Write section and section table entries in the same order.
[oota-llvm.git] / lib / MC / ELFObjectWriter.cpp
1 //===- lib/MC/ELFObjectWriter.cpp - ELF File Writer -----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements ELF object file writer information.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/MC/MCELFObjectWriter.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/StringMap.h"
19 #include "llvm/MC/MCAsmBackend.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCAsmLayout.h"
22 #include "llvm/MC/MCAssembler.h"
23 #include "llvm/MC/MCContext.h"
24 #include "llvm/MC/MCELF.h"
25 #include "llvm/MC/MCELFSymbolFlags.h"
26 #include "llvm/MC/MCExpr.h"
27 #include "llvm/MC/MCFixupKindInfo.h"
28 #include "llvm/MC/MCObjectWriter.h"
29 #include "llvm/MC/MCSectionELF.h"
30 #include "llvm/MC/MCValue.h"
31 #include "llvm/MC/StringTableBuilder.h"
32 #include "llvm/Support/Compression.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ELF.h"
35 #include "llvm/Support/Endian.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include <vector>
38 using namespace llvm;
39
40 #undef  DEBUG_TYPE
41 #define DEBUG_TYPE "reloc-info"
42
43 namespace {
44 class FragmentWriter {
45   bool IsLittleEndian;
46
47 public:
48   FragmentWriter(bool IsLittleEndian);
49   template <typename T> void write(MCDataFragment &F, T Val);
50 };
51
52 typedef DenseMap<const MCSectionELF *, uint32_t> SectionIndexMapTy;
53
54 class SymbolTableWriter {
55   MCAssembler &Asm;
56   FragmentWriter &FWriter;
57   bool Is64Bit;
58   SectionIndexMapTy &SectionIndexMap;
59
60   // The symbol .symtab fragment we are writting to.
61   MCDataFragment *SymtabF;
62
63   // .symtab_shndx fragment we are writting to.
64   MCDataFragment *ShndxF;
65
66   // The numbel of symbols written so far.
67   unsigned NumWritten;
68
69   void createSymtabShndx();
70
71   template <typename T> void write(MCDataFragment &F, T Value);
72
73 public:
74   SymbolTableWriter(MCAssembler &Asm, FragmentWriter &FWriter, bool Is64Bit,
75                     SectionIndexMapTy &SectionIndexMap,
76                     MCDataFragment *SymtabF);
77
78   void writeSymbol(uint32_t name, uint8_t info, uint64_t value, uint64_t size,
79                    uint8_t other, uint32_t shndx, bool Reserved);
80 };
81
82 class ELFObjectWriter : public MCObjectWriter {
83   FragmentWriter FWriter;
84
85   protected:
86
87     static bool isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind);
88     static bool RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant);
89     static uint64_t SymbolValue(MCSymbolData &Data, const MCAsmLayout &Layout);
90     static bool isInSymtab(const MCAsmLayout &Layout, const MCSymbolData &Data,
91                            bool Used, bool Renamed);
92     static bool isLocal(const MCSymbolData &Data, bool isUsedInReloc);
93     static bool IsELFMetaDataSection(const MCSectionData &SD);
94     static uint64_t DataSectionSize(const MCSectionData &SD);
95     static uint64_t GetSectionAddressSize(const MCAsmLayout &Layout,
96                                           const MCSectionData &SD);
97
98     void writeDataSectionData(MCAssembler &Asm, const MCAsmLayout &Layout,
99                               const MCSectionData &SD);
100
101     /// Helper struct for containing some precomputed information on symbols.
102     struct ELFSymbolData {
103       MCSymbolData *SymbolData;
104       uint64_t StringIndex;
105       uint32_t SectionIndex;
106       StringRef Name;
107
108       // Support lexicographic sorting.
109       bool operator<(const ELFSymbolData &RHS) const {
110         unsigned LHSType = MCELF::GetType(*SymbolData);
111         unsigned RHSType = MCELF::GetType(*RHS.SymbolData);
112         if (LHSType == ELF::STT_SECTION && RHSType != ELF::STT_SECTION)
113           return false;
114         if (LHSType != ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
115           return true;
116         if (LHSType == ELF::STT_SECTION && RHSType == ELF::STT_SECTION)
117           return SectionIndex < RHS.SectionIndex;
118         return Name < RHS.Name;
119       }
120     };
121
122     /// The target specific ELF writer instance.
123     std::unique_ptr<MCELFObjectTargetWriter> TargetObjectWriter;
124
125     SmallPtrSet<const MCSymbol *, 16> UsedInReloc;
126     SmallPtrSet<const MCSymbol *, 16> WeakrefUsedInReloc;
127     DenseMap<const MCSymbol *, const MCSymbol *> Renames;
128
129     llvm::DenseMap<const MCSectionData *, std::vector<ELFRelocationEntry>>
130     Relocations;
131     StringTableBuilder ShStrTabBuilder;
132
133     /// @}
134     /// @name Symbol Table Data
135     /// @{
136
137     StringTableBuilder StrTabBuilder;
138     std::vector<uint64_t> FileSymbolData;
139     std::vector<ELFSymbolData> LocalSymbolData;
140     std::vector<ELFSymbolData> ExternalSymbolData;
141     std::vector<ELFSymbolData> UndefinedSymbolData;
142
143     /// @}
144
145     bool NeedsGOT;
146
147     // This holds the symbol table index of the last local symbol.
148     unsigned LastLocalSymbolIndex;
149     // This holds the .strtab section index.
150     unsigned StringTableIndex;
151     // This holds the .symtab section index.
152     unsigned SymbolTableIndex;
153
154     unsigned ShstrtabIndex;
155
156
157     // TargetObjectWriter wrappers.
158     bool is64Bit() const { return TargetObjectWriter->is64Bit(); }
159     bool hasRelocationAddend() const {
160       return TargetObjectWriter->hasRelocationAddend();
161     }
162     unsigned GetRelocType(const MCValue &Target, const MCFixup &Fixup,
163                           bool IsPCRel) const {
164       return TargetObjectWriter->GetRelocType(Target, Fixup, IsPCRel);
165     }
166
167   public:
168     ELFObjectWriter(MCELFObjectTargetWriter *MOTW, raw_pwrite_stream &OS,
169                     bool IsLittleEndian)
170         : MCObjectWriter(OS, IsLittleEndian), FWriter(IsLittleEndian),
171           TargetObjectWriter(MOTW), NeedsGOT(false) {}
172
173     void reset() override {
174       UsedInReloc.clear();
175       WeakrefUsedInReloc.clear();
176       Renames.clear();
177       Relocations.clear();
178       ShStrTabBuilder.clear();
179       StrTabBuilder.clear();
180       FileSymbolData.clear();
181       LocalSymbolData.clear();
182       ExternalSymbolData.clear();
183       UndefinedSymbolData.clear();
184       MCObjectWriter::reset();
185     }
186
187     ~ELFObjectWriter() override;
188
189     void WriteWord(uint64_t W) {
190       if (is64Bit())
191         Write64(W);
192       else
193         Write32(W);
194     }
195
196     template <typename T> void write(MCDataFragment &F, T Value) {
197       FWriter.write(F, Value);
198     }
199
200     void WriteHeader(const MCAssembler &Asm,
201                      unsigned NumberOfSections);
202
203     void WriteSymbol(SymbolTableWriter &Writer, ELFSymbolData &MSD,
204                      const MCAsmLayout &Layout);
205
206     void WriteSymbolTable(MCDataFragment *SymtabF, MCAssembler &Asm,
207                           const MCAsmLayout &Layout,
208                           SectionIndexMapTy &SectionIndexMap);
209
210     bool shouldRelocateWithSymbol(const MCAssembler &Asm,
211                                   const MCSymbolRefExpr *RefA,
212                                   const MCSymbolData *SD, uint64_t C,
213                                   unsigned Type) const;
214
215     void RecordRelocation(MCAssembler &Asm, const MCAsmLayout &Layout,
216                           const MCFragment *Fragment, const MCFixup &Fixup,
217                           MCValue Target, bool &IsPCRel,
218                           uint64_t &FixedValue) override;
219
220     uint64_t getSymbolIndexInSymbolTable(const MCAssembler &Asm,
221                                          const MCSymbol *S);
222
223     // Map from a group section to the signature symbol
224     typedef DenseMap<const MCSectionELF*, const MCSymbol*> GroupMapTy;
225     // Map from a signature symbol to the group section
226     typedef DenseMap<const MCSymbol*, const MCSectionELF*> RevGroupMapTy;
227     // Map from a section to its offset
228     typedef DenseMap<const MCSectionELF*, uint64_t> SectionOffsetMapTy;
229
230     /// Compute the symbol table data
231     ///
232     /// \param Asm - The assembler.
233     /// \param SectionIndexMap - Maps a section to its index.
234     /// \param RevGroupMap - Maps a signature symbol to the group section.
