Move the name pointer out of Value into a map that lives on the
[oota-llvm.git] / lib / IR / Metadata.cpp
1 //===- Metadata.cpp - Implement Metadata classes --------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Metadata classes.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/IR/Metadata.h"
15 #include "LLVMContextImpl.h"
16 #include "MetadataImpl.h"
17 #include "SymbolTableListTraitsImpl.h"
18 #include "llvm/ADT/DenseMap.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallString.h"
22 #include "llvm/ADT/StringMap.h"
23 #include "llvm/IR/ConstantRange.h"
24 #include "llvm/IR/DebugInfoMetadata.h"
25 #include "llvm/IR/Instruction.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ValueHandle.h"
29
30 using namespace llvm;
31
32 MetadataAsValue::MetadataAsValue(Type *Ty, Metadata *MD)
33     : Value(Ty, MetadataAsValueVal), MD(MD) {
34   track();
35 }
36
37 MetadataAsValue::~MetadataAsValue() {
38   getType()->getContext().pImpl->MetadataAsValues.erase(MD);
39   untrack();
40 }
41
42 /// \brief Canonicalize metadata arguments to intrinsics.
43 ///
44 /// To support bitcode upgrades (and assembly semantic sugar) for \a
45 /// MetadataAsValue, we need to canonicalize certain metadata.
46 ///
47 ///   - nullptr is replaced by an empty MDNode.
48 ///   - An MDNode with a single null operand is replaced by an empty MDNode.
49 ///   - An MDNode whose only operand is a \a ConstantAsMetadata gets skipped.
50 ///
51 /// This maintains readability of bitcode from when metadata was a type of
52 /// value, and these bridges were unnecessary.
53 static Metadata *canonicalizeMetadataForValue(LLVMContext &Context,
54                                               Metadata *MD) {
55   if (!MD)
56     // !{}
57     return MDNode::get(Context, None);
58
59   // Return early if this isn't a single-operand MDNode.
60   auto *N = dyn_cast<MDNode>(MD);
61   if (!N || N->getNumOperands() != 1)
62     return MD;
63
64   if (!N->getOperand(0))
65     // !{}
66     return MDNode::get(Context, None);
67
68   if (auto *C = dyn_cast<ConstantAsMetadata>(N->getOperand(0)))
69     // Look through the MDNode.
70     return C;
71
72   return MD;
73 }
74
75 MetadataAsValue *MetadataAsValue::get(LLVMContext &Context, Metadata *MD) {
76   MD = canonicalizeMetadataForValue(Context, MD);
77   auto *&Entry = Context.pImpl->MetadataAsValues[MD];
78   if (!Entry)
79     Entry = new MetadataAsValue(Type::getMetadataTy(Context), MD);
80   return Entry;
81 }
82
83 MetadataAsValue *MetadataAsValue::getIfExists(LLVMContext &Context,
84                                               Metadata *MD) {
85   MD = canonicalizeMetadataForValue(Context, MD);
86   auto &Store = Context.pImpl->MetadataAsValues;
87   return Store.lookup(MD);
88 }
89
90 void MetadataAsValue::handleChangedMetadata(Metadata *MD) {
91   LLVMContext &Context = getContext();
92   MD = canonicalizeMetadataForValue(Context, MD);
93   auto &Store = Context.pImpl->MetadataAsValues;
94
95   // Stop tracking the old metadata.
96   Store.erase(this->MD);
97   untrack();
98   this->MD = nullptr;
99
100   // Start tracking MD, or RAUW if necessary.
101   auto *&Entry = Store[MD];
102   if (Entry) {
103     replaceAllUsesWith(Entry);
104     delete this;
105     return;
106   }
107
108   this->MD = MD;
109   track();
110   Entry = this;
111 }
112
113 void MetadataAsValue::track() {
114   if (MD)
115     MetadataTracking::track(&MD, *MD, *this);
116 }
117
118 void MetadataAsValue::untrack() {
119   if (MD)
120     MetadataTracking::untrack(MD);
121 }
122
123 void ReplaceableMetadataImpl::addRef(void *Ref, OwnerTy Owner) {
124   bool WasInserted =
125       UseMap.insert(std::make_pair(Ref, std::make_pair(Owner, NextIndex)))
126           .second;
127   (void)WasInserted;
128   assert(WasInserted && "Expected to add a reference");
129
130   ++NextIndex;
131   assert(NextIndex != 0 && "Unexpected overflow");
132 }
133
134 void ReplaceableMetadataImpl::dropRef(void *Ref) {
135   bool WasErased = UseMap.erase(Ref);
136   (void)WasErased;
137   assert(WasErased && "Expected to drop a reference");
138 }
139
140 void ReplaceableMetadataImpl::moveRef(void *Ref, void *New,
141                                       const Metadata &MD) {
142   auto I = UseMap.find(Ref);
143   assert(I != UseMap.end() && "Expected to move a reference");
144   auto OwnerAndIndex = I->second;
145   UseMap.erase(I);
146   bool WasInserted = UseMap.insert(std::make_pair(New, OwnerAndIndex)).second;
147   (void)WasInserted;
148   assert(WasInserted && "Expected to add a reference");
149
150   // Check that the references are direct if there's no owner.
