[WebAssembly] Implement a new algorithm for placing BLOCK markers
[oota-llvm.git] / lib / IR / Type.cpp
1 //===-- Type.cpp - Implement the Type class -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Type class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Type.h"
15 #include "LLVMContextImpl.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/IR/Module.h"
18 #include <algorithm>
19 #include <cstdarg>
20 using namespace llvm;
21
22 //===----------------------------------------------------------------------===//
23 //                         Type Class Implementation
24 //===----------------------------------------------------------------------===//
25
26 Type *Type::getPrimitiveType(LLVMContext &C, TypeID IDNumber) {
27   switch (IDNumber) {
28   case VoidTyID      : return getVoidTy(C);
29   case HalfTyID      : return getHalfTy(C);
30   case FloatTyID     : return getFloatTy(C);
31   case DoubleTyID    : return getDoubleTy(C);
32   case X86_FP80TyID  : return getX86_FP80Ty(C);
33   case FP128TyID     : return getFP128Ty(C);
34   case PPC_FP128TyID : return getPPC_FP128Ty(C);
35   case LabelTyID     : return getLabelTy(C);
36   case MetadataTyID  : return getMetadataTy(C);
37   case X86_MMXTyID   : return getX86_MMXTy(C);
38   case TokenTyID     : return getTokenTy(C);
39   default:
40     return nullptr;
41   }
42 }
43
44 /// getScalarType - If this is a vector type, return the element type,
45 /// otherwise return this.
46 Type *Type::getScalarType() const {
47   if (auto *VTy = dyn_cast<VectorType>(this))
48     return VTy->getElementType();
49   return const_cast<Type*>(this);
50 }
51
52 /// isIntegerTy - Return true if this is an IntegerType of the specified width.
53 bool Type::isIntegerTy(unsigned Bitwidth) const {
54   return isIntegerTy() && cast<IntegerType>(this)->getBitWidth() == Bitwidth;
55 }
56
57 // canLosslesslyBitCastTo - Return true if this type can be converted to
58 // 'Ty' without any reinterpretation of bits.  For example, i8* to i32*.
59 //
60 bool Type::canLosslesslyBitCastTo(Type *Ty) const {
61   // Identity cast means no change so return true
62   if (this == Ty) 
63     return true;
64   
65   // They are not convertible unless they are at least first class types
66   if (!this->isFirstClassType() || !Ty->isFirstClassType())
67     return false;
68
69   // Vector -> Vector conversions are always lossless if the two vector types
70   // have the same size, otherwise not.  Also, 64-bit vector types can be
71   // converted to x86mmx.
72   if (auto *thisPTy = dyn_cast<VectorType>(this)) {
73     if (auto *thatPTy = dyn_cast<VectorType>(Ty))
74       return thisPTy->getBitWidth() == thatPTy->getBitWidth();
75     if (Ty->getTypeID() == Type::X86_MMXTyID &&
76         thisPTy->getBitWidth() == 64)
77       return true;
78   }
79
80   if (this->getTypeID() == Type::X86_MMXTyID)
81     if (auto *thatPTy = dyn_cast<VectorType>(Ty))
82       if (thatPTy->getBitWidth() == 64)
83         return true;
84
85   // At this point we have only various mismatches of the first class types
86   // remaining and ptr->ptr. Just select the lossless conversions. Everything
87   // else is not lossless. Conservatively assume we can't losslessly convert
88   // between pointers with different address spaces.