235     void computeSymbolTable(MCAssembler &Asm, const MCAsmLayout &Layout,
236                             const SectionIndexMapTy &SectionIndexMap,
237                             const RevGroupMapTy &RevGroupMap);
238
239     void computeIndexMap(MCAssembler &Asm, SectionIndexMapTy &SectionIndexMap);
240
241     MCSectionData *createRelocationSection(MCAssembler &Asm,
242                                            const MCSectionData &SD);
243
244     void CompressDebugSections(MCAssembler &Asm, MCAsmLayout &Layout);
245
246     void WriteRelocations(MCAssembler &Asm, MCAsmLayout &Layout);
247
248     void CreateMetadataSections(MCAssembler &Asm, MCAsmLayout &Layout,
249                                 SectionIndexMapTy &SectionIndexMap);
250
251     // Create the sections that show up in the symbol table. Currently
252     // those are the .note.GNU-stack section and the group sections.
253     void createIndexedSections(MCAssembler &Asm, MCAsmLayout &Layout,
254                                GroupMapTy &GroupMap, RevGroupMapTy &RevGroupMap,
255                                SectionIndexMapTy &SectionIndexMap);
256
257     void ExecutePostLayoutBinding(MCAssembler &Asm,
258                                   const MCAsmLayout &Layout) override;
259
260     void writeSectionHeader(ArrayRef<const MCSectionELF *> Sections,
261                             MCAssembler &Asm, const GroupMapTy &GroupMap,
262                             const MCAsmLayout &Layout,
263                             const SectionIndexMapTy &SectionIndexMap,
264                             const SectionOffsetMapTy &SectionOffsetMap);
265
266     void WriteSecHdrEntry(uint32_t Name, uint32_t Type, uint64_t Flags,
267                           uint64_t Address, uint64_t Offset,
268                           uint64_t Size, uint32_t Link, uint32_t Info,
269                           uint64_t Alignment, uint64_t EntrySize);
270
271     void WriteRelocationsFragment(const MCAssembler &Asm,
272                                   MCDataFragment *F,
273                                   const MCSectionData *SD);
274
275     bool
276     IsSymbolRefDifferenceFullyResolvedImpl(const MCAssembler &Asm,
277                                            const MCSymbolData &DataA,
278                                            const MCSymbolData *DataB,
279                                            const MCFragment &FB,
280                                            bool InSet,
281                                            bool IsPCRel) const override;
282
283     bool isWeak(const MCSymbolData &SD) const override;
284
285     void WriteObject(MCAssembler &Asm, const MCAsmLayout &Layout) override;
286     void writeSection(MCAssembler &Asm,
287                       const SectionIndexMapTy &SectionIndexMap,
288                       uint32_t GroupSymbolIndex,
289                       uint64_t Offset, uint64_t Size, uint64_t Alignment,
290                       const MCSectionELF &Section);
291   };
292 }
293
294 FragmentWriter::FragmentWriter(bool IsLittleEndian)
295     : IsLittleEndian(IsLittleEndian) {}
296
297 template <typename T> void FragmentWriter::write(MCDataFragment &F, T Val) {
298   if (IsLittleEndian)
299     Val = support::endian::byte_swap<T, support::little>(Val);
300   else
301     Val = support::endian::byte_swap<T, support::big>(Val);
302   const char *Start = (const char *)&Val;
303   F.getContents().append(Start, Start + sizeof(T));
304 }
305
306 void SymbolTableWriter::createSymtabShndx() {
307   if (ShndxF)
308     return;
309
310   MCContext &Ctx = Asm.getContext();
311   const MCSectionELF *SymtabShndxSection =
312       Ctx.getELFSection(".symtab_shndxr", ELF::SHT_SYMTAB_SHNDX, 0, 4, "");
313   MCSectionData *SymtabShndxSD =
314       &Asm.getOrCreateSectionData(*SymtabShndxSection);
315   SymtabShndxSD->setAlignment(4);
316   ShndxF = new MCDataFragment(SymtabShndxSD);
317   unsigned Index = SectionIndexMap.size() + 1;
318   SectionIndexMap[SymtabShndxSection] = Index;
319
320   for (unsigned I = 0; I < NumWritten; ++I)
321     write(*ShndxF, uint32_t(0));
322 }
323
324 template <typename T>
325 void SymbolTableWriter::write(MCDataFragment &F, T Value) {
326   FWriter.write(F, Value);
327 }
328
329 SymbolTableWriter::SymbolTableWriter(MCAssembler &Asm, FragmentWriter &FWriter,
330                                      bool Is64Bit,
331                                      SectionIndexMapTy &SectionIndexMap,
332                                      MCDataFragment *SymtabF)
333     : Asm(Asm), FWriter(FWriter), Is64Bit(Is64Bit),
334       SectionIndexMap(SectionIndexMap), SymtabF(SymtabF), ShndxF(nullptr),
335       NumWritten(0) {}
336
337 void SymbolTableWriter::writeSymbol(uint32_t name, uint8_t info, uint64_t value,
338                                     uint64_t size, uint8_t other,
339                                     uint32_t shndx, bool Reserved) {
340   bool LargeIndex = shndx >= ELF::SHN_LORESERVE && !Reserved;
341
342   if (LargeIndex)
343     createSymtabShndx();
344
345   if (ShndxF) {
346     if (LargeIndex)
347       write(*ShndxF, shndx);
348     else
349       write(*ShndxF, uint32_t(0));
350   }
351
352   uint16_t Index = LargeIndex ? uint16_t(ELF::SHN_XINDEX) : shndx;
353
354   if (Is64Bit) {
355     write(*SymtabF, name);  // st_name
356     write(*SymtabF, info);  // st_info
357     write(*SymtabF, other); // st_other
358     write(*SymtabF, Index); // st_shndx
359     write(*SymtabF, value); // st_value
360     write(*SymtabF, size);  // st_size
361   } else {
362     write(*SymtabF, name);            // st_name
363     write(*SymtabF, uint32_t(value)); // st_value
364     write(*SymtabF, uint32_t(size));  // st_size
365     write(*SymtabF, info);            // st_info
366     write(*SymtabF, other);           // st_other
367     write(*SymtabF, Index);           // st_shndx
368   }
369
370   ++NumWritten;
371 }
372
373 bool ELFObjectWriter::isFixupKindPCRel(const MCAssembler &Asm, unsigned Kind) {
374   const MCFixupKindInfo &FKI =
375     Asm.getBackend().getFixupKindInfo((MCFixupKind) Kind);
376
377   return FKI.Flags & MCFixupKindInfo::FKF_IsPCRel;
378 }
379
380 bool ELFObjectWriter::RelocNeedsGOT(MCSymbolRefExpr::VariantKind Variant) {
381   switch (Variant) {
382   default:
383     return false;
384   case MCSymbolRefExpr::VK_GOT:
385   case MCSymbolRefExpr::VK_PLT:
386   case MCSymbolRefExpr::VK_GOTPCREL:
387   case MCSymbolRefExpr::VK_GOTOFF:
388   case MCSymbolRefExpr::VK_TPOFF:
389   case MCSymbolRefExpr::VK_TLSGD:
390   case MCSymbolRefExpr::VK_GOTTPOFF:
391   case MCSymbolRefExpr::VK_INDNTPOFF:
392   case MCSymbolRefExpr::VK_NTPOFF:
393   case MCSymbolRefExpr::VK_GOTNTPOFF:
394   case MCSymbolRefExpr::VK_TLSLDM:
395   case MCSymbolRefExpr::VK_DTPOFF:
396   case MCSymbolRefExpr::VK_TLSLD:
397     return true;
398   }
399 }
400
401 ELFObjectWriter::~ELFObjectWriter()
402 {}
403
404 // Emit the ELF header.
405 void ELFObjectWriter::WriteHeader(const MCAssembler &Asm,
406                                   unsigned NumberOfSections) {
407   // ELF Header
408   // ----------
409   //
410   // Note
411   // ----
412   // emitWord method behaves differently for ELF32 and ELF64, writing
413   // 4 bytes in the former and 8 in the latter.