151   (void)MD;
152   assert((OwnerAndIndex.first || *static_cast<Metadata **>(Ref) == &MD) &&
153          "Reference without owner must be direct");
154   assert((OwnerAndIndex.first || *static_cast<Metadata **>(New) == &MD) &&
155          "Reference without owner must be direct");
156 }
157
158 void ReplaceableMetadataImpl::replaceAllUsesWith(Metadata *MD) {
159   assert(!(MD && isa<MDNode>(MD) && cast<MDNode>(MD)->isTemporary()) &&
160          "Expected non-temp node");
161
162   if (UseMap.empty())
163     return;
164
165   // Copy out uses since UseMap will get touched below.
166   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
167   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
168   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
169     return L.second.second < R.second.second;
170   });
171   for (const auto &Pair : Uses) {
172     // Check that this Ref hasn't disappeared after RAUW (when updating a
173     // previous Ref).
174     if (!UseMap.count(Pair.first))
175       continue;
176
177     OwnerTy Owner = Pair.second.first;
178     if (!Owner) {
179       // Update unowned tracking references directly.
180       Metadata *&Ref = *static_cast<Metadata **>(Pair.first);
181       Ref = MD;
182       if (MD)
183         MetadataTracking::track(Ref);
184       UseMap.erase(Pair.first);
185       continue;
186     }
187
188     // Check for MetadataAsValue.
189     if (Owner.is<MetadataAsValue *>()) {
190       Owner.get<MetadataAsValue *>()->handleChangedMetadata(MD);
191       continue;
192     }
193
194     // There's a Metadata owner -- dispatch.
195     Metadata *OwnerMD = Owner.get<Metadata *>();
196     switch (OwnerMD->getMetadataID()) {
197 #define HANDLE_METADATA_LEAF(CLASS)                                            \
198   case Metadata::CLASS##Kind:                                                  \
199     cast<CLASS>(OwnerMD)->handleChangedOperand(Pair.first, MD);                \
200     continue;
201 #include "llvm/IR/Metadata.def"
202     default:
203       llvm_unreachable("Invalid metadata subclass");
204     }
205   }
206   assert(UseMap.empty() && "Expected all uses to be replaced");
207 }
208
209 void ReplaceableMetadataImpl::resolveAllUses(bool ResolveUsers) {
210   if (UseMap.empty())
211     return;
212
213   if (!ResolveUsers) {
214     UseMap.clear();
215     return;
216   }
217
218   // Copy out uses since UseMap could get touched below.
219   typedef std::pair<void *, std::pair<OwnerTy, uint64_t>> UseTy;
220   SmallVector<UseTy, 8> Uses(UseMap.begin(), UseMap.end());
221   std::sort(Uses.begin(), Uses.end(), [](const UseTy &L, const UseTy &R) {
222     return L.second.second < R.second.second;
223   });
224   UseMap.clear();
225   for (const auto &Pair : Uses) {
226     auto Owner = Pair.second.first;
227     if (!Owner)
228       continue;
229     if (Owner.is<MetadataAsValue *>())
230       continue;
231
232     // Resolve MDNodes that point at this.