89   if (auto *PTy = dyn_cast<PointerType>(this)) {
90     if (auto *OtherPTy = dyn_cast<PointerType>(Ty))
91       return PTy->getAddressSpace() == OtherPTy->getAddressSpace();
92     return false;
93   }
94   return false;  // Other types have no identity values
95 }
96
97 bool Type::isEmptyTy() const {
98   if (auto *ATy = dyn_cast<ArrayType>(this)) {
99     unsigned NumElements = ATy->getNumElements();
100     return NumElements == 0 || ATy->getElementType()->isEmptyTy();
101   }
102
103   if (auto *STy = dyn_cast<StructType>(this)) {
104     unsigned NumElements = STy->getNumElements();
105     for (unsigned i = 0; i < NumElements; ++i)
106       if (!STy->getElementType(i)->isEmptyTy())
107         return false;
108     return true;
109   }
110
111   return false;
112 }
113
114 unsigned Type::getPrimitiveSizeInBits() const {
115   switch (getTypeID()) {
116   case Type::HalfTyID: return 16;
117   case Type::FloatTyID: return 32;
118   case Type::DoubleTyID: return 64;
119   case Type::X86_FP80TyID: return 80;
120   case Type::FP128TyID: return 128;
121   case Type::PPC_FP128TyID: return 128;
122   case Type::X86_MMXTyID: return 64;
123   case Type::IntegerTyID: return cast<IntegerType>(this)->getBitWidth();
124   case Type::VectorTyID:  return cast<VectorType>(this)->getBitWidth();
125   default: return 0;
126   }
127 }
128
129 /// getScalarSizeInBits - If this is a vector type, return the
130 /// getPrimitiveSizeInBits value for the element type. Otherwise return the
131 /// getPrimitiveSizeInBits value for this type.
132 unsigned Type::getScalarSizeInBits() const {
133   return getScalarType()->getPrimitiveSizeInBits();
134 }
135
136 /// getFPMantissaWidth - Return the width of the mantissa of this type.  This
137 /// is only valid on floating point types.  If the FP type does not
138 /// have a stable mantissa (e.g. ppc long double), this method returns -1.
139 int Type::getFPMantissaWidth() const {
140   if (auto *VTy = dyn_cast<VectorType>(this))
141     return VTy->getElementType()->getFPMantissaWidth();
142   assert(isFloatingPointTy() && "Not a floating point type!");
143   if (getTypeID() == HalfTyID) return 11;
144   if (getTypeID() == FloatTyID) return 24;
145   if (getTypeID() == DoubleTyID) return 53;
146   if (getTypeID() == X86_FP80TyID) return 64;
147   if (getTypeID() == FP128TyID) return 113;
148   assert(getTypeID() == PPC_FP128TyID && "unknown fp type");
149   return -1;
150 }
151
152 /// isSizedDerivedType - Derived types like structures and arrays are sized
153 /// iff all of the members of the type are sized as well.  Since asking for
154 /// their size is relatively uncommon, move this operation out of line.
155 bool Type::isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited) const {
156   if (auto *ATy = dyn_cast<ArrayType>(this))
157     return ATy->getElementType()->isSized(Visited);
158
159   if (auto *VTy = dyn_cast<VectorType>(this))
160     return VTy->getElementType()->isSized(Visited);
161
162   return cast<StructType>(this)->isSized(Visited);
163 }
164
165 //===----------------------------------------------------------------------===//
166 //                         Subclass Helper Methods
167 //===----------------------------------------------------------------------===//
168
169 unsigned Type::getIntegerBitWidth() const {
170   return cast<IntegerType>(this)->getBitWidth();
171 }
172