414
415   Write8(0x7f); // e_ident[EI_MAG0]
416   Write8('E');  // e_ident[EI_MAG1]
417   Write8('L');  // e_ident[EI_MAG2]
418   Write8('F');  // e_ident[EI_MAG3]
419
420   Write8(is64Bit() ? ELF::ELFCLASS64 : ELF::ELFCLASS32); // e_ident[EI_CLASS]
421
422   // e_ident[EI_DATA]
423   Write8(isLittleEndian() ? ELF::ELFDATA2LSB : ELF::ELFDATA2MSB);
424
425   Write8(ELF::EV_CURRENT);        // e_ident[EI_VERSION]
426   // e_ident[EI_OSABI]
427   Write8(TargetObjectWriter->getOSABI());
428   Write8(0);                  // e_ident[EI_ABIVERSION]
429
430   WriteZeros(ELF::EI_NIDENT - ELF::EI_PAD);
431
432   Write16(ELF::ET_REL);             // e_type
433
434   Write16(TargetObjectWriter->getEMachine()); // e_machine = target
435
436   Write32(ELF::EV_CURRENT);         // e_version
437   WriteWord(0);                    // e_entry, no entry point in .o file
438   WriteWord(0);                    // e_phoff, no program header for .o
439   WriteWord(0);                     // e_shoff = sec hdr table off in bytes
440
441   // e_flags = whatever the target wants
442   Write32(Asm.getELFHeaderEFlags());
443
444   // e_ehsize = ELF header size
445   Write16(is64Bit() ? sizeof(ELF::Elf64_Ehdr) : sizeof(ELF::Elf32_Ehdr));
446
447   Write16(0);                  // e_phentsize = prog header entry size
448   Write16(0);                  // e_phnum = # prog header entries = 0
449
450   // e_shentsize = Section header entry size
451   Write16(is64Bit() ? sizeof(ELF::Elf64_Shdr) : sizeof(ELF::Elf32_Shdr));
452
453   // e_shnum     = # of section header ents
454   if (NumberOfSections >= ELF::SHN_LORESERVE)
455     Write16(ELF::SHN_UNDEF);
456   else
457     Write16(NumberOfSections);
458
459   // e_shstrndx  = Section # of '.shstrtab'
460   if (ShstrtabIndex >= ELF::SHN_LORESERVE)
461     Write16(ELF::SHN_XINDEX);
462   else
463     Write16(ShstrtabIndex);
464 }
465
466 uint64_t ELFObjectWriter::SymbolValue(MCSymbolData &Data,
467                                       const MCAsmLayout &Layout) {
468   if (Data.isCommon() && Data.isExternal())
469     return Data.getCommonAlignment();
470
471   uint64_t Res;
472   if (!Layout.getSymbolOffset(&Data, Res))
473     return 0;
474
475   if (Layout.getAssembler().isThumbFunc(&Data.getSymbol()))
476     Res |= 1;
477
478   return Res;
479 }
480
481 void ELFObjectWriter::ExecutePostLayoutBinding(MCAssembler &Asm,
482                                                const MCAsmLayout &Layout) {
483   // The presence of symbol versions causes undefined symbols and
484   // versions declared with @@@ to be renamed.
485
486   for (MCSymbolData &OriginalData : Asm.symbols()) {
487     const MCSymbol &Alias = OriginalData.getSymbol();
488
489     // Not an alias.
490     if (!Alias.isVariable())
491       continue;
492     auto *Ref = dyn_cast<MCSymbolRefExpr>(Alias.getVariableValue());
493     if (!Ref)
494       continue;
495     const MCSymbol &Symbol = Ref->getSymbol();
496     MCSymbolData &SD = Asm.getSymbolData(Symbol);
497
498     StringRef AliasName = Alias.getName();
499     size_t Pos = AliasName.find('@');
500     if (Pos == StringRef::npos)
501       continue;
502
503     // Aliases defined with .symvar copy the binding from the symbol they alias.
504     // This is the first place we are able to copy this information.
505     OriginalData.setExternal(SD.isExternal());
506     MCELF::SetBinding(OriginalData, MCELF::GetBinding(SD));
507
508     StringRef Rest = AliasName.substr(Pos);
509     if (!Symbol.isUndefined() && !Rest.startswith("@@@"))
510       continue;
511
512     // FIXME: produce a better error message.
513     if (Symbol.isUndefined() && Rest.startswith("@@") &&
514         !Rest.startswith("@@@"))
515       report_fatal_error("A @@ version cannot be undefined");
516
517     Renames.insert(std::make_pair(&Symbol, &Alias));
518   }
519 }
520
521 static uint8_t mergeTypeForSet(uint8_t origType, uint8_t newType) {
522   uint8_t Type = newType;
523
524   // Propagation rules:
525   // IFUNC > FUNC > OBJECT > NOTYPE
526   // TLS_OBJECT > OBJECT > NOTYPE
527   //
528   // dont let the new type degrade the old type
529   switch (origType) {
530   default:
531     break;
532   case ELF::STT_GNU_IFUNC:
533     if (Type == ELF::STT_FUNC || Type == ELF::STT_OBJECT ||
534         Type == ELF::STT_NOTYPE || Type == ELF::STT_TLS)
535       Type = ELF::STT_GNU_IFUNC;
536     break;
537   case ELF::STT_FUNC:
538     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
539         Type == ELF::STT_TLS)
540       Type = ELF::STT_FUNC;
541     break;
542   case ELF::STT_OBJECT:
543     if (Type == ELF::STT_NOTYPE)
544       Type = ELF::STT_OBJECT;
545     break;
546   case ELF::STT_TLS:
547     if (Type == ELF::STT_OBJECT || Type == ELF::STT_NOTYPE ||
548         Type == ELF::STT_GNU_IFUNC || Type == ELF::STT_FUNC)
549       Type = ELF::STT_TLS;
550     break;
551   }
552
553   return Type;
554 }
555
556 void ELFObjectWriter::WriteSymbol(SymbolTableWriter &Writer, ELFSymbolData &MSD,
557                                   const MCAsmLayout &Layout) {
558   MCSymbolData &OrigData = *MSD.SymbolData;
559   assert((!OrigData.getFragment() ||
560           (&OrigData.getFragment()->getParent()->getSection() ==
561            &OrigData.getSymbol().getSection())) &&
562          "The symbol's section doesn't match the fragment's symbol");
563   const MCSymbol *Base = Layout.getBaseSymbol(OrigData.getSymbol());
564
565   // This has to be in sync with when computeSymbolTable uses SHN_ABS or
566   // SHN_COMMON.
567   bool IsReserved = !Base || OrigData.isCommon();
568
569   // Binding and Type share the same byte as upper and lower nibbles
570   uint8_t Binding = MCELF::GetBinding(OrigData);
571   uint8_t Type = MCELF::GetType(OrigData);
572   MCSymbolData *BaseSD = nullptr;
573   if (Base) {
574     BaseSD = &Layout.getAssembler().getSymbolData(*Base);
575     Type = mergeTypeForSet(Type, MCELF::GetType(*BaseSD));
576   }
577   uint8_t Info = (Binding << ELF_STB_Shift) | (Type << ELF_STT_Shift);
578
579   // Other and Visibility share the same byte with Visibility using the lower
580   // 2 bits
581   uint8_t Visibility = MCELF::GetVisibility(OrigData);
582   uint8_t Other = MCELF::getOther(OrigData) << (ELF_STO_Shift - ELF_STV_Shift);
583   Other |= Visibility;
584
585   uint64_t Value = SymbolValue(OrigData, Layout);
586   uint64_t Size = 0;
587
588   const MCExpr *ESize = OrigData.getSize();
589   if (!ESize && Base)
590     ESize = BaseSD->getSize();
591
592   if (ESize) {
593     int64_t Res;
594     if (!ESize->evaluateKnownAbsolute(Res, Layout))
595       report_fatal_error("Size expression must be absolute.");
596     Size = Res;
597   }
598
599   // Write out the symbol table entry
600   Writer.writeSymbol(MSD.StringIndex, Info, Value, Size, Other,
601                      MSD.SectionIndex, IsReserved);
602 }
603
604 void ELFObjectWriter::WriteSymbolTable(MCDataFragment *SymtabF,
605                                        MCAssembler &Asm,
606                                        const MCAsmLayout &Layout,
607                                        SectionIndexMapTy &SectionIndexMap) {
608   // The string table must be emitted first because we need the index
609   // into the string table for all the symbol names.
610
611   // FIXME: Make sure the start of the symbol table is aligned.
612
613   SymbolTableWriter Writer(Asm, FWriter, is64Bit(), SectionIndexMap, SymtabF);
614
615   // The first entry is the undefined symbol entry.
616   Writer.writeSymbol(0, 0, 0, 0, 0, 0, false);
617
618   for (unsigned i = 0, e = FileSymbolData.size(); i != e; ++i) {
619     Writer.writeSymbol(FileSymbolData[i], ELF::STT_FILE | ELF::STB_LOCAL, 0, 0,
620                        ELF::STV_DEFAULT, ELF::SHN_ABS, true);
621   }
622
623   // Write the symbol table entries.
624   LastLocalSymbolIndex = FileSymbolData.size() + LocalSymbolData.size() + 1;
625
626   for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i) {
627     ELFSymbolData &MSD = LocalSymbolData[i];
628     WriteSymbol(Writer, MSD, Layout);
629   }
630
631   for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i) {
632     ELFSymbolData &MSD = ExternalSymbolData[i];
633     MCSymbolData &Data = *MSD.SymbolData;
634     assert(((Data.getFlags() & ELF_STB_Global) ||
635             (Data.getFlags() & ELF_STB_Weak)) &&
636            "External symbol requires STB_GLOBAL or STB_WEAK flag");
637     WriteSymbol(Writer, MSD, Layout);
638     if (MCELF::GetBinding(Data) == ELF::STB_LOCAL)
639       LastLocalSymbolIndex++;
640   }
641
642   for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i) {
643     ELFSymbolData &MSD = UndefinedSymbolData[i];
644     MCSymbolData &Data = *MSD.SymbolData;
645     WriteSymbol(Writer, MSD, Layout);
646     if (MCELF::GetBinding(Data) == ELF::STB_LOCAL)
647       LastLocalSymbolIndex++;
648   }
649 }
650
651 // It is always valid to create a relocation with a symbol. It is preferable
652 // to use a relocation with a section if that is possible. Using the section
653 // allows us to omit some local symbols from the symbol table.
654 bool ELFObjectWriter::shouldRelocateWithSymbol(const MCAssembler &Asm,
655                                                const MCSymbolRefExpr *RefA,
656                                                const MCSymbolData *SD,
657                                                uint64_t C,
658                                                unsigned Type) const {
659   // A PCRel relocation to an absolute value has no symbol (or section). We
660   // represent that with a relocation to a null section.
661   if (!RefA)
662     return false;
663
664   MCSymbolRefExpr::VariantKind Kind = RefA->getKind();
665   switch (Kind) {
666   default:
667     break;
668   // The .odp creation emits a relocation against the symbol ".TOC." which
669   // create a R_PPC64_TOC relocation. However the relocation symbol name
670   // in final object creation should be NULL, since the symbol does not
671   // really exist, it is just the reference to TOC base for the current
672   // object file. Since the symbol is undefined, returning false results
673   // in a relocation with a null section which is the desired result.
674   case MCSymbolRefExpr::VK_PPC_TOCBASE:
675     return false;
676
677   // These VariantKind cause the relocation to refer to something other than
678   // the symbol itself, like a linker generated table. Since the address of
679   // symbol is not relevant, we cannot replace the symbol with the
680   // section and patch the difference in the addend.
681   case MCSymbolRefExpr::VK_GOT:
682   case MCSymbolRefExpr::VK_PLT:
683   case MCSymbolRefExpr::VK_GOTPCREL:
684   case MCSymbolRefExpr::VK_Mips_GOT:
685   case MCSymbolRefExpr::VK_PPC_GOT_LO:
686   case MCSymbolRefExpr::VK_PPC_GOT_HI:
687   case MCSymbolRefExpr::VK_PPC_GOT_HA:
688     return true;
689   }
690
691   // An undefined symbol is not in any section, so the relocation has to point
692   // to the symbol itself.
693   const MCSymbol &Sym = SD->getSymbol();
694   if (Sym.isUndefined())
695     return true;
696
697   unsigned Binding = MCELF::GetBinding(*SD);
698   switch(Binding) {
699   default:
700     llvm_unreachable("Invalid Binding");
701   case ELF::STB_LOCAL:
702     break;
703   case ELF::STB_WEAK:
704     // If the symbol is weak, it might be overridden by a symbol in another
705     // file. The relocation has to point to the symbol so that the linker
706     // can update it.
707     return true;
708   case ELF::STB_GLOBAL:
709     // Global ELF symbols can be preempted by the dynamic linker. The relocation
710     // has to point to the symbol for a reason analogous to the STB_WEAK case.
711     return true;
712   }
713
714   // If a relocation points to a mergeable section, we have to be careful.
715   // If the offset is zero, a relocation with the section will encode the
716   // same information. With a non-zero offset, the situation is different.
717   // For example, a relocation can point 42 bytes past the end of a string.
718   // If we change such a relocation to use the section, the linker would think
719   // that it pointed to another string and subtracting 42 at runtime will
720   // produce the wrong value.
721   auto &Sec = cast<MCSectionELF>(Sym.getSection());
722   unsigned Flags = Sec.getFlags();
723   if (Flags & ELF::SHF_MERGE) {
724     if (C != 0)
725       return true;
726
727     // It looks like gold has a bug (http://sourceware.org/PR16794) and can
728     // only handle section relocations to mergeable sections if using RELA.
729     if (!hasRelocationAddend())
730       return true;
731   }
732
733   // Most TLS relocations use a got, so they need the symbol. Even those that
734   // are just an offset (@tpoff), require a symbol in gold versions before
735   // 5efeedf61e4fe720fd3e9a08e6c91c10abb66d42 (2014-09-26) which fixed
736   // http://sourceware.org/PR16773.
737   if (Flags & ELF::SHF_TLS)
738     return true;
739
740   // If the symbol is a thumb function the final relocation must set the lowest
741   // bit. With a symbol that is done by just having the symbol have that bit
742   // set, so we would lose the bit if we relocated with the section.
743   // FIXME: We could use the section but add the bit to the relocation value.
744   if (Asm.isThumbFunc(&Sym))
745     return true;
746
747   if (TargetObjectWriter->needsRelocateWithSymbol(*SD, Type))
748     return true;
749   return false;
750 }
751
752 static const MCSymbol *getWeakRef(const MCSymbolRefExpr &Ref) {
753   const MCSymbol &Sym = Ref.getSymbol();
754
755   if (Ref.getKind() == MCSymbolRefExpr::VK_WEAKREF)
756     return &Sym;
757
758   if (!Sym.isVariable())
759     return nullptr;
760
761   const MCExpr *Expr = Sym.getVariableValue();
762   const auto *Inner = dyn_cast<MCSymbolRefExpr>(Expr);
763   if (!Inner)
764     return nullptr;
765
766   if (Inner->getKind() == MCSymbolRefExpr::VK_WEAKREF)
767     return &Inner->getSymbol();
768   return nullptr;
769 }
770
771 static bool isWeak(const MCSymbolData &D) {
772   return D.getFlags() & ELF_STB_Weak || MCELF::GetType(D) == ELF::STT_GNU_IFUNC;
773 }
774
775 void ELFObjectWriter::RecordRelocation(MCAssembler &Asm,
776                                        const MCAsmLayout &Layout,
777                                        const MCFragment *Fragment,
778                                        const MCFixup &Fixup, MCValue Target,
779                                        bool &IsPCRel, uint64_t &FixedValue) {
780   const MCSectionData *FixupSection = Fragment->getParent();
781   uint64_t C = Target.getConstant();
782   uint64_t FixupOffset = Layout.getFragmentOffset(Fragment) + Fixup.getOffset();
783
784   if (const MCSymbolRefExpr *RefB = Target.getSymB()) {
785     assert(RefB->getKind() == MCSymbolRefExpr::VK_None &&
786            "Should not have constructed this");
787
788     // Let A, B and C being the components of Target and R be the location of
789     // the fixup. If the fixup is not pcrel, we want to compute (A - B + C).
790     // If it is pcrel, we want to compute (A - B + C - R).
791
792     // In general, ELF has no relocations for -B. It can only represent (A + C)
793     // or (A + C - R). If B = R + K and the relocation is not pcrel, we can
794     // replace B to implement it: (A - R - K + C)
795     if (IsPCRel)
796       Asm.getContext().FatalError(
797           Fixup.getLoc(),
798           "No relocation available to represent this relative expression");
799
800     const MCSymbol &SymB = RefB->getSymbol();
801
802     if (SymB.isUndefined())
803       Asm.getContext().FatalError(
804           Fixup.getLoc(),
805           Twine("symbol '") + SymB.getName() +
806               "' can not be undefined in a subtraction expression");
807
808     assert(!SymB.isAbsolute() && "Should have been folded");
809     const MCSection &SecB = SymB.getSection();
810     if (&SecB != &FixupSection->getSection())
811       Asm.getContext().FatalError(
812           Fixup.getLoc(), "Cannot represent a difference across sections");
813
814     const MCSymbolData &SymBD = Asm.getSymbolData(SymB);
815     if (::isWeak(SymBD))
816       Asm.getContext().FatalError(
817           Fixup.getLoc(), "Cannot represent a subtraction with a weak symbol");
818
819     uint64_t SymBOffset = Layout.getSymbolOffset(&SymBD);
820     uint64_t K = SymBOffset - FixupOffset;
821     IsPCRel = true;
822     C -= K;
823   }
824
825   // We either rejected the fixup or folded B into C at this point.
826   const MCSymbolRefExpr *RefA = Target.getSymA();
827   const MCSymbol *SymA = RefA ? &RefA->getSymbol() : nullptr;
828   const MCSymbolData *SymAD = SymA ? &Asm.getSymbolData(*SymA) : nullptr;
829
830   unsigned Type = GetRelocType(Target, Fixup, IsPCRel);
831   bool RelocateWithSymbol = shouldRelocateWithSymbol(Asm, RefA, SymAD, C, Type);
832   if (!RelocateWithSymbol && SymA && !SymA->isUndefined())
833     C += Layout.getSymbolOffset(SymAD);
834
835   uint64_t Addend = 0;
836   if (hasRelocationAddend()) {
837     Addend = C;
838     C = 0;
839   }
840
841   FixedValue = C;
842
843   // FIXME: What is this!?!?
844   MCSymbolRefExpr::VariantKind Modifier =
845       RefA ? RefA->getKind() : MCSymbolRefExpr::VK_None;
846   if (RelocNeedsGOT(Modifier))
847     NeedsGOT = true;
848
849   if (!RelocateWithSymbol) {
850     const MCSection *SecA =
851         (SymA && !SymA->isUndefined()) ? &SymA->getSection() : nullptr;
852     auto *ELFSec = cast_or_null<MCSectionELF>(SecA);
853     MCSymbol *SectionSymbol =
854         ELFSec ? Asm.getContext().getOrCreateSectionSymbol(*ELFSec)
855                : nullptr;
856     ELFRelocationEntry Rec(FixupOffset, SectionSymbol, Type, Addend);
857     Relocations[FixupSection].push_back(Rec);
858     return;
859   }
860
861   if (SymA) {
862     if (const MCSymbol *R = Renames.lookup(SymA))
863       SymA = R;
864
865     if (const MCSymbol *WeakRef = getWeakRef(*RefA))
866       WeakrefUsedInReloc.insert(WeakRef);
867     else
868       UsedInReloc.insert(SymA);
869   }
870   ELFRelocationEntry Rec(FixupOffset, SymA, Type, Addend);
871   Relocations[FixupSection].push_back(Rec);
872   return;
873 }
874
875
876 uint64_t
877 ELFObjectWriter::getSymbolIndexInSymbolTable(const MCAssembler &Asm,
878                                              const MCSymbol *S) {
879   const MCSymbolData &SD = Asm.getSymbolData(*S);
880   return SD.getIndex();
881 }
882
883 bool ELFObjectWriter::isInSymtab(const MCAsmLayout &Layout,
884                                  const MCSymbolData &Data, bool Used,
885                                  bool Renamed) {
886   const MCSymbol &Symbol = Data.getSymbol();
887   if (Symbol.isVariable()) {
888     const MCExpr *Expr = Symbol.getVariableValue();
889     if (const MCSymbolRefExpr *Ref = dyn_cast<MCSymbolRefExpr>(Expr)) {
890       if (Ref->getKind() == MCSymbolRefExpr::VK_WEAKREF)
891         return false;
892     }
893   }
894
895   if (Used)
896     return true;
897
898   if (Renamed)
899     return false;
900
901   if (Symbol.getName() == "_GLOBAL_OFFSET_TABLE_")
902     return true;
903
904   if (Symbol.isVariable()) {
905     const MCSymbol *Base = Layout.getBaseSymbol(Symbol);
906     if (Base && Base->isUndefined())
907       return false;
908   }
909
910   bool IsGlobal = MCELF::GetBinding(Data) == ELF::STB_GLOBAL;
911   if (!Symbol.isVariable() && Symbol.isUndefined() && !IsGlobal)
912     return false;
913
914   if (Symbol.isTemporary())
915     return false;
916
917   return true;
918 }
919
920 bool ELFObjectWriter::isLocal(const MCSymbolData &Data, bool isUsedInReloc) {
921   if (Data.isExternal())
922     return false;
923
924   const MCSymbol &Symbol = Data.getSymbol();
925   if (Symbol.isDefined())
926     return true;
927
928   if (isUsedInReloc)
929     return false;
930
931   return true;
932 }
933
934 void ELFObjectWriter::computeIndexMap(MCAssembler &Asm,
935                                       SectionIndexMapTy &SectionIndexMap) {
936   unsigned Index = 1;
937   for (MCAssembler::iterator it = Asm.begin(),
938          ie = Asm.end(); it != ie; ++it) {
939     const MCSectionELF &Section =
940       static_cast<const MCSectionELF &>(it->getSection());
941     if (Section.getType() != ELF::SHT_GROUP)
942       continue;
943     SectionIndexMap[&Section] = Index++;
944   }
945
946   for (MCAssembler::iterator it = Asm.begin(),
947          ie = Asm.end(); it != ie; ++it) {
948     const MCSectionData &SD = *it;
949     const MCSectionELF &Section =
950       static_cast<const MCSectionELF &>(SD.getSection());
951     if (Section.getType() == ELF::SHT_GROUP ||
952         Section.getType() == ELF::SHT_REL ||
953         Section.getType() == ELF::SHT_RELA)
954       continue;
955     SectionIndexMap[&Section] = Index++;
956     if (MCSectionData *RelSD = createRelocationSection(Asm, SD)) {
957       const MCSectionELF *RelSection =
958           static_cast<const MCSectionELF *>(&RelSD->getSection());
959       SectionIndexMap[RelSection] = Index++;
960     }
961   }
962 }
963
964 void ELFObjectWriter::computeSymbolTable(
965     MCAssembler &Asm, const MCAsmLayout &Layout,
966     const SectionIndexMapTy &SectionIndexMap,
967     const RevGroupMapTy &RevGroupMap) {
968   // FIXME: Is this the correct place to do this?
969   // FIXME: Why is an undefined reference to _GLOBAL_OFFSET_TABLE_ needed?
970   if (NeedsGOT) {
971     StringRef Name = "_GLOBAL_OFFSET_TABLE_";
972     MCSymbol *Sym = Asm.getContext().GetOrCreateSymbol(Name);
973     MCSymbolData &Data = Asm.getOrCreateSymbolData(*Sym);
974     Data.setExternal(true);
975     MCELF::SetBinding(Data, ELF::STB_GLOBAL);
976   }
977
978   // Add the data for the symbols.
979   for (MCSymbolData &SD : Asm.symbols()) {
980     const MCSymbol &Symbol = SD.getSymbol();
981
982     bool Used = UsedInReloc.count(&Symbol);
983     bool WeakrefUsed = WeakrefUsedInReloc.count(&Symbol);
984     bool isSignature = RevGroupMap.count(&Symbol);
985
986     if (!isInSymtab(Layout, SD,
987                     Used || WeakrefUsed || isSignature,
988                     Renames.count(&Symbol)))
989       continue;
990
991     ELFSymbolData MSD;
992     MSD.SymbolData = &SD;
993     const MCSymbol *BaseSymbol = Layout.getBaseSymbol(Symbol);
994
995     // Undefined symbols are global, but this is the first place we
996     // are able to set it.
997     bool Local = isLocal(SD, Used);
998     if (!Local && MCELF::GetBinding(SD) == ELF::STB_LOCAL) {
999       assert(BaseSymbol);
1000       MCSymbolData &BaseData = Asm.getSymbolData(*BaseSymbol);
1001       MCELF::SetBinding(SD, ELF::STB_GLOBAL);
1002       MCELF::SetBinding(BaseData, ELF::STB_GLOBAL);
1003     }
1004
1005     if (!BaseSymbol) {
1006       MSD.SectionIndex = ELF::SHN_ABS;
1007     } else if (SD.isCommon()) {
1008       assert(!Local);
1009       MSD.SectionIndex = ELF::SHN_COMMON;
1010     } else if (BaseSymbol->isUndefined()) {
1011       if (isSignature && !Used)
1012         MSD.SectionIndex = SectionIndexMap.lookup(RevGroupMap.lookup(&Symbol));
1013       else
1014         MSD.SectionIndex = ELF::SHN_UNDEF;
1015       if (!Used && WeakrefUsed)
1016         MCELF::SetBinding(SD, ELF::STB_WEAK);
1017     } else {
1018       const MCSectionELF &Section =
1019         static_cast<const MCSectionELF&>(BaseSymbol->getSection());
1020       MSD.SectionIndex = SectionIndexMap.lookup(&Section);
1021       assert(MSD.SectionIndex && "Invalid section index!");
1022     }
1023
1024     // The @@@ in symbol version is replaced with @ in undefined symbols and @@
1025     // in defined ones.
1026     //
1027     // FIXME: All name handling should be done before we get to the writer,
1028     // including dealing with GNU-style version suffixes.  Fixing this isn't
1029     // trivial.
1030     //
1031     // We thus have to be careful to not perform the symbol version replacement
1032     // blindly:
1033     //
1034     // The ELF format is used on Windows by the MCJIT engine.  Thus, on
1035     // Windows, the ELFObjectWriter can encounter symbols mangled using the MS
1036     // Visual Studio C++ name mangling scheme. Symbols mangled using the MSVC
1037     // C++ name mangling can legally have "@@@" as a sub-string. In that case,
1038     // the EFLObjectWriter should not interpret the "@@@" sub-string as
1039     // specifying GNU-style symbol versioning. The ELFObjectWriter therefore
1040     // checks for the MSVC C++ name mangling prefix which is either "?", "@?",
1041     // "__imp_?" or "__imp_@?".
1042     //
1043     // It would have been interesting to perform the MS mangling prefix check
1044     // only when the target triple is of the form *-pc-windows-elf. But, it
1045     // seems that this information is not easily accessible from the
1046     // ELFObjectWriter.
1047     StringRef Name = Symbol.getName();
1048     if (!Name.startswith("?") && !Name.startswith("@?") &&
1049         !Name.startswith("__imp_?") && !Name.startswith("__imp_@?")) {
1050       // This symbol isn't following the MSVC C++ name mangling convention. We
1051       // can thus safely interpret the @@@ in symbol names as specifying symbol
1052       // versioning.
1053       SmallString<32> Buf;
1054       size_t Pos = Name.find("@@@");
1055       if (Pos != StringRef::npos) {
1056         Buf += Name.substr(0, Pos);
1057         unsigned Skip = MSD.SectionIndex == ELF::SHN_UNDEF ? 2 : 1;
1058         Buf += Name.substr(Pos + Skip);
1059         Name = Buf;
1060       }
1061     }
1062
1063     // Sections have their own string table
1064     if (MCELF::GetType(SD) != ELF::STT_SECTION)
1065       MSD.Name = StrTabBuilder.add(Name);
1066
1067     if (MSD.SectionIndex == ELF::SHN_UNDEF)
1068       UndefinedSymbolData.push_back(MSD);
1069     else if (Local)
1070       LocalSymbolData.push_back(MSD);
1071     else
1072       ExternalSymbolData.push_back(MSD);
1073   }
1074
1075   for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
1076     StrTabBuilder.add(*i);
1077
1078   StrTabBuilder.finalize(StringTableBuilder::ELF);
1079
1080   for (auto i = Asm.file_names_begin(), e = Asm.file_names_end(); i != e; ++i)
1081     FileSymbolData.push_back(StrTabBuilder.getOffset(*i));
1082
1083   for (ELFSymbolData &MSD : LocalSymbolData)
1084     MSD.StringIndex = MCELF::GetType(*MSD.SymbolData) == ELF::STT_SECTION
1085                           ? 0
1086                           : StrTabBuilder.getOffset(MSD.Name);
1087   for (ELFSymbolData &MSD : ExternalSymbolData)
1088     MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
1089   for (ELFSymbolData& MSD : UndefinedSymbolData)
1090     MSD.StringIndex = StrTabBuilder.getOffset(MSD.Name);
1091
1092   // Symbols are required to be in lexicographic order.
1093   array_pod_sort(LocalSymbolData.begin(), LocalSymbolData.end());
1094   array_pod_sort(ExternalSymbolData.begin(), ExternalSymbolData.end());
1095   array_pod_sort(UndefinedSymbolData.begin(), UndefinedSymbolData.end());
1096
1097   // Set the symbol indices. Local symbols must come before all other
1098   // symbols with non-local bindings.
1099   unsigned Index = FileSymbolData.size() + 1;
1100   for (unsigned i = 0, e = LocalSymbolData.size(); i != e; ++i)
1101     LocalSymbolData[i].SymbolData->setIndex(Index++);
1102
1103   for (unsigned i = 0, e = ExternalSymbolData.size(); i != e; ++i)
1104     ExternalSymbolData[i].SymbolData->setIndex(Index++);
1105   for (unsigned i = 0, e = UndefinedSymbolData.size(); i != e; ++i)
1106     UndefinedSymbolData[i].SymbolData->setIndex(Index++);
1107 }
1108
1109 MCSectionData *
1110 ELFObjectWriter::createRelocationSection(MCAssembler &Asm,
1111                                          const MCSectionData &SD) {
1112   if (Relocations[&SD].empty())
1113     return nullptr;
1114
1115   MCContext &Ctx = Asm.getContext();
1116   const MCSectionELF &Section =
1117       static_cast<const MCSectionELF &>(SD.getSection());
1118
1119   const StringRef SectionName = Section.getSectionName();
1120   std::string RelaSectionName = hasRelocationAddend() ? ".rela" : ".rel";
1121   RelaSectionName += SectionName;
1122
1123   unsigned EntrySize;
1124   if (hasRelocationAddend())
1125     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rela) : sizeof(ELF::Elf32_Rela);
1126   else
1127     EntrySize = is64Bit() ? sizeof(ELF::Elf64_Rel) : sizeof(ELF::Elf32_Rel);
1128
1129   unsigned Flags = 0;
1130   if (Section.getFlags() & ELF::SHF_GROUP)
1131     Flags = ELF::SHF_GROUP;
1132
1133   const MCSectionELF *RelaSection = Ctx.createELFRelSection(
1134       RelaSectionName, hasRelocationAddend() ? ELF::SHT_RELA : ELF::SHT_REL,
1135       Flags, EntrySize, Section.getGroup(), &Section);
1136   return &Asm.getOrCreateSectionData(*RelaSection);
1137 }
1138
1139 static SmallVector<char, 128>
1140 getUncompressedData(MCAsmLayout &Layout,
1141                     MCSectionData::FragmentListType &Fragments) {
1142   SmallVector<char, 128> UncompressedData;
1143   for (const MCFragment &F : Fragments) {
1144     const SmallVectorImpl<char> *Contents;
1145     switch (F.getKind()) {
1146     case MCFragment::FT_Data:
1147       Contents = &cast<MCDataFragment>(F).getContents();
1148       break;
1149     case MCFragment::FT_Dwarf:
1150       Contents = &cast<MCDwarfLineAddrFragment>(F).getContents();
1151       break;
1152     case MCFragment::FT_DwarfFrame:
1153       Contents = &cast<MCDwarfCallFrameFragment>(F).getContents();
1154       break;
1155     default:
1156       llvm_unreachable(
1157           "Not expecting any other fragment types in a debug_* section");
1158     }
1159     UncompressedData.append(Contents->begin(), Contents->end());
1160   }
1161   return UncompressedData;
1162 }
1163
1164 // Include the debug info compression header:
1165 // "ZLIB" followed by 8 bytes representing the uncompressed size of the section,
1166 // useful for consumers to preallocate a buffer to decompress into.
1167 static bool
1168 prependCompressionHeader(uint64_t Size,
1169                          SmallVectorImpl<char> &CompressedContents) {
1170   const StringRef Magic = "ZLIB";
1171   if (Size <= Magic.size() + sizeof(Size) + CompressedContents.size())
1172     return false;
1173   if (sys::IsLittleEndianHost)
1174     sys::swapByteOrder(Size);
1175   CompressedContents.insert(CompressedContents.begin(),
1176                             Magic.size() + sizeof(Size), 0);
1177   std::copy(Magic.begin(), Magic.end(), CompressedContents.begin());
1178   std::copy(reinterpret_cast<char *>(&Size),
1179             reinterpret_cast<char *>(&Size + 1),
1180             CompressedContents.begin() + Magic.size());
1181   return true;
1182 }
1183
1184 // Return a single fragment containing the compressed contents of the whole
1185 // section. Null if the section was not compressed for any reason.
1186 static std::unique_ptr<MCDataFragment>
1187 getCompressedFragment(MCAsmLayout &Layout,
1188                       MCSectionData::FragmentListType &Fragments) {
1189   std::unique_ptr<MCDataFragment> CompressedFragment(new MCDataFragment());
1190
1191   // Gather the uncompressed data from all the fragments, recording the
1192   // alignment fragment, if seen, and any fixups.
1193   SmallVector<char, 128> UncompressedData =
1194       getUncompressedData(Layout, Fragments);
1195
1196   SmallVectorImpl<char> &CompressedContents = CompressedFragment->getContents();
1197
1198   zlib::Status Success = zlib::compress(
1199       StringRef(UncompressedData.data(), UncompressedData.size()),
1200       CompressedContents);
1201   if (Success != zlib::StatusOK)
1202     return nullptr;
1203
1204   if (!prependCompressionHeader(UncompressedData.size(), CompressedContents))
1205     return nullptr;
1206
1207   return CompressedFragment;
1208 }
1209
1210 typedef DenseMap<const MCSectionData *, std::vector<MCSymbolData *>>
1211 DefiningSymbolMap;
1212
1213 static void UpdateSymbols(const MCAsmLayout &Layout,
1214                           const std::vector<MCSymbolData *> &Symbols,
1215                           MCFragment &NewFragment) {
1216   for (MCSymbolData *Sym : Symbols) {
1217     Sym->setOffset(Sym->getOffset() +
1218                    Layout.getFragmentOffset(Sym->getFragment()));
1219     Sym->setFragment(&NewFragment);
1220   }
1221 }
1222
1223 static void CompressDebugSection(MCAssembler &Asm, MCAsmLayout &Layout,
1224                                  const DefiningSymbolMap &DefiningSymbols,
1225                                  const MCSectionELF &Section,
1226                                  MCSectionData &SD) {
1227   StringRef SectionName = Section.getSectionName();
1228   MCSectionData::FragmentListType &Fragments = SD.getFragmentList();
1229
1230   std::unique_ptr<MCDataFragment> CompressedFragment =
1231       getCompressedFragment(Layout, Fragments);
1232
1233   // Leave the section as-is if the fragments could not be compressed.
1234   if (!CompressedFragment)
1235     return;
1236
1237   // Update the fragment+offsets of any symbols referring to fragments in this
1238   // section to refer to the new fragment.
1239   auto I = DefiningSymbols.find(&SD);
1240   if (I != DefiningSymbols.end())
1241     UpdateSymbols(Layout, I->second, *CompressedFragment);
1242
1243   // Invalidate the layout for the whole section since it will have new and
1244   // different fragments now.
1245   Layout.invalidateFragmentsFrom(&Fragments.front());
1246   Fragments.clear();
1247
1248   // Complete the initialization of the new fragment
1249   CompressedFragment->setParent(&SD);
1250   CompressedFragment->setLayoutOrder(0);
1251   Fragments.push_back(CompressedFragment.release());
1252
1253   // Rename from .debug_* to .zdebug_*
1254   Asm.getContext().renameELFSection(&Section,
1255                                     (".z" + SectionName.drop_front(1)).str());
1256 }
1257
1258 void ELFObjectWriter::CompressDebugSections(MCAssembler &Asm,
1259                                             MCAsmLayout &Layout) {
1260   if (!Asm.getContext().getAsmInfo()->compressDebugSections())
1261     return;
1262
1263   DefiningSymbolMap DefiningSymbols;
1264
1265   for (MCSymbolData &SD : Asm.symbols())
1266     if (MCFragment *F = SD.getFragment())
1267       DefiningSymbols[F->getParent()].push_back(&SD);
1268
1269   for (MCSectionData &SD : Asm) {
1270     const MCSectionELF &Section =
1271         static_cast<const MCSectionELF &>(SD.getSection());
1272     StringRef SectionName = Section.getSectionName();
1273
1274     // Compressing debug_frame requires handling alignment fragments which is
1275     // more work (possibly generalizing MCAssembler.cpp:writeFragment to allow
1276     // for writing to arbitrary buffers) for little benefit.
1277     if (!SectionName.startswith(".debug_") || SectionName == ".debug_frame")
1278       continue;
1279
1280     CompressDebugSection(Asm, Layout, DefiningSymbols, Section, SD);
1281   }
1282 }
1283
1284 void ELFObjectWriter::WriteRelocations(MCAssembler &Asm, MCAsmLayout &Layout) {
1285   for (MCAssembler::iterator it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
1286     MCSectionData &RelSD = *it;
1287     const MCSectionELF &RelSection =
1288         static_cast<const MCSectionELF &>(RelSD.getSection());
1289
1290     unsigned Type = RelSection.getType();
1291     if (Type != ELF::SHT_REL && Type != ELF::SHT_RELA)
1292       continue;
1293
1294     const MCSectionELF *Section = RelSection.getAssociatedSection();
1295     MCSectionData &SD = Asm.getOrCreateSectionData(*Section);
1296     RelSD.setAlignment(is64Bit() ? 8 : 4);
1297
1298     MCDataFragment *F = new MCDataFragment(&RelSD);
1299     WriteRelocationsFragment(Asm, F, &SD);
1300   }
1301 }
1302
1303 void ELFObjectWriter::WriteSecHdrEntry(uint32_t Name, uint32_t Type,
1304                                        uint64_t Flags, uint64_t Address,
1305                                        uint64_t Offset, uint64_t Size,
1306                                        uint32_t Link, uint32_t Info,
1307                                        uint64_t Alignment,
1308                                        uint64_t EntrySize) {
1309   Write32(Name);        // sh_name: index into string table
1310   Write32(Type);        // sh_type
1311   WriteWord(Flags);     // sh_flags
1312   WriteWord(Address);   // sh_addr
1313   WriteWord(Offset);    // sh_offset
1314   WriteWord(Size);      // sh_size
1315   Write32(Link);        // sh_link
1316   Write32(Info);        // sh_info
1317   WriteWord(Alignment); // sh_addralign
1318   WriteWord(EntrySize); // sh_entsize
1319 }
1320
1321 void ELFObjectWriter::WriteRelocationsFragment(const MCAssembler &Asm,
1322                                                MCDataFragment *F,
1323                                                const MCSectionData *SD) {
1324   std::vector<ELFRelocationEntry> &Relocs = Relocations[SD];
1325
1326   // Sort the relocation entries. Most targets just sort by Offset, but some
1327   // (e.g., MIPS) have additional constraints.
1328   TargetObjectWriter->sortRelocs(Asm, Relocs);
1329
1330   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
1331     const ELFRelocationEntry &Entry = Relocs[e - i - 1];
1332     unsigned Index =
1333         Entry.Symbol ? getSymbolIndexInSymbolTable(Asm, Entry.Symbol) : 0;
1334
1335     if (is64Bit()) {
1336       write(*F, Entry.Offset);
1337       if (TargetObjectWriter->isN64()) {
1338         write(*F, uint32_t(Index));
1339
1340         write(*F, TargetObjectWriter->getRSsym(Entry.Type));
1341         write(*F, TargetObjectWriter->getRType3(Entry.Type));
1342         write(*F, TargetObjectWriter->getRType2(Entry.Type));
1343         write(*F, TargetObjectWriter->getRType(Entry.Type));
1344       } else {
1345         struct ELF::Elf64_Rela ERE64;
1346         ERE64.setSymbolAndType(Index, Entry.Type);
1347         write(*F, ERE64.r_info);
1348       }
1349       if (hasRelocationAddend())
1350         write(*F, Entry.Addend);
1351     } else {
1352       write(*F, uint32_t(Entry.Offset));
1353
1354       struct ELF::Elf32_Rela ERE32;
1355       ERE32.setSymbolAndType(Index, Entry.Type);
1356       write(*F, ERE32.r_info);
1357
1358       if (hasRelocationAddend())
1359         write(*F, uint32_t(Entry.Addend));
1360     }
1361   }
1362 }
1363
1364 void ELFObjectWriter::CreateMetadataSections(
1365     MCAssembler &Asm, MCAsmLayout &Layout, SectionIndexMapTy &SectionIndexMap) {
1366   MCContext &Ctx = Asm.getContext();
1367   MCDataFragment *F;
1368
1369   unsigned EntrySize = is64Bit() ? ELF::SYMENTRY_SIZE64 : ELF::SYMENTRY_SIZE32;
1370
1371   // We construct .shstrtab, .symtab and .strtab in this order to match gnu as.
1372   const MCSectionELF *ShstrtabSection =
1373       Ctx.getELFSection(".shstrtab", ELF::SHT_STRTAB, 0);
1374   MCSectionData &ShstrtabSD = Asm.getOrCreateSectionData(*ShstrtabSection);
1375   ShstrtabSD.setAlignment(1);
1376   ShstrtabIndex = SectionIndexMap.size() + 1;
1377   SectionIndexMap[ShstrtabSection] = ShstrtabIndex;
1378
1379   const MCSectionELF *SymtabSection =
1380     Ctx.getELFSection(".symtab", ELF::SHT_SYMTAB, 0,
1381                       EntrySize, "");
1382   MCSectionData &SymtabSD = Asm.getOrCreateSectionData(*SymtabSection);
1383   SymtabSD.setAlignment(is64Bit() ? 8 : 4);
1384   SymbolTableIndex = SectionIndexMap.size() + 1;
1385   SectionIndexMap[SymtabSection] = SymbolTableIndex;
1386
1387   const MCSectionELF *StrtabSection;
1388   StrtabSection = Ctx.getELFSection(".strtab", ELF::SHT_STRTAB, 0);
1389   MCSectionData &StrtabSD = Asm.getOrCreateSectionData(*StrtabSection);
1390   StrtabSD.setAlignment(1);
1391   StringTableIndex = SectionIndexMap.size() + 1;
1392   SectionIndexMap[StrtabSection] = StringTableIndex;
1393
1394   // Symbol table
1395   F = new MCDataFragment(&SymtabSD);
1396   WriteSymbolTable(F, Asm, Layout, SectionIndexMap);
1397
1398   F = new MCDataFragment(&StrtabSD);
1399   F->getContents().append(StrTabBuilder.data().begin(),
1400                           StrTabBuilder.data().end());
1401
1402   F = new MCDataFragment(&ShstrtabSD);
1403
1404   // Section header string table.
1405   for (auto it = Asm.begin(), ie = Asm.end(); it != ie; ++it) {
1406     const MCSectionELF &Section =
1407       static_cast<const MCSectionELF&>(it->getSection());
1408     ShStrTabBuilder.add(Section.getSectionName());
1409   }
1410   ShStrTabBuilder.finalize(StringTableBuilder::ELF);
1411   F->getContents().append(ShStrTabBuilder.data().begin(),
1412                           ShStrTabBuilder.data().end());
1413 }
1414
1415 void ELFObjectWriter::createIndexedSections(
1416     MCAssembler &Asm, MCAsmLayout &Layout, GroupMapTy &GroupMap,
1417     RevGroupMapTy &RevGroupMap, SectionIndexMapTy &SectionIndexMap) {
1418   MCContext &Ctx = Asm.getContext();
1419
1420   // Build the groups
1421   for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
1422        it != ie; ++it) {
1423     const MCSectionELF &Section =
1424       static_cast<const MCSectionELF&>(it->getSection());
1425     if (!(Section.getFlags() & ELF::SHF_GROUP))
1426       continue;
1427
1428     const MCSymbol *SignatureSymbol = Section.getGroup();
1429     Asm.getOrCreateSymbolData(*SignatureSymbol);
1430     const MCSectionELF *&Group = RevGroupMap[SignatureSymbol];
1431     if (!Group) {
1432       Group = Ctx.CreateELFGroupSection();
1433       MCSectionData &Data = Asm.getOrCreateSectionData(*Group);
1434       Data.setAlignment(4);
1435       MCDataFragment *F = new MCDataFragment(&Data);
1436       write(*F, uint32_t(ELF::GRP_COMDAT));
1437     }
1438     GroupMap[Group] = SignatureSymbol;
1439   }
1440
1441   computeIndexMap(Asm, SectionIndexMap);
1442
1443   // Add sections to the groups
1444   for (MCAssembler::const_iterator it = Asm.begin(), ie = Asm.end();
1445        it != ie; ++it) {
1446     const MCSectionELF &Section =
1447       static_cast<const MCSectionELF&>(it->getSection());
1448     if (!(Section.getFlags() & ELF::SHF_GROUP))
1449       continue;
1450     const MCSectionELF *Group = RevGroupMap[Section.getGroup()];
1451     MCSectionData &Data = Asm.getOrCreateSectionData(*Group);
1452     // FIXME: we could use the previous fragment
1453     MCDataFragment *F = new MCDataFragment(&Data);
1454     uint32_t Index = SectionIndexMap.lookup(&Section);
1455     write(*F, Index);
1456   }
1457 }
1458
1459 void ELFObjectWriter::writeSection(MCAssembler &Asm,
1460                                    const SectionIndexMapTy &SectionIndexMap,
1461                                    uint32_t GroupSymbolIndex,
1462                                    uint64_t Offset, uint64_t Size,
1463                                    uint64_t Alignment,
1464                                    const MCSectionELF &Section) {
1465   uint64_t sh_link = 0;
1466   uint64_t sh_info = 0;
1467
1468   switch(Section.getType()) {
1469   default:
1470     // Nothing to do.
1471     break;
1472
1473   case ELF::SHT_DYNAMIC:
1474     sh_link = ShStrTabBuilder.getOffset(Section.getSectionName());
1475     break;
1476
1477   case ELF::SHT_REL:
1478   case ELF::SHT_RELA: {
1479     sh_link = SymbolTableIndex;
1480     assert(sh_link && ".symtab not found");
1481     const MCSectionELF *InfoSection = Section.getAssociatedSection();
1482     sh_info = SectionIndexMap.lookup(InfoSection);
1483     break;
1484   }
1485
1486   case ELF::SHT_SYMTAB:
1487   case ELF::SHT_DYNSYM:
1488     sh_link = StringTableIndex;
1489     sh_info = LastLocalSymbolIndex;
1490     break;
1491
1492   case ELF::SHT_SYMTAB_SHNDX:
1493     sh_link = SymbolTableIndex;
1494     break;
1495
1496   case ELF::SHT_GROUP:
1497     sh_link = SymbolTableIndex;
1498     sh_info = GroupSymbolIndex;
1499     break;
1500   }
1501
1502   if (TargetObjectWriter->getEMachine() == ELF::EM_ARM &&
1503       Section.getType() == ELF::SHT_ARM_EXIDX)
1504     sh_link = SectionIndexMap.lookup(Section.getAssociatedSection());
1505
1506   WriteSecHdrEntry(ShStrTabBuilder.getOffset(Section.getSectionName()),
1507                    Section.getType(),
1508                    Section.getFlags(), 0, Offset, Size, sh_link, sh_info,
1509                    Alignment, Section.getEntrySize());
1510 }
1511
1512 bool ELFObjectWriter::IsELFMetaDataSection(const MCSectionData &SD) {
1513   return SD.getOrdinal() == ~UINT32_C(0) &&
1514     !SD.getSection().isVirtualSection();
1515 }
1516
1517 uint64_t ELFObjectWriter::DataSectionSize(const MCSectionData &SD) {
1518   uint64_t Ret = 0;
1519   for (MCSectionData::const_iterator i = SD.begin(), e = SD.end(); i != e;
1520        ++i) {
1521     const MCFragment &F = *i;
1522     assert(F.getKind() == MCFragment::FT_Data);
1523     Ret += cast<MCDataFragment>(F).getContents().size();
1524   }
1525   return Ret;
1526 }
1527
1528 uint64_t ELFObjectWriter::GetSectionAddressSize(const MCAsmLayout &Layout,
1529                                                 const MCSectionData &SD) {
1530   if (IsELFMetaDataSection(SD))
1531     return DataSectionSize(SD);
1532   return Layout.getSectionAddressSize(&SD);
1533 }
1534
1535 void ELFObjectWriter::writeDataSectionData(MCAssembler &Asm,
1536                                            const MCAsmLayout &Layout,
1537                                            const MCSectionData &SD) {
1538   if (IsELFMetaDataSection(SD)) {
1539     for (MCSectionData::const_iterator i = SD.begin(), e = SD.end(); i != e;
1540          ++i) {
1541       const MCFragment &F = *i;
1542       assert(F.getKind() == MCFragment::FT_Data);
1543       WriteBytes(cast<MCDataFragment>(F).getContents());
1544     }
1545   } else {
1546     Asm.writeSectionData(&SD, Layout);
1547   }
1548 }
1549
1550 void ELFObjectWriter::writeSectionHeader(
1551     ArrayRef<const MCSectionELF *> Sections, MCAssembler &Asm,
1552     const GroupMapTy &GroupMap, const MCAsmLayout &Layout,
1553     const SectionIndexMapTy &SectionIndexMap,
1554     const SectionOffsetMapTy &SectionOffsetMap) {
1555   const unsigned NumSections = Asm.size();
1556
1557   // Null section first.
1558   uint64_t FirstSectionSize =
1559       (NumSections + 1) >= ELF::SHN_LORESERVE ? NumSections + 1 : 0;
1560   uint32_t FirstSectionLink =
1561     ShstrtabIndex >= ELF::SHN_LORESERVE ? ShstrtabIndex : 0;
1562   WriteSecHdrEntry(0, 0, 0, 0, 0, FirstSectionSize, FirstSectionLink, 0, 0, 0);
1563
1564   for (unsigned i = 0; i < NumSections; ++i) {
1565     const MCSectionELF &Section = *Sections[i];
1566     const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1567     uint32_t GroupSymbolIndex;
1568     if (Section.getType() != ELF::SHT_GROUP)
1569       GroupSymbolIndex = 0;
1570     else
1571       GroupSymbolIndex = getSymbolIndexInSymbolTable(Asm,
1572                                                      GroupMap.lookup(&Section));
1573
1574     uint64_t Size = GetSectionAddressSize(Layout, SD);
1575
1576     writeSection(Asm, SectionIndexMap, GroupSymbolIndex,
1577                  SectionOffsetMap.lookup(&Section), Size, SD.getAlignment(),
1578                  Section);
1579   }
1580 }
1581
1582 void ELFObjectWriter::WriteObject(MCAssembler &Asm,
1583                                   const MCAsmLayout &Layout) {
1584   GroupMapTy GroupMap;
1585   RevGroupMapTy RevGroupMap;
1586   SectionIndexMapTy SectionIndexMap;
1587
1588   CompressDebugSections(Asm, const_cast<MCAsmLayout &>(Layout));
1589   createIndexedSections(Asm, const_cast<MCAsmLayout &>(Layout), GroupMap,
1590                         RevGroupMap, SectionIndexMap);
1591
1592   // Compute symbol table information.
1593   computeSymbolTable(Asm, Layout, SectionIndexMap, RevGroupMap);
1594
1595   WriteRelocations(Asm, const_cast<MCAsmLayout &>(Layout));
1596
1597   CreateMetadataSections(const_cast<MCAssembler&>(Asm),
1598                          const_cast<MCAsmLayout&>(Layout),
1599                          SectionIndexMap);
1600
1601   unsigned NumSections = Asm.size();
1602   std::vector<const MCSectionELF*> Sections;
1603   Sections.resize(NumSections);
1604
1605   for (auto &Pair : SectionIndexMap)
1606     Sections[Pair.second - 1] = Pair.first;
1607
1608   SectionOffsetMapTy SectionOffsetMap;
1609
1610   // Write out the ELF header ...
1611   WriteHeader(Asm, NumSections + 1);
1612
1613   // ... then the sections ...
1614   for (unsigned i = 0; i < NumSections; ++i) {
1615     const MCSectionELF &Section = *Sections[i];
1616     const MCSectionData &SD = Asm.getOrCreateSectionData(Section);
1617     uint64_t Padding = OffsetToAlignment(OS.tell(), SD.getAlignment());
1618     WriteZeros(Padding);
1619
1620     // Remember the offset into the file for this section.
1621     SectionOffsetMap[&Section] = OS.tell();
1622
1623     writeDataSectionData(Asm, Layout, SD);
1624   }
1625
1626   uint64_t NaturalAlignment = is64Bit() ? 8 : 4;
1627   uint64_t Padding = OffsetToAlignment(OS.tell(), NaturalAlignment);
1628   WriteZeros(Padding);
1629
1630   const unsigned SectionHeaderOffset = OS.tell();
1631
1632   // ... then the section header table ...
1633   writeSectionHeader(Sections, Asm, GroupMap, Layout, SectionIndexMap,
1634                      SectionOffsetMap);
1635
1636   if (is64Bit()) {
1637     uint64_t Val = SectionHeaderOffset;
1638     if (sys::IsLittleEndianHost != IsLittleEndian)
1639       sys::swapByteOrder(Val);
1640     OS.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1641               offsetof(ELF::Elf64_Ehdr, e_shoff));
1642   } else {
1643     uint32_t Val = SectionHeaderOffset;
1644     if (sys::IsLittleEndianHost != IsLittleEndian)
1645       sys::swapByteOrder(Val);
1646     OS.pwrite(reinterpret_cast<char *>(&Val), sizeof(Val),
1647               offsetof(ELF::Elf32_Ehdr, e_shoff));
1648   }
1649 }
1650
1651 bool ELFObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
1652     const MCAssembler &Asm, const MCSymbolData &DataA,
1653     const MCSymbolData *DataB, const MCFragment &FB, bool InSet,
1654     bool IsPCRel) const {
1655   if (!InSet && (::isWeak(DataA) || (DataB && ::isWeak(*DataB))))
1656     return false;
1657   return MCObjectWriter::IsSymbolRefDifferenceFullyResolvedImpl(
1658       Asm, DataA, DataB, FB, InSet, IsPCRel);
1659 }
1660
1661 bool ELFObjectWriter::isWeak(const MCSymbolData &SD) const {
1662   return ::isWeak(SD);
1663 }
1664
1665 MCObjectWriter *llvm::createELFObjectWriter(MCELFObjectTargetWriter *MOTW,
1666                                             raw_pwrite_stream &OS,
1667                                             bool IsLittleEndian) {
1668   return new ELFObjectWriter(MOTW, OS, IsLittleEndian);
1669 }