233     auto *OwnerMD = dyn_cast<MDNode>(Owner.get<Metadata *>());
234     if (!OwnerMD)
235       continue;
236     if (OwnerMD->isResolved())
237       continue;
238     OwnerMD->decrementUnresolvedOperandCount();
239   }
240 }
241
242 static Function *getLocalFunction(Value *V) {
243   assert(V && "Expected value");
244   if (auto *A = dyn_cast<Argument>(V))
245     return A->getParent();
246   if (BasicBlock *BB = cast<Instruction>(V)->getParent())
247     return BB->getParent();
248   return nullptr;
249 }
250
251 ValueAsMetadata *ValueAsMetadata::get(Value *V) {
252   assert(V && "Unexpected null Value");
253
254   auto &Context = V->getContext();
255   auto *&Entry = Context.pImpl->ValuesAsMetadata[V];
256   if (!Entry) {
257     assert((isa<Constant>(V) || isa<Argument>(V) || isa<Instruction>(V)) &&
258            "Expected constant or function-local value");
259     assert(!V->IsUsedByMD &&
260            "Expected this to be the only metadata use");
261     V->IsUsedByMD = true;
262     if (auto *C = dyn_cast<Constant>(V))
263       Entry = new ConstantAsMetadata(C);
264     else
265       Entry = new LocalAsMetadata(V);
266   }
267
268   return Entry;
269 }
270
271 ValueAsMetadata *ValueAsMetadata::getIfExists(Value *V) {
272   assert(V && "Unexpected null Value");
273   return V->getContext().pImpl->ValuesAsMetadata.lookup(V);
274 }
275
276 void ValueAsMetadata::handleDeletion(Value *V) {
277   assert(V && "Expected valid value");
278
279   auto &Store = V->getType()->getContext().pImpl->ValuesAsMetadata;
280   auto I = Store.find(V);
281   if (I == Store.end())
282     return;
283
284   // Remove old entry from the map.
285   ValueAsMetadata *MD = I->second;
286   assert(MD && "Expected valid metadata");
287   assert(MD->getValue() == V && "Expected valid mapping");
288   Store.erase(I);
289
290   // Delete the metadata.
291   MD->replaceAllUsesWith(nullptr);
292   delete MD;
293 }
294
295 void ValueAsMetadata::handleRAUW(Value *From, Value *To) {
296   assert(From && "Expected valid value");
297   assert(To && "Expected valid value");
298   assert(From != To && "Expected changed value");
299   assert(From->getType() == To->getType() && "Unexpected type change");
300
301   LLVMContext &Context = From->getType()->getContext();
302   auto &Store = Context.pImpl->ValuesAsMetadata;
303   auto I = Store.find(From);
304   if (I == Store.end()) {
305     assert(!From->IsUsedByMD &&
306            "Expected From not to be used by metadata");
307     return;
308   }
309
310   // Remove old entry from the map.
311   assert(From->IsUsedByMD &&
312          "Expected From to be used by metadata");
313   From->IsUsedByMD = false;
314   ValueAsMetadata *MD = I->second;
315   assert(MD && "Expected valid metadata");
316   assert(MD->getValue() == From && "Expected valid mapping");
317   Store.erase(I);
318
319   if (isa<LocalAsMetadata>(MD)) {
320     if (auto *C = dyn_cast<Constant>(To)) {
321       // Local became a constant.
322       MD->replaceAllUsesWith(ConstantAsMetadata::get(C));
323       delete MD;
324       return;
325     }
326     if (getLocalFunction(From) && getLocalFunction(To) &&
327         getLocalFunction(From) != getLocalFunction(To)) {
328       // Function changed.
329       MD->replaceAllUsesWith(nullptr);
330       delete MD;
331       return;
332     }
333   } else if (!isa<Constant>(To)) {
334     // Changed to function-local value.
335     MD->replaceAllUsesWith(nullptr);
336     delete MD;
337     return;
338   }
339
340   auto *&Entry = Store[To];
341   if (Entry) {
342     // The target already exists.
343     MD->replaceAllUsesWith(Entry);
344     delete MD;
345     return;
346   }
347
348   // Update MD in place (and update the map entry).
349   assert(!To->IsUsedByMD &&
350          "Expected this to be the only metadata use");
351   To->IsUsedByMD = true;
352   MD->V = To;
353   Entry = MD;
354 }
355
356 //===----------------------------------------------------------------------===//
357 // MDString implementation.
358 //
359
360 MDString *MDString::get(LLVMContext &Context, StringRef Str) {
361   auto &Store = Context.pImpl->MDStringCache;
362   auto I = Store.find(Str);
363   if (I != Store.end())
364     return &I->second;
365
366   auto *Entry =
367       StringMapEntry<MDString>::Create(Str, Store.getAllocator(), MDString());
368   bool WasInserted = Store.insert(Entry);
369   (void)WasInserted;
370   assert(WasInserted && "Expected entry to be inserted");
371   Entry->second.Entry = Entry;
372   return &Entry->second;
373 }
374
375 StringRef MDString::getString() const {
376   assert(Entry && "Expected to find string map entry");
377   return Entry->first();
378 }
379
380 //===----------------------------------------------------------------------===//
381 // MDNode implementation.
