             *this, SA, *DF, false, true);
471       }
472     }
473   } else {
474     IsResolved = Target.isAbsolute();
475   }
476
477   Value = Target.getConstant();
478
479   if (const MCSymbolRefExpr *A = Target.getSymA()) {
480     const MCSymbol &Sym = A->getSymbol();
481     if (Sym.isDefined())
482       Value += Layout.getSymbolOffset(Sym);
483   }
484   if (const MCSymbolRefExpr *B = Target.getSymB()) {
485     const MCSymbol &Sym = B->getSymbol();
486     if (Sym.isDefined())
487       Value -= Layout.getSymbolOffset(Sym);
488   }
489
490
491   bool ShouldAlignPC = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
492                          MCFixupKindInfo::FKF_IsAlignedDownTo32Bits;
493   assert((ShouldAlignPC ? IsPCRel : true) &&
494     "FKF_IsAlignedDownTo32Bits is only allowed on PC-relative fixups!");
495
496   if (IsPCRel) {
497     uint32_t Offset = Layout.getFragmentOffset(DF) + Fixup.getOffset();
498
499     // A number of ARM fixups in Thumb mode require that the effective PC
500     // address be determined as the 32-bit aligned version of the actual offset.
501     if (ShouldAlignPC) Offset &= ~0x3;
502     Value -= Offset;
503   }
504
505   // Let the backend adjust the fixup value if necessary, including whether
506   // we need a relocation.
507   Backend.processFixupValue(*this, Layout, Fixup, DF, Target, Value,
508                             IsResolved);
509
510   return IsResolved;
511 }
512
513 uint64_t MCAssembler::computeFragmentSize(const MCAsmLayout &Layout,
514                                           const MCFragment &F) const {
515   switch (F.getKind()) {
516   case MCFragment::FT_Data:
517     return cast<MCDataFragment>(F).getContents().size();
518   case MCFragment::FT_Relaxable:
519     return cast<MCRelaxableFragment>(F).getContents().size();
520   case MCFragment::FT_CompactEncodedInst:
521     return cast<MCCompactEncodedInstFragment>(F).getContents().size();
522   case MCFragment::FT_Fill:
523     return cast<MCFillFragment>(F).getSize();
524
525   case MCFragment::FT_LEB:
526     return cast<MCLEBFragment>(F).getContents().size();
527
528   case MCFragment::FT_SafeSEH:
529     return 4;
530
531   case MCFragment::FT_Align: {
532     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
533     unsigned Offset = Layout.getFragmentOffset(&AF);
534     unsigned Size = OffsetToAlignment(Offset, AF.getAlignment());
535     // If we are padding with nops, force the padding to be larger than the
536     // minimum nop size.
537     if (Size > 0 && AF.hasEmitNops()) {
538       while (Size % getBackend().getMinimumNopSize())
539         Size += AF.getAlignment();
540     }
541     if (Size > AF.getMaxBytesToEmit())
542       return 0;
543     return Size;
544   }
545
546   case MCFragment::FT_Org: {
547     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
548     MCValue Value;
549     if (!OF.getOffset().evaluateAsValue(Value, Layout))
550       report_fatal_error("expected assembly-time absolute expression");
551
552     // FIXME: We need a way to communicate this error.
553     uint64_t FragmentOffset = Layout.getFragmentOffset(&OF);
554     int64_t TargetLocation = Value.getConstant();
555     if (const MCSymbolRefExpr *A = Value.getSymA()) {
556       uint64_t Val;
557       if (!Layout.getSymbolOffset(A->getSymbol(), Val))
558         report_fatal_error("expected absolute expression");
559       TargetLocation += Val;
560     }
561     int64_t Size = TargetLocation - FragmentOffset;
562     if (Size < 0 || Size >= 0x40000000)
563       report_fatal_error("invalid .org offset '" + Twine(TargetLocation) +
564                          "' (at offset '" + Twine(FragmentOffset) + "')");
565     return Size;
566   }
567
568   case MCFragment::FT_Dwarf:
569     return cast<MCDwarfLineAddrFragment>(F).getContents().size();
570   case MCFragment::FT_DwarfFrame:
571     return cast<MCDwarfCallFrameFragment>(F).getContents().size();
572   case MCFragment::FT_Dummy:
573     llvm_unreachable("Should not have been added");
574   }
575
576   llvm_unreachable("invalid fragment kind");
577 }
578
579 void MCAsmLayout::layoutFragment(MCFragment *F) {
580   MCFragment *Prev = F->getPrevNode();
581
582   // We should never try to recompute something which is valid.
583   assert(!isFragmentValid(F) && "Attempt to recompute a valid fragment!");
584   // We should never try to compute the fragment layout if its predecessor
585   // isn't valid.
586   assert((!Prev || isFragmentValid(Prev)) &&
587          "Attempt to compute fragment before its predecessor!");
588
589   ++stats::FragmentLayouts;
590
591   // Compute fragment offset and size.
592   if (Prev)
593     F->Offset = Prev->Offset + getAssembler().computeFragmentSize(*this, *Prev);
594   else
595     F->Offset = 0;
596   LastValidFragment[F->getParent()] = F;
597
598   // If bundling is enabled and this fragment has instructions in it, it has to
599   // obey the bundling restrictions. With padding, we'll have:
600   //
601   //
602   //        BundlePadding
603   //             |||
604   // -------------------------------------
605   //   Prev  |##########|       F        |
606   // -------------------------------------
607   //                    ^
608   //                    |
609   //                    F->Offset
610   //
611   // The fragment's offset will point to after the padding, and its computed
612   // size won't include the padding.
613   //
614   // When the -mc-relax-all flag is used, we optimize bundling by writting the
615   // padding directly into fragments when the instructions are emitted inside
616   // the streamer. When the fragment is larger than the bundle size, we need to
617   // ensure that it's bundle aligned. This means that if we end up with
618   // multiple fragments, we must emit bundle padding between fragments.
619   //
620   // ".align N" is an example of a directive that introduces multiple
621   // fragments. We could add a special case to handle ".align N" by emitting
622   // within-fragment padding (which would produce less padding when N is less
623   // than the bundle size), but for now we don't.
624   //
625   if (Assembler.isBundlingEnabled() && F->hasInstructions()) {
626     assert(isa<MCEncodedFragment>(F) &&
627            "Only MCEncodedFragment implementations have instructions");
628     uint64_t FSize = Assembler.computeFragmentSize(*this, *F);
629
630     if (!Assembler.getRelaxAll() && FSize > Assembler.getBundleAlignSize())
631       report_fatal_error("Fragment can't be larger than a bundle size");
632
633     uint64_t RequiredBundlePadding = computeBundlePadding(Assembler, F,
634                                                           F->Offset, FSize);
635     if (RequiredBundlePadding > UINT8_MAX)
636       report_fatal_error("Padding cannot exceed 255 bytes");
637     F->setBundlePadding(static_cast<uint8_t>(RequiredBundlePadding));
638     F->Offset += RequiredBundlePadding;
639   }
640 }
641
642 void MCAssembler::registerSymbol(const MCSymbol &Symbol, bool *Created) {
643   bool New = !Symbol.isRegistered();
644   if (Created)
645     *Created = New;
646   if (New) {
647     Symbol.setIsRegistered(true);
648     Symbols.push_back(&Symbol);
649   }
650 }
651
652 void MCAssembler::writeFragmentPadding(const MCFragment &F, uint64_t FSize,
653                                        MCObjectWriter *OW) const {
654   // Should NOP padding be written out before this fragment?
655   unsigned BundlePadding = F.getBundlePadding();
656   if (BundlePadding > 0) {
657     assert(isBundlingEnabled() &&
658            "Writing bundle padding with disabled bundling");
659     assert(F.hasInstructions() &&
660            "Writing bundle padding for a fragment without instructions");
661
662     unsigned TotalLength = BundlePadding + static_cast<unsigned>(FSize);
663     if (F.alignToBundleEnd() && TotalLength > getBundleAlignSize()) {
664       // If the padding itself crosses a bundle boundary, it must be emitted
665       // in 2 pieces, since even nop instructions must not cross boundaries.
666       //             v--------------v   <- BundleAlignSize
667       //        v---------v             <- BundlePadding
668       // ----------------------------
669       // | Prev |####|####|    F    |
670       // ----------------------------
671       //        ^-------------------^   <- TotalLength
672       unsigned DistanceToBoundary = TotalLength - getBundleAlignSize();
673       if (!getBackend().writeNopData(DistanceToBoundary, OW))
674           report_fatal_error("unable to write NOP sequence of " +
675                              Twine(DistanceToBoundary) + " bytes");
676       BundlePadding -= DistanceToBoundary;
677     }
678     if (!getBackend().writeNopData(BundlePadding, OW))
679       report_fatal_error("unable to write NOP sequence of " +
680                          Twine(BundlePadding) + " bytes");
681   }
682 }
683
684 /// \brief Write the fragment \p F to the output file.
685 static void writeFragment(const MCAssembler &Asm, const MCAsmLayout &Layout,
686                           const MCFragment &F) {
687   MCObjectWriter *OW = &Asm.getWriter();
688
689   // FIXME: Embed in fragments instead?
690   uint64_t FragmentSize = Asm.computeFragmentSize(Layout, F);
691
692   Asm.writeFragmentPadding(F, FragmentSize, OW);
693
694   // This variable (and its dummy usage) is to participate in the assert at
695   // the end of the function.
696   uint64_t Start = OW->getStream().tell();
697   (void) Start;
698
699   ++stats::EmittedFragments;
700
701   switch (F.getKind()) {
702   case MCFragment::FT_Align: {
703     ++stats::EmittedAlignFragments;
704     const MCAlignFragment &AF = cast<MCAlignFragment>(F);
705     assert(AF.getValueSize() && "Invalid virtual align in concrete fragment!");
706
707     uint64_t Count = FragmentSize / AF.getValueSize();
708
709     // FIXME: This error shouldn't actually occur (the front end should emit
710     // multiple .align directives to enforce the semantics it wants), but is
711     // severe enough that we want to report it. How to handle this?
712     if (Count * AF.getValueSize() != FragmentSize)
713       report_fatal_error("undefined .align directive, value size '" +
714                         Twine(AF.getValueSize()) +
715                         "' is not a divisor of padding size '" +
716                         Twine(FragmentSize) + "'");
717
718     // See if we are aligning with nops, and if so do that first to try to fill
719     // the Count bytes.  Then if that did not fill any bytes or there are any
720     // bytes left to fill use the Value and ValueSize to fill the rest.
721     // If we are aligning with nops, ask that target to emit the right data.
722     if (AF.hasEmitNops()) {
723       if (!Asm.getBackend().writeNopData(Count, OW))
724         report_fatal_error("unable to write nop sequence of " +
725                           Twine(Count) + " bytes");
726       break;
727     }
728
729     // Otherwise, write out in multiples of the value size.
730     for (uint64_t i = 0; i != Count; ++i) {
731       switch (AF.getValueSize()) {
732       default: llvm_unreachable("Invalid size!");
733       case 1: OW->write8 (uint8_t (AF.getValue())); break;
734       case 2: OW->write16(uint16_t(AF.getValue())); break;
735       case 4: OW->write32(uint32_t(AF.getValue())); break;
736       case 8: OW->write64(uint64_t(AF.getValue())); break;
737       }
738     }
739     break;
740   }
741
742   case MCFragment::FT_Data: 
743     ++stats::EmittedDataFragments;
744     OW->writeBytes(cast<MCDataFragment>(F).getContents());
745     break;
746
747   case MCFragment::FT_Relaxable:
748     ++stats::EmittedRelaxableFragments;
749     OW->writeBytes(cast<MCRelaxableFragment>(F).getContents());
750     break;
751
752   case MCFragment::FT_CompactEncodedInst:
753     ++stats::EmittedCompactEncodedInstFragments;
754     OW->writeBytes(cast<MCCompactEncodedInstFragment>(F).getContents());
755     break;
756
757   case MCFragment::FT_Fill: {
758     ++stats::EmittedFillFragments;
759     const MCFillFragment &FF = cast<MCFillFragment>(F);
760
761     assert(FF.getValueSize() && "Invalid virtual align in concrete fragment!");
762
763     for (uint64_t i = 0, e = FF.getSize() / FF.getValueSize(); i != e; ++i) {
764       switch (FF.getValueSize()) {
765       default: llvm_unreachable("Invalid size!");
766       case 1: OW->write8 (uint8_t (FF.getValue())); break;
767       case 2: OW->write16(uint16_t(FF.getValue())); break;
768       case 4: OW->write32(uint32_t(FF.getValue())); break;
769       case 8: OW->write64(uint64_t(FF.getValue())); break;
770       }
771     }
772     break;
773   }
774
775   case MCFragment::FT_LEB: {
776     const MCLEBFragment &LF = cast<MCLEBFragment>(F);
777     OW->writeBytes(LF.getContents());
778     break;
779   }
780
781   case MCFragment::FT_SafeSEH: {
782     const MCSafeSEHFragment &SF = cast<MCSafeSEHFragment>(F);
783     OW->write32(SF.getSymbol()->getIndex());
784     break;
785   }
786
787   case MCFragment::FT_Org: {
788     ++stats::EmittedOrgFragments;
789     const MCOrgFragment &OF = cast<MCOrgFragment>(F);
790
791     for (uint64_t i = 0, e = FragmentSize; i != e; ++i)
792       OW->write8(uint8_t(OF.getValue()));
793
794     break;
795   }
796
797   case MCFragment::FT_Dwarf: {
798     const MCDwarfLineAddrFragment &OF = cast<MCDwarfLineAddrFragment>(F);
799     OW->writeBytes(OF.getContents());
800     break;
801   }
802   case MCFragment::FT_DwarfFrame: {
803     const MCDwarfCallFrameFragment &CF = cast<MCDwarfCallFrameFragment>(F);
804     OW->writeBytes(CF.getContents());
805     break;
806   }
807   case MCFragment::FT_Dummy:
808     llvm_unreachable("Should not have been added");
809   }
810
811   assert(OW->getStream().tell() - Start == FragmentSize &&
812          "The stream should advance by fragment size");
813 }
814
815 void MCAssembler::writeSectionData(const MCSection *Sec,
816                                    const MCAsmLayout &Layout) const {
817   // Ignore virtual sections.
818   if (Sec->isVirtualSection()) {
819     assert(Layout.getSectionFileSize(Sec) == 0 && "Invalid size for section!");
820
821     // Check that contents are only things legal inside a virtual section.
822     for (const MCFragment &F : *Sec) {
823       switch (F.getKind()) {
824       default: llvm_unreachable("Invalid fragment in virtual section!");
825       case MCFragment::FT_Data: {
826         // Check that we aren't trying to write a non-zero contents (or fixups)
827         // into a virtual section. This is to support clients which use standard
828         // directives to fill the contents of virtual sections.
829         const MCDataFragment &DF = cast<MCDataFragment>(F);
830         assert(DF.fixup_begin() == DF.fixup_end() &&
831                "Cannot have fixups in virtual section!");
832         for (unsigned i = 0, e = DF.getContents().size(); i != e; ++i)
833           if (DF.getContents()[i]) {
834             if (auto *ELFSec = dyn_cast<const MCSectionELF>(Sec))
835               report_fatal_error("non-zero initializer found in section '" +
836                   ELFSec->getSectionName() + "'");
837             else
838               report_fatal_error("non-zero initializer found in virtual section");
839           }
840         break;
841       }
842       case MCFragment::FT_Align:
843         // Check that we aren't trying to write a non-zero value into a virtual
844         // section.
845         assert((cast<MCAlignFragment>(F).getValueSize() == 0 ||
846                 cast<MCAlignFragment>(F).getValue() == 0) &&
847                "Invalid align in virtual section!");
848         break;
849       case MCFragment::FT_Fill:
850         assert((cast<MCFillFragment>(F).getValueSize() == 0 ||
851                 cast<MCFillFragment>(F).getValue() == 0) &&
852                "Invalid fill in virtual section!");
853         break;
854       }
855     }
856
857     return;
858   }
859
860   uint64_t Start = getWriter().getStream().tell();
861   (void)Start;
862
863   for (const MCFragment &F : *Sec)
864     writeFragment(*this, Layout, F);
865
866   assert(getWriter().getStream().tell() - Start ==
867          Layout.getSectionAddressSize(Sec));
868 }
869
870 std::pair<uint64_t, bool> MCAssembler::handleFixup(const MCAsmLayout &Layout,
871                                                    MCFragment &F,
872                                                    const MCFixup &Fixup) {
873   // Evaluate the fixup.
874   MCValue Target;
875   uint64_t FixedValue;
876   bool IsPCRel = Backend.getFixupKindInfo(Fixup.getKind()).Flags &
877                  MCFixupKindInfo::FKF_IsPCRel;
878   if (!evaluateFixup(Layout, Fixup, &F, Target, FixedValue)) {
879     // The fixup was unresolved, we need a relocation. Inform the object
880     // writer of the relocation, and give it an opportunity to adjust the
881     // fixup value if need be.
882     getWriter().recordRelocation(*this, Layout, &F, Fixup, Target, IsPCRel,
883                                  FixedValue);
884   }
885   return std::make_pair(FixedValue, IsPCRel);
886 }
887
888 void MCAssembler::layout(MCAsmLayout &Layout) {
889   DEBUG_WITH_TYPE("mc-dump", {
890       llvm::errs() << "assembler backend - pre-layout\n--\n";
891       dump(); });
892
893   // Create dummy fragments and assign section ordinals.
894   unsigned SectionIndex = 0;
895   for (MCSection &Sec : *this) {
896     // Create dummy fragments to eliminate any empty sections, this simplifies
897     // layout.
898     if (Sec.getFragmentList().empty())
899       new MCDataFragment(&Sec);
900
901     Sec.setOrdinal(SectionIndex++);
902   }
903
904   // Assign layout order indices to sections and fragments.
905   for (unsigned i = 0, e = Layout.getSectionOrder().size(); i != e; ++i) {
906     MCSection *Sec = Layout.getSectionOrder()[i];
907     Sec->setLayoutOrder(i);
908
909     unsigned FragmentIndex = 0;
910     for (MCFragment &Frag : *Sec)
911       Frag.setLayoutOrder(FragmentIndex++);
912   }
913
914   // Layout until everything fits.
915   while (layoutOnce(Layout))
916     continue;
917
918   DEBUG_WITH_TYPE("mc-dump", {
919       llvm::errs() << "assembler backend - post-relaxation\n--\n";
920       dump(); });
921
922   // Finalize the layout, including fragment lowering.
923   finishLayout(Layout);
924
925   DEBUG_WITH_TYPE("mc-dump", {
926       llvm::errs() << "assembler backend - final-layout\n--\n";
927       dump(); });
928
929   // Allow the object writer a chance to perform post-layout binding (for
930   // example, to set the index fields in the symbol data).
931   getWriter().executePostLayoutBinding(*this, Layout);
932
933   // Evaluate and apply the fixups, generating relocation entries as necessary.
934   for (MCSection &Sec : *this) {
935     for (MCFragment &Frag : Sec) {
936       MCEncodedFragment *F = dyn_cast<MCEncodedFragment>(&Frag);
937       // Data and relaxable fragments both have fixups.  So only process
938       // those here.
939       // FIXME: Is there a better way to do this?  MCEncodedFragmentWithFixups
940       // being templated makes this tricky.
941       if (!F || isa<MCCompactEncodedInstFragment>(F))
942         continue;
943       ArrayRef<MCFixup> Fixups;
944       MutableArrayRef<char> Contents;
945       if (auto *FragWithFixups = dyn_cast<MCDataFragment>(F)) {
946         Fixups = FragWithFixups->getFixups();
947         Contents = FragWithFixups->getContents();
948       } else if (auto *FragWithFixups = dyn_cast<MCRelaxableFragment>(F)) {
949         Fixups = FragWithFixups->getFixups();
950         Contents = FragWithFixups->getContents();
951       } else
952         llvm_unreachable("Unknown fragment with fixups!");
953       for (const MCFixup &Fixup : Fixups) {
954         uint64_t FixedValue;
955         bool IsPCRel;
956         std::tie(FixedValue, IsPCRel) = handleFixup(Layout, *F, Fixup);
957         getBackend().applyFixup(Fixup, Contents.data(),
958                                 Contents.size(), FixedValue, IsPCRel);
959       }
960     }
961   }
962 }
963
964 void MCAssembler::Finish() {
965   // Create the layout object.
966   MCAsmLayout Layout(*this);
967   layout(Layout);
968
969   raw_ostream &OS = getWriter().getStream();
970   uint64_t StartOffset = OS.tell();
971
972   // Write the object file.
973   getWriter().writeObject(*this, Layout);
974
975   stats::ObjectBytes += OS.tell() - StartOffset;
976 }
977
978 bool MCAssembler::fixupNeedsRelaxation(const MCFixup &Fixup,
979                                        const MCRelaxableFragment *DF,
980                                        const MCAsmLayout &Layout) const {
981   MCValue Target;
982   uint64_t Value;
983   bool Resolved = evaluateFixup(Layout, Fixup, DF, Target, Value);
984   return getBackend().fixupNeedsRelaxationAdvanced(Fixup, Resolved, Value, DF,
985                                                    Layout);
986 }
987
988 bool MCAssembler::fragmentNeedsRelaxation(const MCRelaxableFragment *F,
989                                           const MCAsmLayout &Layout) const {
990   // If this inst doesn't ever need relaxation, ignore it. This occurs when we
991   // are intentionally pushing out inst fragments, or because we relaxed a
992   // previous instruction to one that doesn't need relaxation.
993   if (!getBackend().mayNeedRelaxation(F->getInst()))
994     return false;
995
996   for (const MCFixup &Fixup : F->getFixups())
997     if (fixupNeedsRelaxation(Fixup, F, Layout))
998       return true;
999
1000   return false;
1001 }
1002
1003 bool MCAssembler::relaxInstruction(MCAsmLayout &Layout,
1004                                    MCRelaxableFragment &F) {
1005   if (!fragmentNeedsRelaxation(&F, Layout))
1006     return false;
1007
1008   ++stats::RelaxedInstructions;
1009
1010   // FIXME-PERF: We could immediately lower out instructions if we can tell
1011   // they are fully resolved, to avoid retesting on later passes.
1012
1013   // Relax the fragment.
1014
1015   MCInst Relaxed;
1016   getBackend().relaxInstruction(F.getInst(), Relaxed);
1017
1018   // Encode the new instruction.
1019   //
1020   // FIXME-PERF: If it matters, we could let the target do this. It can
1021   // probably do so more efficiently in many cases.
1022   SmallVector<MCFixup, 4> Fixups;
1023   SmallString<256> Code;
1024   raw_svector_ostream VecOS(Code);
1025   getEmitter().encodeInstruction(Relaxed, VecOS, Fixups, F.getSubtargetInfo());
1026
1027   // Update the fragment.
1028   F.setInst(Relaxed);
1029   F.getContents() = Code;
1030   F.getFixups() = Fixups;
1031
1032   return true;
1033 }
1034
1035 bool MCAssembler::relaxLEB(MCAsmLayout &Layout, MCLEBFragment &LF) {
1036   uint64_t OldSize = LF.getContents().size();
1037   int64_t Value;
1038   bool Abs = LF.getValue().evaluateKnownAbsolute(Value, Layout);
1039   if (!Abs)
1040     report_fatal_error("sleb128 and uleb128 expressions must be absolute");
1041   SmallString<8> &Data = LF.getContents();
1042   Data.clear();
1043   raw_svector_ostream OSE(Data);
1044   if (LF.isSigned())
1045     encodeSLEB128(Value, OSE);
1046   else
1047     encodeULEB128(Value, OSE);
1048   return OldSize != LF.getContents().size();
1049 }
1050
1051 bool MCAssembler::relaxDwarfLineAddr(MCAsmLayout &Layout,
1052                                      MCDwarfLineAddrFragment &DF) {
1053   MCContext &Context = Layout.getAssembler().getContext();
1054   uint64_t OldSize = DF.getContents().size();
1055   int64_t AddrDelta;
1056   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1057   assert(Abs && "We created a line delta with an invalid expression");
1058   (void) Abs;
1059   int64_t LineDelta;
1060   LineDelta = DF.getLineDelta();
1061   SmallString<8> &Data = DF.getContents();
1062   Data.clear();
1063   raw_svector_ostream OSE(Data);
1064   MCDwarfLineAddr::Encode(Context, getDWARFLinetableParams(), LineDelta,
1065                           AddrDelta, OSE);
1066   return OldSize != Data.size();
1067 }
1068
1069 bool MCAssembler::relaxDwarfCallFrameFragment(MCAsmLayout &Layout,
1070                                               MCDwarfCallFrameFragment &DF) {
1071   MCContext &Context = Layout.getAssembler().getContext();
1072   uint64_t OldSize = DF.getContents().size();
1073   int64_t AddrDelta;
1074   bool Abs = DF.getAddrDelta().evaluateKnownAbsolute(AddrDelta, Layout);
1075   assert(Abs && "We created call frame with an invalid expression");
1076   (void) Abs;
1077   SmallString<8> &Data = DF.getContents();
1078   Data.clear();
1079   raw_svector_ostream OSE(Data);
1080   MCDwarfFrameEmitter::EncodeAdvanceLoc(Context, AddrDelta, OSE);
1081   return OldSize != Data.size();
1082 }
1083
1084 bool MCAssembler::layoutSectionOnce(MCAsmLayout &Layout, MCSection &Sec) {
1085   // Holds the first fragment which needed relaxing during this layout. It will
1086   // remain NULL if none were relaxed.
1087   // When a fragment is relaxed, all the fragments following it should get
1088   // invalidated because their offset is going to change.
1089   MCFragment *FirstRelaxedFragment = nullptr;
1090
1091   // Attempt to relax all the fragments in the section.
1092   for (MCSection::iterator I = Sec.begin(), IE = Sec.end(); I != IE; ++I) {
1093     // Check if this is a fragment that needs relaxation.
1094     bool RelaxedFrag = false;
1095     switch(I->getKind()) {
1096     default:
1097       break;
1098     case MCFragment::FT_Relaxable:
1099       assert(!getRelaxAll() &&
1100              "Did not expect a MCRelaxableFragment in RelaxAll mode");
1101       RelaxedFrag = relaxInstruction(Layout, *cast<MCRelaxableFragment>(I));
1102       break;
1103     case MCFragment::FT_Dwarf:
1104       RelaxedFrag = relaxDwarfLineAddr(Layout,
1105                                        *cast<MCDwarfLineAddrFragment>(I));
1106       break;
1107     case MCFragment::FT_DwarfFrame:
1108       RelaxedFrag =
1109         relaxDwarfCallFrameFragment(Layout,
1110                                     *cast<MCDwarfCallFrameFragment>(I));
1111       break;
1112     case MCFragment::FT_LEB:
1113       RelaxedFrag = relaxLEB(Layout, *cast<MCLEBFragment>(I));
1114       break;
1115     }
1116     if (RelaxedFrag && !FirstRelaxedFragment)
1117       FirstRelaxedFragment = &*I;
1118   }
1119   if (FirstRelaxedFragment) {
1120     Layout.invalidateFragmentsFrom(FirstRelaxedFragment);
1121     return true;
1122   }
1123   return false;
1124 }
1125
1126 bool MCAssembler::layoutOnce(MCAsmLayout &Layout) {
1127   ++stats::RelaxationSteps;
1128
1129   bool WasRelaxed = false;
1130   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1131     MCSection &Sec = *it;
1132     while (layoutSectionOnce(Layout, Sec))
1133       WasRelaxed = true;
1134   }
1135
1136   return WasRelaxed;
1137 }
1138
1139 void MCAssembler::finishLayout(MCAsmLayout &Layout) {
1140   // The layout is done. Mark every fragment as valid.
1141   for (unsigned int i = 0, n = Layout.getSectionOrder().size(); i != n; ++i) {
1142     Layout.getFragmentOffset(&*Layout.getSectionOrder()[i]->rbegin());
1143   }
1144 }
1145
1146 // Debugging methods
1147
1148 namespace llvm {
1149
1150 raw_ostream &operator<<(raw_ostream &OS, const MCFixup &AF) {
1151   OS << "<MCFixup" << " Offset:" << AF.getOffset()
1152      << " Value:" << *AF.getValue()
1153      << " Kind:" << AF.getKind() << ">";
1154   return OS;
1155 }
1156
1157 }
1158
1159 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1160 void MCFragment::dump() {
1161   raw_ostream &OS = llvm::errs();
1162
1163   OS << "<";
1164   switch (getKind()) {
1165   case MCFragment::FT_Align: OS << "MCAlignFragment"; break;
1166   case MCFragment::FT_Data:  OS << "MCDataFragment"; break;
1167   case MCFragment::FT_CompactEncodedInst:
1168     OS << "MCCompactEncodedInstFragment"; break;
1169   case MCFragment::FT_Fill:  OS << "MCFillFragment"; break;
1170   case MCFragment::FT_Relaxable:  OS << "MCRelaxableFragment"; break;
1171   case MCFragment::FT_Org:   OS << "MCOrgFragment"; break;
1172   case MCFragment::FT_Dwarf: OS << "MCDwarfFragment"; break;
1173   case MCFragment::FT_DwarfFrame: OS << "MCDwarfCallFrameFragment"; break;
1174   case MCFragment::FT_LEB:   OS << "MCLEBFragment"; break;
1175   case MCFragment::FT_SafeSEH:    OS << "MCSafeSEHFragment"; break;
1176   case MCFragment::FT_Dummy:
1177     OS << "MCDummyFragment";
1178     break;
1179   }
1180
1181   OS << "<MCFragment " << (void*) this << " LayoutOrder:" << LayoutOrder
1182      << " Offset:" << Offset
1183      << " HasInstructions:" << hasInstructions() 
1184      << " BundlePadding:" << static_cast<unsigned>(getBundlePadding()) << ">";
1185
1186   switch (getKind()) {
1187   case MCFragment::FT_Align: {
1188     const MCAlignFragment *AF = cast<MCAlignFragment>(this);
1189     if (AF->hasEmitNops())
1190       OS << " (emit nops)";
1191     OS << "\n       ";
1192     OS << " Alignment:" << AF->getAlignment()
1193        << " Value:" << AF->getValue() << " ValueSize:" << AF->getValueSize()
1194        << " MaxBytesToEmit:" << AF->getMaxBytesToEmit() << ">";
1195     break;
1196   }
1197   case MCFragment::FT_Data:  {
1198     const MCDataFragment *DF = cast<MCDataFragment>(this);
1199     OS << "\n       ";
1200     OS << " Contents:[";
1201     const SmallVectorImpl<char> &Contents = DF->getContents();
1202     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1203       if (i) OS << ",";
1204       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1205     }
1206     OS << "] (" << Contents.size() << " bytes)";
1207
1208     if (DF->fixup_begin() != DF->fixup_end()) {
1209       OS << ",\n       ";
1210       OS << " Fixups:[";
1211       for (MCDataFragment::const_fixup_iterator it = DF->fixup_begin(),
1212              ie = DF->fixup_end(); it != ie; ++it) {
1213         if (it != DF->fixup_begin()) OS << ",\n                ";
1214         OS << *it;
1215       }
1216       OS << "]";
1217     }
1218     break;
1219   }
1220   case MCFragment::FT_CompactEncodedInst: {
1221     const MCCompactEncodedInstFragment *CEIF =
1222       cast<MCCompactEncodedInstFragment>(this);
1223     OS << "\n       ";
1224     OS << " Contents:[";
1225     const SmallVectorImpl<char> &Contents = CEIF->getContents();
1226     for (unsigned i = 0, e = Contents.size(); i != e; ++i) {
1227       if (i) OS << ",";
1228       OS << hexdigit((Contents[i] >> 4) & 0xF) << hexdigit(Contents[i] & 0xF);
1229     }
1230     OS << "] (" << Contents.size() << " bytes)";
1231     break;
1232   }
1233   case MCFragment::FT_Fill:  {
1234     const MCFillFragment *FF = cast<MCFillFragment>(this);
1235     OS << " Value:" << FF->getValue() << " ValueSize:" << FF->getValueSize()
1236        << " Size:" << FF->getSize();
1237     break;
1238   }
1239   case MCFragment::FT_Relaxable:  {
1240     const MCRelaxableFragment *F = cast<MCRelaxableFragment>(this);
1241     OS << "\n       ";
1242     OS << " Inst:";
1243     F->getInst().dump_pretty(OS);
1244     break;
1245   }
1246   case MCFragment::FT_Org:  {
1247     const MCOrgFragment *OF = cast<MCOrgFragment>(this);
1248     OS << "\n       ";
1249     OS << " Offset:" << OF->getOffset() << " Value:" << OF->getValue();
1250     break;
1251   }
1252   case MCFragment::FT_Dwarf:  {
1253     const MCDwarfLineAddrFragment *OF = cast<MCDwarfLineAddrFragment>(this);
1254     OS << "\n       ";
1255     OS << " AddrDelta:" << OF->getAddrDelta()
1256        << " LineDelta:" << OF->getLineDelta();
1257     break;
1258   }
1259   case MCFragment::FT_DwarfFrame:  {
1260     const MCDwarfCallFrameFragment *CF = cast<MCDwarfCallFrameFragment>(this);
1261     OS << "\n       ";
1262     OS << " AddrDelta:" << CF->getAddrDelta();
1263     break;
1264   }
1265   case MCFragment::FT_LEB: {
1266     const MCLEBFragment *LF = cast<MCLEBFragment>(this);
1267     OS << "\n       ";
1268     OS << " Value:" << LF->getValue() << " Signed:" << LF->isSigned();
1269     break;
1270   }
1271   case MCFragment::FT_SafeSEH: {
1272     const MCSafeSEHFragment *F = cast<MCSafeSEHFragment>(this);
1273     OS << "\n       ";
1274     OS << " Sym:" << F->getSymbol();
1275     break;
1276   }
1277   case MCFragment::FT_Dummy:
1278     break;
1279   }
1280   OS << ">";
1281 }
1282
1283 void MCAssembler::dump() {
1284   raw_ostream &OS = llvm::errs();
1285
1286   OS << "<MCAssembler\n";
1287   OS << "  Sections:[\n    ";
1288   for (iterator it = begin(), ie = end(); it != ie; ++it) {
1289     if (it != begin()) OS << ",\n    ";
1290     it->dump();
1291   }
1292   OS << "],\n";
1293   OS << "  Symbols:[";
1294
1295   for (symbol_iterator it = symbol_begin(), ie = symbol_end(); it != ie; ++it) {
1296     if (it != symbol_begin()) OS << ",\n           ";
1297     OS << "(";
1298     it->dump();
1299     OS << ", Index:" << it->getIndex() << ", ";
1300     OS << ")";
1301   }
1302   OS << "]>\n";
1303 }
1304 #endif