173 bool Type::isFunctionVarArg() const {
174   return cast<FunctionType>(this)->isVarArg();
175 }
176
177 Type *Type::getFunctionParamType(unsigned i) const {
178   return cast<FunctionType>(this)->getParamType(i);
179 }
180
181 unsigned Type::getFunctionNumParams() const {
182   return cast<FunctionType>(this)->getNumParams();
183 }
184
185 StringRef Type::getStructName() const {
186   return cast<StructType>(this)->getName();
187 }
188
189 unsigned Type::getStructNumElements() const {
190   return cast<StructType>(this)->getNumElements();
191 }
192
193 Type *Type::getStructElementType(unsigned N) const {
194   return cast<StructType>(this)->getElementType(N);
195 }
196
197 Type *Type::getSequentialElementType() const {
198   return cast<SequentialType>(this)->getElementType();
199 }
200
201 uint64_t Type::getArrayNumElements() const {
202   return cast<ArrayType>(this)->getNumElements();
203 }
204
205 unsigned Type::getVectorNumElements() const {
206   return cast<VectorType>(this)->getNumElements();
207 }
208
209 unsigned Type::getPointerAddressSpace() const {
210   return cast<PointerType>(getScalarType())->getAddressSpace();
211 }
212
213
214 //===----------------------------------------------------------------------===//
215 //                          Primitive 'Type' data
216 //===----------------------------------------------------------------------===//
217
218 Type *Type::getVoidTy(LLVMContext &C) { return &C.pImpl->VoidTy; }
219 Type *Type::getLabelTy(LLVMContext &C) { return &C.pImpl->LabelTy; }
220 Type *Type::getHalfTy(LLVMContext &C) { return &C.pImpl->HalfTy; }
221 Type *Type::getFloatTy(LLVMContext &C) { return &C.pImpl->FloatTy; }
222 Type *Type::getDoubleTy(LLVMContext &C) { return &C.pImpl->DoubleTy; }
223 Type *Type::getMetadataTy(LLVMContext &C) { return &C.pImpl->MetadataTy; }
224 Type *Type::getTokenTy(LLVMContext &C) { return &C.pImpl->TokenTy; }
225 Type *Type::getX86_FP80Ty(LLVMContext &C) { return &C.pImpl->X86_FP80Ty; }
226 Type *Type::getFP128Ty(LLVMContext &C) { return &C.pImpl->FP128Ty; }
227 Type *Type::getPPC_FP128Ty(LLVMContext &C) { return &C.pImpl->PPC_FP128Ty; }
228 Type *Type::getX86_MMXTy(LLVMContext &C) { return &C.pImpl->X86_MMXTy; }
229
230 IntegerType *Type::getInt1Ty(LLVMContext &C) { return &C.pImpl->Int1Ty; }
231 IntegerType *Type::getInt8Ty(LLVMContext &C) { return &C.pImpl->Int8Ty; }
232 IntegerType *Type::getInt16Ty(LLVMContext &C) { return &C.pImpl->Int16Ty; }
233 IntegerType *Type::getInt32Ty(LLVMContext &C) { return &C.pImpl->Int32Ty; }
234 IntegerType *Type::getInt64Ty(LLVMContext &C) { return &C.pImpl->Int64Ty; }
235 IntegerType *Type::getInt128Ty(LLVMContext &C) { return &C.pImpl->Int128Ty; }
236
237 IntegerType *Type::getIntNTy(LLVMContext &C, unsigned N) {
238   return IntegerType::get(C, N);
239 }
240
241 PointerType *Type::getHalfPtrTy(LLVMContext &C, unsigned AS) {
242   return getHalfTy(C)->getPointerTo(AS);
243 }
244
245 PointerType *Type::getFloatPtrTy(LLVMContext &C, unsigned AS) {
246   return getFloatTy(C)->getPointerTo(AS);
247 }
248
249 PointerType *Type::getDoublePtrTy(LLVMContext &C, unsigned AS) {
250   return getDoubleTy(C)->getPointerTo(AS);
251 }
252
253 PointerType *Type::getX86_FP80PtrTy(LLVMContext &C, unsigned AS) {
254   return getX86_FP80Ty(C)->getPointerTo(AS);
255 }
256
257 PointerType *Type::getFP128PtrTy(LLVMContext &C, unsigned AS) {
258   return getFP128Ty(C)->getPointerTo(AS);
259 }
260
261 PointerType *Type::getPPC_FP128PtrTy(LLVMContext &C, unsigned AS) {
262   return getPPC_FP128Ty(C)->getPointerTo(AS);
263 }
264
265 PointerType *Type::getX86_MMXPtrTy(LLVMContext &C, unsigned AS) {
266   return getX86_MMXTy(C)->getPointerTo(AS);
267 }
268
269 PointerType *Type::getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS) {
270   return getIntNTy(C, N)->getPointerTo(AS);
271 }
272
273 PointerType *Type::getInt1PtrTy(LLVMContext &C, unsigned AS) {
274   return getInt1Ty(C)->getPointerTo(AS);
275 }
276
277 PointerType *Type::getInt8PtrTy(LLVMContext &C, unsigned AS) {
278   return getInt8Ty(C)->getPointerTo(AS);
279 }
280
281 PointerType *Type::getInt16PtrTy(LLVMContext &C, unsigned AS) {
282   return getInt16Ty(C)->getPointerTo(AS);
283 }
284
285 PointerType *Type::getInt32PtrTy(LLVMContext &C, unsigned AS) {
286   return getInt32Ty(C)->getPointerTo(AS);
287 }
288
289 PointerType *Type::getInt64PtrTy(LLVMContext &C, unsigned AS) {
290   return getInt64Ty(C)->getPointerTo(AS);
291 }
292
293
294 //===----------------------------------------------------------------------===//
295 //                       IntegerType Implementation
296 //===----------------------------------------------------------------------===//
297
298 IntegerType *IntegerType::get(LLVMContext &C, unsigned NumBits) {
299   assert(NumBits >= MIN_INT_BITS && "bitwidth too small");
300   assert(NumBits <= MAX_INT_BITS && "bitwidth too large");
301   
302   // Check for the built-in integer types
303   switch (NumBits) {
304   case   1: return cast<IntegerType>(Type::getInt1Ty(C));
305   case   8: return cast<IntegerType>(Type::getInt8Ty(C));
306   case  16: return cast<IntegerType>(Type::getInt16Ty(C));
307   case  32: return cast<IntegerType>(Type::getInt32Ty(C));
308   case  64: return cast<IntegerType>(Type::getInt64Ty(C));
309   case 128: return cast<IntegerType>(Type::getInt128Ty(C));
310   default:
311     break;
312   }
313   
314   IntegerType *&Entry = C.pImpl->IntegerTypes[NumBits];
315
316   if (!Entry)
317     Entry = new (C.pImpl->TypeAllocator) IntegerType(C, NumBits);
318   
319   return Entry;
320 }
321
322 bool IntegerType::isPowerOf2ByteWidth() const {
323   unsigned BitWidth = getBitWidth();
324   return (BitWidth > 7) && isPowerOf2_32(BitWidth);
325 }
326
327 APInt IntegerType::getMask() const {
328   return APInt::getAllOnesValue(getBitWidth());
329 }
330
331 //===----------------------------------------------------------------------===//
332 //                       FunctionType Implementation
333 //===----------------------------------------------------------------------===//
334
335 FunctionType::FunctionType(Type *Result, ArrayRef<Type*> Params,
336                            bool IsVarArgs)
337   : Type(Result->getContext(), FunctionTyID) {
338   Type **SubTys = reinterpret_cast<Type**>(this+1);
339   assert(isValidReturnType(Result) && "invalid return type for function");
340   setSubclassData(IsVarArgs);
341
342   SubTys[0] = Result;
343
344   for (unsigned i = 0, e = Params.size(); i != e; ++i) {
345     assert(isValidArgumentType(Params[i]) &&
346            "Not a valid type for function argument!");
347     SubTys[i+1] = Params[i];
348   }
349
350   ContainedTys = SubTys;
351   NumContainedTys = Params.size() + 1; // + 1 for result type
352 }
353
354 // FunctionType::get - The factory function for the FunctionType class.
355 FunctionType *FunctionType::get(Type *ReturnType,
356                                 ArrayRef<Type*> Params, bool isVarArg) {
357   LLVMContextImpl *pImpl = ReturnType->getContext().pImpl;
358   FunctionTypeKeyInfo::KeyTy Key(ReturnType, Params, isVarArg);
359   auto I = pImpl->FunctionTypes.find_as(Key);
360   FunctionType *FT;
361
362   if (I == pImpl->FunctionTypes.end()) {
363     FT = (FunctionType*) pImpl->TypeAllocator.
364       Allocate(sizeof(FunctionType) + sizeof(Type*) * (Params.size() + 1),
365                AlignOf<FunctionType>::Alignment);
366     new (FT) FunctionType(ReturnType, Params, isVarArg);
367     pImpl->FunctionTypes.insert(FT);
368   } else {
369     FT = *I;
370   }
371
372   return FT;
373 }
374
375 FunctionType *FunctionType::get(Type *Result, bool isVarArg) {
376   return get(Result, None, isVarArg);
377 }
378
379 /// isValidReturnType - Return true if the specified type is valid as a return
380 /// type.
381 bool FunctionType::isValidReturnType(Type *RetTy) {
382   return !RetTy->isFunctionTy() && !RetTy->isLabelTy() &&
383   !RetTy->isMetadataTy();
384 }
385
386 /// isValidArgumentType - Return true if the specified type is valid as an
387 /// argument type.
388 bool FunctionType::isValidArgumentType(Type *ArgTy) {
389   return ArgTy->isFirstClassType();
390 }
391
392 //===----------------------------------------------------------------------===//
393 //                       StructType Implementation
394 //===----------------------------------------------------------------------===//
395
396 // Primitive Constructors.
397
398 StructType *StructType::get(LLVMContext &Context, ArrayRef<Type*> ETypes, 
399                             bool isPacked) {
400   LLVMContextImpl *pImpl = Context.pImpl;
401   AnonStructTypeKeyInfo::KeyTy Key(ETypes, isPacked);
402   auto I = pImpl->AnonStructTypes.find_as(Key);
403   StructType *ST;
404
405   if (I == pImpl->AnonStructTypes.end()) {
406     // Value not found.  Create a new type!
407     ST = new (Context.pImpl->TypeAllocator) StructType(Context);
408     ST->setSubclassData(SCDB_IsLiteral);  // Literal struct.
409     ST->setBody(ETypes, isPacked);
410     Context.pImpl->AnonStructTypes.insert(ST);
411   } else {
412     ST = *I;
413   }
414
415   return ST;
416 }
417
418 void StructType::setBody(ArrayRef<Type*> Elements, bool isPacked) {
419   assert(isOpaque() && "Struct body already set!");
420   
421   setSubclassData(getSubclassData() | SCDB_HasBody);
422   if (isPacked)
423     setSubclassData(getSubclassData() | SCDB_Packed);
424
425   NumContainedTys = Elements.size();
426
427   if (Elements.empty()) {
428     ContainedTys = nullptr;
429     return;
430   }
431
432   ContainedTys = Elements.copy(getContext().pImpl->TypeAllocator).data();
433 }
434
435 void StructType::setName(StringRef Name) {
436   if (Name == getName()) return;
437
438   StringMap<StructType *> &SymbolTable = getContext().pImpl->NamedStructTypes;
439   typedef StringMap<StructType *>::MapEntryTy EntryTy;
440
441   // If this struct already had a name, remove its symbol table entry. Don't
442   // delete the data yet because it may be part of the new name.
443   if (SymbolTableEntry)
444     SymbolTable.remove((EntryTy *)SymbolTableEntry);
445
446   // If this is just removing the name, we're done.
447   if (Name.empty()) {
448     if (SymbolTableEntry) {
449       // Delete the old string data.
450       ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
451       SymbolTableEntry = nullptr;
452     }
453     return;
454   }
455   
456   // Look up the entry for the name.
457   auto IterBool =
458       getContext().pImpl->NamedStructTypes.insert(std::make_pair(Name, this));
459
460   // While we have a name collision, try a random rename.
461   if (!IterBool.second) {
462     SmallString<64> TempStr(Name);
463     TempStr.push_back('.');
464     raw_svector_ostream TmpStream(TempStr);
465     unsigned NameSize = Name.size();
466    
467     do {
468       TempStr.resize(NameSize + 1);
469       TmpStream << getContext().pImpl->NamedStructTypesUniqueID++;
470
471       IterBool = getContext().pImpl->NamedStructTypes.insert(
472           std::make_pair(TmpStream.str(), this));
473     } while (!IterBool.second);
474   }
475
476   // Delete the old string data.
477   if (SymbolTableEntry)
478     ((EntryTy *)SymbolTableEntry)->Destroy(SymbolTable.getAllocator());
479   SymbolTableEntry = &*IterBool.first;
480 }
481
482 //===----------------------------------------------------------------------===//
483 // StructType Helper functions.
484
485 StructType *StructType::create(LLVMContext &Context, StringRef Name) {
486   StructType *ST = new (Context.pImpl->TypeAllocator) StructType(Context);
487   if (!Name.empty())
488     ST->setName(Name);
489   return ST;
490 }
491
492 StructType *StructType::get(LLVMContext &Context, bool isPacked) {
493   return get(Context, None, isPacked);
494 }
495
496 StructType *StructType::get(Type *type, ...) {
497   assert(type && "Cannot create a struct type with no elements with this");
498   LLVMContext &Ctx = type->getContext();
499   va_list ap;
500   SmallVector<llvm::Type*, 8> StructFields;
501   va_start(ap, type);
502   while (type) {
503     StructFields.push_back(type);
504     type = va_arg(ap, llvm::Type*);
505   }
506   auto *Ret = llvm::StructType::get(Ctx, StructFields);
507   va_end(ap);
508   return Ret;
509 }
510
511 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements,
512                                StringRef Name, bool isPacked) {
513   StructType *ST = create(Context, Name);
514   ST->setBody(Elements, isPacked);
515   return ST;
516 }
517
518 StructType *StructType::create(LLVMContext &Context, ArrayRef<Type*> Elements) {
519   return create(Context, Elements, StringRef());
520 }
521
522 StructType *StructType::create(LLVMContext &Context) {
523   return create(Context, StringRef());
524 }
525
526 StructType *StructType::create(ArrayRef<Type*> Elements, StringRef Name,
527                                bool isPacked) {
528   assert(!Elements.empty() &&
529          "This method may not be invoked with an empty list");
530   return create(Elements[0]->getContext(), Elements, Name, isPacked);
531 }
532
533 StructType *StructType::create(ArrayRef<Type*> Elements) {
534   assert(!Elements.empty() &&
535          "This method may not be invoked with an empty list");
536   return create(Elements[0]->getContext(), Elements, StringRef());
537 }
538
539 StructType *StructType::create(StringRef Name, Type *type, ...) {
540   assert(type && "Cannot create a struct type with no elements with this");
541   LLVMContext &Ctx = type->getContext();
542   va_list ap;
543   SmallVector<llvm::Type*, 8> StructFields;
544   va_start(ap, type);
545   while (type) {
546     StructFields.push_back(type);
547     type = va_arg(ap, llvm::Type*);
548   }
549   auto *Ret = llvm::StructType::create(Ctx, StructFields, Name);
550   va_end(ap);
551   return Ret;
552 }
553
554 bool StructType::isSized(SmallPtrSetImpl<Type*> *Visited) const {
555   if ((getSubclassData() & SCDB_IsSized) != 0)
556     return true;
557   if (isOpaque())
558     return false;
559
560   if (Visited && !Visited->insert(const_cast<StructType*>(this)).second)
561     return false;
562
563   // Okay, our struct is sized if all of the elements are, but if one of the
564   // elements is opaque, the struct isn't sized *yet*, but may become sized in
565   // the future, so just bail out without caching.
566   for (element_iterator I = element_begin(), E = element_end(); I != E; ++I)
567     if (!(*I)->isSized(Visited))
568       return false;
569
570   // Here we cheat a bit and cast away const-ness. The goal is to memoize when
571   // we find a sized type, as types can only move from opaque to sized, not the
572   // other way.
573   const_cast<StructType*>(this)->setSubclassData(
574     getSubclassData() | SCDB_IsSized);
575   return true;
576 }
577
578 StringRef StructType::getName() const {
579   assert(!isLiteral() && "Literal structs never have names");
580   if (!SymbolTableEntry) return StringRef();
581
582   return ((StringMapEntry<StructType*> *)SymbolTableEntry)->getKey();
583 }
584
585 void StructType::setBody(Type *type, ...) {
586   assert(type && "Cannot create a struct type with no elements with this");
587   va_list ap;
588   SmallVector<llvm::Type*, 8> StructFields;
589   va_start(ap, type);
590   while (type) {
591     StructFields.push_back(type);
592     type = va_arg(ap, llvm::Type*);
593   }
594   setBody(StructFields);
595   va_end(ap);
596 }
597
598 bool StructType::isValidElementType(Type *ElemTy) {
599   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
600          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
601          !ElemTy->isTokenTy();
602 }
603
604 /// isLayoutIdentical - Return true if this is layout identical to the
605 /// specified struct.
606 bool StructType::isLayoutIdentical(StructType *Other) const {
607   if (this == Other) return true;
608
609   if (isPacked() != Other->isPacked())
610     return false;
611
612   return elements() == Other->elements();
613 }
614
615 /// getTypeByName - Return the type with the specified name, or null if there
616 /// is none by that name.
617 StructType *Module::getTypeByName(StringRef Name) const {
618   return getContext().pImpl->NamedStructTypes.lookup(Name);
619 }
620
621
622 //===----------------------------------------------------------------------===//
623 //                       CompositeType Implementation
624 //===----------------------------------------------------------------------===//
625
626 Type *CompositeType::getTypeAtIndex(const Value *V) const {
627   if (auto *STy = dyn_cast<StructType>(this)) {
628     unsigned Idx =
629       (unsigned)cast<Constant>(V)->getUniqueInteger().getZExtValue();
630     assert(indexValid(Idx) && "Invalid structure index!");
631     return STy->getElementType(Idx);
632   }
633
634   return cast<SequentialType>(this)->getElementType();
635 }
636
637 Type *CompositeType::getTypeAtIndex(unsigned Idx) const{
638   if (auto *STy = dyn_cast<StructType>(this)) {
639     assert(indexValid(Idx) && "Invalid structure index!");
640     return STy->getElementType(Idx);
641   }
642
643   return cast<SequentialType>(this)->getElementType();
644 }
645
646 bool CompositeType::indexValid(const Value *V) const {
647   if (auto *STy = dyn_cast<StructType>(this)) {
648     // Structure indexes require (vectors of) 32-bit integer constants.  In the
649     // vector case all of the indices must be equal.
650     if (!V->getType()->getScalarType()->isIntegerTy(32))
651       return false;
652     const Constant *C = dyn_cast<Constant>(V);
653     if (C && V->getType()->isVectorTy())
654       C = C->getSplatValue();
655     const ConstantInt *CU = dyn_cast_or_null<ConstantInt>(C);
656     return CU && CU->getZExtValue() < STy->getNumElements();
657   }
658
659   // Sequential types can be indexed by any integer.
660   return V->getType()->isIntOrIntVectorTy();
661 }
662
663 bool CompositeType::indexValid(unsigned Idx) const {
664   if (auto *STy = dyn_cast<StructType>(this))
665     return Idx < STy->getNumElements();
666   // Sequential types can be indexed by any integer.