382 //
383
384 void *MDNode::operator new(size_t Size, unsigned NumOps) {
385   void *Ptr = ::operator new(Size + NumOps * sizeof(MDOperand));
386   MDOperand *O = static_cast<MDOperand *>(Ptr);
387   for (MDOperand *E = O + NumOps; O != E; ++O)
388     (void)new (O) MDOperand;
389   return O;
390 }
391
392 void MDNode::operator delete(void *Mem) {
393   MDNode *N = static_cast<MDNode *>(Mem);
394   MDOperand *O = static_cast<MDOperand *>(Mem);
395   for (MDOperand *E = O - N->NumOperands; O != E; --O)
396     (O - 1)->~MDOperand();
397   ::operator delete(O);
398 }
399
400 MDNode::MDNode(LLVMContext &Context, unsigned ID, StorageType Storage,
401                ArrayRef<Metadata *> Ops1, ArrayRef<Metadata *> Ops2)
402     : Metadata(ID, Storage), NumOperands(Ops1.size() + Ops2.size()),
403       NumUnresolved(0), Context(Context) {
404   unsigned Op = 0;
405   for (Metadata *MD : Ops1)
406     setOperand(Op++, MD);
407   for (Metadata *MD : Ops2)
408     setOperand(Op++, MD);
409
410   if (isDistinct())
411     return;
412
413   if (isUniqued())
414     // Check whether any operands are unresolved, requiring re-uniquing.  If
415     // not, don't support RAUW.
416     if (!countUnresolvedOperands())
417       return;
418
419   this->Context.makeReplaceable(make_unique<ReplaceableMetadataImpl>(Context));
420 }
421
422 TempMDNode MDNode::clone() const {
423   switch (getMetadataID()) {
424   default:
425     llvm_unreachable("Invalid MDNode subclass");
426 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
427   case CLASS##Kind:                                                            \
428     return cast<CLASS>(this)->cloneImpl();
429 #include "llvm/IR/Metadata.def"
430   }
431 }
432
433 static bool isOperandUnresolved(Metadata *Op) {
434   if (auto *N = dyn_cast_or_null<MDNode>(Op))
435     return !N->isResolved();
436   return false;
437 }
438
439 unsigned MDNode::countUnresolvedOperands() {
440   assert(NumUnresolved == 0 && "Expected unresolved ops to be uncounted");
441   NumUnresolved = std::count_if(op_begin(), op_end(), isOperandUnresolved);
442   return NumUnresolved;
443 }
444
445 void MDNode::makeUniqued() {
446   assert(isTemporary() && "Expected this to be temporary");
447   assert(!isResolved() && "Expected this to be unresolved");
448
449   // Enable uniquing callbacks.
450   for (auto &Op : mutable_operands())
451     Op.reset(Op.get(), this);
452
453   // Make this 'uniqued'.
454   Storage = Uniqued;
455   if (!countUnresolvedOperands())
456     resolve();
457
458   assert(isUniqued() && "Expected this to be uniqued");
459 }
460
461 void MDNode::makeDistinct() {
462   assert(isTemporary() && "Expected this to be temporary");
463   assert(!isResolved() && "Expected this to be unresolved");
464
465   // Pretend to be uniqued, resolve the node, and then store in distinct table.
466   Storage = Uniqued;
467   resolve();
468   storeDistinctInContext();
469
470   assert(isDistinct() && "Expected this to be distinct");
471   assert(isResolved() && "Expected this to be resolved");
472 }
473
474 void MDNode::resolve() {
475   assert(isUniqued() && "Expected this to be uniqued");
476   assert(!isResolved() && "Expected this to be unresolved");
477
478   // Move the map, so that this immediately looks resolved.
479   auto Uses = Context.takeReplaceableUses();
480   NumUnresolved = 0;
481   assert(isResolved() && "Expected this to be resolved");
482
483   // Drop RAUW support.
484   Uses->resolveAllUses();
485 }
486
487 void MDNode::resolveAfterOperandChange(Metadata *Old, Metadata *New) {
488   assert(NumUnresolved != 0 && "Expected unresolved operands");
489
490   // Check if an operand was resolved.
491   if (!isOperandUnresolved(Old)) {
492     if (isOperandUnresolved(New))
493       // An operand was un-resolved!
494       ++NumUnresolved;
495   } else if (!isOperandUnresolved(New))
496     decrementUnresolvedOperandCount();
497 }
498
499 void MDNode::decrementUnresolvedOperandCount() {
500   if (!--NumUnresolved)
501     // