Simplify code. No functionality change.
[oota-llvm.git] / lib / IR / Type.cpp
1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Module.h"
18 #include <algorithm>
19 #include <cstdarg>
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 //                         Type Class Implementation
24 //===----------------------------------------------------------------------===//
25
26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27   switch (IDNumber) {
28   case VoidTyID      : return getVoidTy(C);
29   case HalfTyID      : return getHalfTy(C);
30   case FloatTyID     : return getFloatTy(C);
31   case DoubleTyID    : return getDoubleTy(C);
32   case X86_FP80TyID  : return getX86_FP80Ty(C);
33   case FP128TyID     : return getFP128Ty(C);
34   case PPC_FP128TyID : return getPPC_FP128Ty(C);
35   case LabelTyID     : return getLabelTy(C);
36   case MetadataTyID  : return getMetadataTy(C);
37   case X86_MMXTyID   : return getX86_MMXTy(C);
38   default:
39     return 0;
40   }
41 }
42
43 /// getScalarType - If this is a vector type, return the element type,
44 /// otherwise return this.
45 Type *Type::getScalarType() {
46   if (VectorType *VTy = dyn_cast<VectorType>(this))
47     return VTy->getElementType();
48   return this;
49 }
50
51 const Type *Type::getScalarType() const {
52   if (const VectorType *VTy = dyn_cast<VectorType>(this))
53     return VTy->getElementType();
54   return this;
55 }
56
57 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
58 bool Type::isIntegerTy(unsigned Bitwidth) const {
59   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
60 }
61
62 // canLosslesslyBitCastTo - Return true if this type can be converted to
63 // 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
64 //
65 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
66   // Identity cast means no change so return true
67   if (this == Ty) 
68     return true;
69   
70   // They are not convertible unless they are at least first class types
71   if (!this->isFirstClassType() || !Ty->isFirstClassType())
72     return false;
73
74   // Vector -> Vector conversions are always lossless if the two vector types
75   // have the same size, otherwise not.  Also, 64-bit vector types can be
76   // converted to x86mmx.
77   if (const VectorType *thisPTy = dyn_cast<VectorType>(this)) {
78     if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
79       return thisPTy->getBitWidth() == thatPTy->getBitWidth();
80     if (Ty->getTypeID() == Type::X86_MMXTyID &&
81         thisPTy->getBitWidth() == 64)
82       return true;
83   }
84
85   if (this->getTypeID() == Type::X86_MMXTyID)
86     if (const VectorType *thatPTy = dyn_cast<VectorType>(Ty))
87       if (thatPTy->getBitWidth() == 64)
88         return true;
89
90   // At this point we have only various mismatches of the first class types
91   // remaining and ptr->ptr. Just select the lossless conversions. Everything
92   // else is not lossless.
93   if (this->isPointerTy())
94     return Ty->isPointerTy();
95   return false;  // Other types have no identity values
96 }
97
98 bool Type::isEmptyTy() const {
99   const ArrayType *ATy = dyn_cast<ArrayType>(this);
100   if (ATy) {
101     unsigned NumElements = ATy->getNumElements();
102     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
103   }
104
105   const StructType *STy = dyn_cast<StructType>(this);
106   if (STy) {
107     unsigned NumElements = STy->getNumElements();
108     for (unsigned i = 0; i < NumElements; ++i)
109       if (!STy->getElementType(i)->isEmptyTy())
110         return false;
111     return true;
112   }
113
114   return false;
115 }
116
117 unsigned Type::getPrimitiveSizeInBits() const {
118   switch (getTypeID()) {
119   case Type::HalfTyID: return 16;
120   case Type::FloatTyID: return 32;
121   case Type::DoubleTyID: return 64;
122   case Type::X86_FP80TyID: return 80;
123   case Type::FP128TyID: return 128;
124   case Type::PPC_FP128TyID: return 128;
125   case Type::X86_MMXTyID: return 64;
126   case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
127   case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
128   default: return 0;
129   }
130 }
131
132 /// getScalarSizeInBits - If this is a vector type, return the
133 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
134 /// getPrimitiveSizeInBits value for this type.
135 unsigned Type::getScalarSizeInBits() {
136   return getScalarType()->getPrimitiveSizeInBits();
137 }
138
139 /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
140 /// is only valid on floating point types.  If the FP type does not
141 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
142 int Type::getFPMantissaWidth() const {
143   if (const VectorType *VTy = dyn_cast<VectorType>(this))
144     return VTy->getElementType()->getFPMantissaWidth();
145   assert(isFloatingPointTy() && "Not a floating point type!");
146   if (getTypeID() == HalfTyID) return 11;
147   if (getTypeID() == FloatTyID) return 24;
148   if (getTypeID() == DoubleTyID) return 53;
149   if (getTypeID() == X86_FP80TyID) return 64;
150   if (getTypeID() == FP128TyID) return 113;
151   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
152   return -1;
153 }
154
155 /// isSizedDerivedType - Derived types like structures and arrays are sized
156 /// iff all of the members of the type are sized as well.  Since asking for
157 /// their size is relatively uncommon, move this operation out of line.
158 bool Type::isSizedDerivedType() const {
159   if (this->isIntegerTy())
160     return true;
161
162   if (const ArrayType *ATy = dyn_cast<ArrayType>(this))
163     return ATy->getElementType()->isSized();
164
165   if (const VectorType *VTy = dyn_cast<VectorType>(this))
166     return VTy->getElementType()->isSized();
167
168   if (!this->isStructTy()) 
169     return false;
170
171   return cast<StructType>(this)->isSized();
172 }
173
174 //===----------------------------------------------------------------------===//
175 //                         Subclass Helper Methods
176 //===----------------------------------------------------------------------===//
177
178 unsigned Type::getIntegerBitWidth() const {
179   return cast<IntegerType>(this)->getBitWidth();
180 }
181
182 bool Type::isFunctionVarArg() const {
183   return cast<FunctionType>(this)->isVarArg();
184 }
185
186 Type *Type::getFunctionParamType(unsigned i) const {
187   return cast<FunctionType>(this)->getParamType(i);
188 }
189
190 unsigned Type::getFunctionNumParams() const {
191   return cast<FunctionType>(this)->getNumParams();
192 }
193
194 StringRef Type::getStructName() const {
195   return cast<StructType>(this)->getName();
196 }
197
198 unsigned Type::getStructNumElements() const {
199   return cast<StructType>(this)->getNumElements();
200 }
201
202 Type *Type::getStructElementType(unsigned N) const {
203   return cast<StructType>(this)->getElementType(N);
204 }
205
206 Type *Type::getSequentialElementType() const {
207   return cast<SequentialType>(this)->getElementType();
208 }
209
210 uint64_t Type::getArrayNumElements() const {
211   return cast<ArrayType>(this)->getNumElements();
212 }
213
214 unsigned Type::getVectorNumElements() const {
215   return cast<VectorType>(this)->getNumElements();
216 }
217
218 unsigned Type::getPointerAddressSpace() const {
219   return cast<PointerType>(getScalarType())->getAddressSpace();
220 }
221
222
223 //===----------------------------------------------------------------------===//
224 //                          Primitive 'Type' data
225 //===----------------------------------------------------------------------===//
226
227 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
228 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
229 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
230 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
231 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
232 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
233 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
234 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
235 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
236 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
237
238 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
239 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
240 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
241 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
242 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
243
244 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
245   return IntegerType::get(C, N);
246 }
247
248 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
249   return getHalfTy(C)->getPointerTo(AS);
250 }
251
252 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
253   return getFloatTy(C)->getPointerTo(AS);
254 }
255
256 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
257   return getDoubleTy(C)->getPointerTo(AS);
258 }
259
260 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
261   return getX86_FP80Ty(C)->getPointerTo(AS);
262 }
263
264 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
265   return getFP128Ty(C)->getPointerTo(AS);
266 }
267
268 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
269   return getPPC_FP128Ty(C)->getPointerTo(AS);
270 }
271
272 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
273   return getX86_MMXTy(C)->getPointerTo(AS);
274 }
275
276 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
277   return getIntNTy(C, N)->getPointerTo(AS);
278 }
279
280 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
281   return getInt1Ty(C)->getPointerTo(AS);
282 }
283
284 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
285   return getInt8Ty(C)->getPointerTo(AS);
286 }
287
288 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
289   return getInt16Ty(C)->getPointerTo(AS);
290 }
291
292 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
293   return getInt32Ty(C)->getPointerTo(AS);
294 }
295
296 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
297   return getInt64Ty(C)->getPointerTo(AS);
298 }
299
300
301 //===----------------------------------------------------------------------===//
302 //                       IntegerType Implementation
303 //===----------------------------------------------------------------------===//
304
305 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
306   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
307   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
308   
309   // Check for the built-in integer types
310   switch (NumBits) {
311   case  1: return cast<IntegerType>(Type::getInt1Ty(C));
312   case  8: return cast<IntegerType>(Type::getInt8Ty(C));
313   case 16: return cast<IntegerType>(Type::getInt16Ty(C));
314   case 32: return cast<IntegerType>(Type::getInt32Ty(C));
315   case 64: return cast<IntegerType>(Type::getInt64Ty(C));
316   default: 
317     break;
318   }
319   
320   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
321   
322   if (Entry == 0)
323     Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
324   
325   return Entry;
326 }
327
328 bool IntegerType::isPowerOf2ByteWidth() const {
329   unsigned BitWidth = getBitWidth();
330   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
331 }
332
333 APInt IntegerType::getMask() const {
334   return APInt::getAllOnesValue(getBitWidth());
335 }
336
337 //===----------------------------------------------------------------------===//
338 //                       FunctionType Implementation
339 //===----------------------------------------------------------------------===//
340
341 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
342                            bool IsVarArgs)
343   : Type(Result->getContext(), FunctionTyID) {
344   Type **SubTys = reinterpret_cast<Type**>(this+1);
345   assert(isValidReturnType(Result) && "invalid return type for function");
346   setSubclassData(IsVarArgs);
347
348   SubTys[0] = const_cast<Type*>(Result);
349
350   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
351     assert(isValidArgumentType(Params[i]) &&
352            "Not a valid type for function argument!");
353     SubTys[i+1] = Params[i];
354   }
355
356   ContainedTys = SubTys;
357   NumContainedTys = Params.size() + 1; // + 1 for result type
358 }
359
360 // FunctionType::get - The factory function for the FunctionType class.
361 FunctionType *FunctionType::get(Type *ReturnType,
362                                 ArrayRef<Type*> Params, bool isVarArg) {
363   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
364   FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
365   LLVMContextImpl::FunctionTypeMap::iterator I =
366     pImpl->FunctionTypes.find_as(Key);
367   FunctionType *FT;
368
369   if (I == pImpl->FunctionTypes.end()) {
370     FT = (FunctionType*) pImpl->TypeAllocator.
371       Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
372                AlignOf<FunctionType>::Alignment);
373     new (FT) FunctionType(ReturnType, Params, isVarArg);
374     pImpl->FunctionTypes[FT] = true;
375   } else {
376     FT = I->first;
377   }
378
379   return FT;
380 }
381
382 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
383   return get(Result, None, isVarArg);
384 }
385
386 /// isValidReturnType - Return true if the specified type is valid as a return
387 /// type.
388 bool FunctionType::isValidReturnType(Type *RetTy) {
389   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
390   !RetTy->isMetadataTy();
391 }
392
393 /// isValidArgumentType - Return true if the specified type is valid as an
394 /// argument type.
395 bool FunctionType::isValidArgumentType(Type *ArgTy) {
396   return ArgTy->isFirstClassType();
397 }
398
399 //===----------------------------------------------------------------------===//
400 //                       StructType Implementation
401 //===----------------------------------------------------------------------===//
402
403 // Primitive Constructors.
404
405 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 
406                             bool isPacked) {
407   LLVMContextImpl *pImpl = Context.pImpl;
408   AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
409   LLVMContextImpl::StructTypeMap::iterator I =
410     pImpl->AnonStructTypes.find_as(Key);
411   StructType *ST;
412
413   if (I == pImpl->AnonStructTypes.end()) {
414     // Value not found.  Create a new type!
415     ST = new (Context.pImpl->TypeAllocator) StructType(Context);
416     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
417     ST->setBody(ETypes, isPacked);
418     Context.pImpl->AnonStructTypes[ST] = true;
419   } else {
420     ST = I->first;
421   }
422
423   return ST;
424 }
425
426 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
427   assert(isOpaque() && "Struct body already set!");
428   
429   setSubclassData(getSubclassData() | SCDB_HasBody);
430   if (isPacked)
431     setSubclassData(getSubclassData() | SCDB_Packed);
432
433   unsigned NumElements = Elements.size();
434   Type **Elts = getContext().pImpl->TypeAllocator.Allocate<Type*>(NumElements);
435   memcpy(Elts, Elements.data(), sizeof(Elements[0]) * NumElements);
436   
437   ContainedTys = Elts;
438   NumContainedTys = NumElements;
439 }
440
441 void StructType::setName(StringRef Name) {
442   if (Name == getName()) return;
443
444   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
445   typedef StringMap<StructType *>::MapEntryTy EntryTy;
446
447   // If this struct already had a name, remove its symbol table entry. Don't
448   // delete the data yet because it may be part of the new name.
449   if (SymbolTableEntry)
450     SymbolTable.remove((EntryTy *)SymbolTableEntry);
451
452   // If this is just removing the name, we're done.
453   if (Name.empty()) {
454     if (SymbolTableEntry) {
455       // Delete the old string data.
456       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
457       SymbolTableEntry = 0;
458     }
459     return;
460   }
461   
462   // Look up the entry for the name.
463   EntryTy *Entry = &getContext().pImpl->NamedStructTypes.GetOrCreateValue(Name);
464   
465   // While we have a name collision, try a random rename.
466   if (Entry->getValue()) {
467     SmallString<64> TempStr(Name);
468     TempStr.push_back('.');
469     raw_svector_ostream TmpStream(TempStr);
470     unsigned NameSize = Name.size();
471    
472     do {
473       TempStr.resize(NameSize + 1);
474       TmpStream.resync();
475       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
476       
477       Entry = &getContext().pImpl->
478                  NamedStructTypes.GetOrCreateValue(TmpStream.str());
479     } while (Entry->getValue());
480   }
481
482   // Okay, we found an entry that isn't used.  It's us!
483   Entry->setValue(this);
484
485   // Delete the old string data.
486   if (SymbolTableEntry)
487     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
488   SymbolTableEntry = Entry;
489 }
490
491 //===----------------------------------------------------------------------===//
492 // StructType Helper functions.
493
494 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
495   StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
496   if (!Name.empty())
497     ST->setName(Name);
498   return ST;
499 }
500
501 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
502   return get(Context, None, isPacked);
503 }
504
505 StructType *StructType::get(Type *type, ...) {
506   assert(type != 0 && "Cannot create a struct type with no elements with this");
507   LLVMContext &Ctx = type->getContext();
508   va_list ap;
509   SmallVector<llvm::Type*, 8> StructFields;
510   va_start(ap, type);
511   while (type) {
512     StructFields.push_back(type);
513     type = va_arg(ap, llvm::Type*);
514   }
515   return llvm::StructType::get(Ctx, StructFields);
516 }
517
518 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
519                                StringRef Name, bool isPacked) {
520   StructType *ST = create(Context, Name);
521   ST->setBody(Elements, isPacked);
522   return ST;
523 }
524
525 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
526   return create(Context, Elements, StringRef());
527 }
528
529 StructType *StructType::create(LLVMContext &Context) {
530   return create(Context, StringRef());
531 }
532
533 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
534                                bool isPacked) {
535   assert(!Elements.empty() &&
536          "This method may not be invoked with an empty list");
537   return create(Elements[0]->getContext(), Elements, Name, isPacked);
538 }
539
540 StructType *StructType::create(ArrayRef<Type*> Elements) {
541   assert(!Elements.empty() &&
542          "This method may not be invoked with an empty list");
543   return create(Elements[0]->getContext(), Elements, StringRef());
544 }
545
546 StructType *StructType::create(StringRef Name, Type *type, ...) {
547   assert(type != 0 && "Cannot create a struct type with no elements with this");
548   LLVMContext &Ctx = type->getContext();
549   va_list ap;
550   SmallVector<llvm::Type*, 8> StructFields;
551   va_start(ap, type);
552   while (type) {
553     StructFields.push_back(type);
554     type = va_arg(ap, llvm::Type*);
555   }
556   return llvm::StructType::create(Ctx, StructFields, Name);
557 }
558
559 bool StructType::isSized() const {
560   if ((getSubclassData() & SCDB_IsSized) != 0)
561     return true;
562   if (isOpaque())
563     return false;
564
565   // Okay, our struct is sized if all of the elements are, but if one of the
566   // elements is opaque, the struct isn't sized *yet*, but may become sized in
567   // the future, so just bail out without caching.
568   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
569     if (!(*I)->isSized())
570       return false;
571
572   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
573   // we find a sized type, as types can only move from opaque to sized, not the
574   // other way.
575   const_cast<StructType*>(this)->setSubclassData(
576     getSubclassData() | SCDB_IsSized);
577   return true;
578 }
579
580 StringRef StructType::getName() const {
581   assert(!isLiteral() && "Literal structs never have names");
582   if (SymbolTableEntry == 0) return StringRef();
583   
584   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
585 }
586
587 void StructType::setBody(Type *type, ...) {
588   assert(type != 0 && "Cannot create a struct type with no elements with this");
589   va_list ap;
590   SmallVector<llvm::Type*, 8> StructFields;
591   va_start(ap, type);
592   while (type) {
593     StructFields.push_back(type);
594     type = va_arg(ap, llvm::Type*);
595   }
596   setBody(StructFields);
597 }
598
599 bool StructType::isValidElementType(Type *ElemTy) {
600   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
601          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
602 }
603
604 /// isLayoutIdentical - Return true if this is layout identical to the
605 /// specified struct.
606 bool StructType::isLayoutIdentical(StructType *Other) const {
607   if (this == Other) return true;
608   
609   if (isPacked() != Other->isPacked() ||
610       getNumElements() != Other->getNumElements())
611     return false;
612   
613   return std::equal(element_begin(), element_end(), Other->element_begin());
614 }
615
616 /// getTypeByName - Return the type with the specified name, or null if there
617 /// is none by that name.
618 StructType *Module::getTypeByName(StringRef Name) const {
619   return getContext().pImpl->NamedStructTypes.lookup(Name);
620 }
621
622
623 //===----------------------------------------------------------------------===//
624 //                       CompositeType Implementation
625 //===----------------------------------------------------------------------===//
626
627 Type *CompositeType::getTypeAtIndex(const Value *V) {
628   if (StructType *STy = dyn_cast<StructType>(this)) {
629     unsigned Idx =
630       (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
631     assert(indexValid(Idx) && "Invalid structure index!");
632     return STy->getElementType(Idx);
633   }
634
635   return cast<SequentialType>(this)->getElementType();
636 }
637 Type *CompositeType::getTypeAtIndex(unsigned Idx) {
638   if (StructType *STy = dyn_cast<StructType>(this)) {
639     assert(indexValid(Idx) && "Invalid structure index!");
640     return STy->getElementType(Idx);
641   }
642   
643   return cast<SequentialType>(this)->getElementType();
644 }
645 bool CompositeType::indexValid(const Value *V) const {
646   if (const StructType *STy = dyn_cast<StructType>(this)) {
647     // Structure indexes require (vectors of) 32-bit integer constants.  In the
648     // vector case all of the indices must be equal.
649     if (!V->getType()->getScalarType()->isIntegerTy(32))
650       return false;
651     const Constant *C = dyn_cast<Constant>(V);
652     if (C && V->getType()->isVectorTy())
653       C = C->getSplatValue();
654     const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
655     return CU && CU->getZExtValue() < STy->getNumElements();
656   }
657
658   // Sequential types can be indexed by any integer.
659   return V->getType()->isIntOrIntVectorTy();
660 }
661
662 bool CompositeType::indexValid(unsigned Idx) const {
663   if (const StructType *STy = dyn_cast<StructType>(this))
664     return Idx < STy->getNumElements();
665   // Sequential types can be indexed by any integer.
666   return true;
667 }
668
669
670 //===----------------------------------------------------------------------===//
671 //                           ArrayType Implementation
672 //===----------------------------------------------------------------------===//
673
674 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
675   : SequentialType(ArrayTyID, ElType) {
676   NumElements = NumEl;
677 }
678
679 ArrayType *ArrayType::get(Type *elementType, uint64_t NumElements) {
680   Type *ElementType = const_cast<Type*>(elementType);
681   assert(isValidElementType(ElementType) && "Invalid type for array element!");
682     
683   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
684   ArrayType *&Entry = 
685     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
686   
687   if (Entry == 0)
688     Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
689   return Entry;
690 }
691
692 bool ArrayType::isValidElementType(Type *ElemTy) {
693   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
694          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy();
695 }
696
697 //===----------------------------------------------------------------------===//
698 //                          VectorType Implementation
699 //===----------------------------------------------------------------------===//
700
701 VectorType::VectorType(Type *ElType, unsigned NumEl)
702   : SequentialType(VectorTyID, ElType) {
703   NumElements = NumEl;
704 }
705
706 VectorType *VectorType::get(Type *elementType, unsigned NumElements) {
707   Type *ElementType = const_cast<Type*>(elementType);
708   assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
709   assert(isValidElementType(ElementType) &&
710          "Elements of a VectorType must be a primitive type");
711   
712   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
713   VectorType *&Entry = ElementType->getContext().pImpl
714     ->VectorTypes[std::make_pair(ElementType, NumElements)];
715   
716   if (Entry == 0)
717     Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
718   return Entry;
719 }
720
721 bool VectorType::isValidElementType(Type *ElemTy) {
722   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
723     ElemTy->isPointerTy();
724 }
725
726 //===----------------------------------------------------------------------===//
727 //                         PointerType Implementation
728 //===----------------------------------------------------------------------===//
729
730 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
731   assert(EltTy && "Can't get a pointer to <null> type!");
732   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
733   
734   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
735   
736   // Since AddressSpace #0 is the common case, we special case it.
737   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
738      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
739
740   if (Entry == 0)
741     Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
742   return Entry;
743 }
744
745
746 PointerType::PointerType(Type *E, unsigned AddrSpace)
747   : SequentialType(PointerTyID, E) {
748 #ifndef NDEBUG
749   const unsigned oldNCT = NumContainedTys;
750 #endif
751   setSubclassData(AddrSpace);
752   // Check for miscompile. PR11652.
753   assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
754 }
755
756 PointerType *Type::getPointerTo(unsigned addrs) {
757   return PointerType::get(this, addrs);
758 }
759
760 bool PointerType::isValidElementType(Type *ElemTy) {
761   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
762          !ElemTy->isMetadataTy();
763 }