667   return true;
668 }
669
670
671 //===----------------------------------------------------------------------===//
672 //                           ArrayType Implementation
673 //===----------------------------------------------------------------------===//
674
675 ArrayType::ArrayType(Type *ElType, uint64_t NumEl)
676   : SequentialType(ArrayTyID, ElType) {
677   NumElements = NumEl;
678 }
679
680 ArrayType *ArrayType::get(Type *ElementType, uint64_t NumElements) {
681   assert(isValidElementType(ElementType) && "Invalid type for array element!");
682
683   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
684   ArrayType *&Entry = 
685     pImpl->ArrayTypes[std::make_pair(ElementType, NumElements)];
686
687   if (!Entry)
688     Entry = new (pImpl->TypeAllocator) ArrayType(ElementType, NumElements);
689   return Entry;
690 }
691
692 bool ArrayType::isValidElementType(Type *ElemTy) {
693   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
694          !ElemTy->isMetadataTy() && !ElemTy->isFunctionTy() &&
695          !ElemTy->isTokenTy();
696 }
697
698 //===----------------------------------------------------------------------===//
699 //                          VectorType Implementation
700 //===----------------------------------------------------------------------===//
701
702 VectorType::VectorType(Type *ElType, unsigned NumEl)
703   : SequentialType(VectorTyID, ElType) {
704   NumElements = NumEl;
705 }
706
707 VectorType *VectorType::get(Type *ElementType, unsigned NumElements) {
708   assert(NumElements > 0 && "#Elements of a VectorType must be greater than 0");
709   assert(isValidElementType(ElementType) && "Element type of a VectorType must "
710                                             "be an integer, floating point, or "
711                                             "pointer type.");
712
713   LLVMContextImpl *pImpl = ElementType->getContext().pImpl;
714   VectorType *&Entry = ElementType->getContext().pImpl
715     ->VectorTypes[std::make_pair(ElementType, NumElements)];
716
717   if (!Entry)
718     Entry = new (pImpl->TypeAllocator) VectorType(ElementType, NumElements);
719   return Entry;
720 }
721
722 bool VectorType::isValidElementType(Type *ElemTy) {
723   return ElemTy->isIntegerTy() || ElemTy->isFloatingPointTy() ||
724     ElemTy->isPointerTy();
725 }
726
727 //===----------------------------------------------------------------------===//
728 //                         PointerType Implementation
729 //===----------------------------------------------------------------------===//
730
731 PointerType *PointerType::get(Type *EltTy, unsigned AddressSpace) {
732   assert(EltTy && "Can't get a pointer to <null> type!");
733   assert(isValidElementType(EltTy) && "Invalid type for pointer element!");
734   
735   LLVMContextImpl *CImpl = EltTy->getContext().pImpl;
736   
737   // Since AddressSpace #0 is the common case, we special case it.
738   PointerType *&Entry = AddressSpace == 0 ? CImpl->PointerTypes[EltTy]
739      : CImpl->ASPointerTypes[std::make_pair(EltTy, AddressSpace)];
740
741   if (!Entry)
742     Entry = new (CImpl->TypeAllocator) PointerType(EltTy, AddressSpace);
743   return Entry;
744 }
745
746
747 PointerType::PointerType(Type *E, unsigned AddrSpace)
748   : SequentialType(PointerTyID, E) {
749 #ifndef NDEBUG
750   const unsigned oldNCT = NumContainedTys;
751 #endif
752   setSubclassData(AddrSpace);
753   // Check for miscompile. PR11652.
754   assert(oldNCT == NumContainedTys && "bitfield written out of bounds?");
755 }
756
757 PointerType *Type::getPointerTo(unsigned addrs) const {
758   return PointerType::get(const_cast<Type*>(this), addrs);
759 }
760
761 bool PointerType::isValidElementType(Type *ElemTy) {
762   return !ElemTy->isVoidTy() && !ElemTy->isLabelTy() &&
763          !ElemTy->isMetadataTy() && !ElemTy->isTokenTy();
764 }
765
766 bool PointerType::isLoadableOrStorableType(Type *ElemTy) {
767   return isValidElementType(ElemTy) && !ElemTy->isFunctionTy();
768 }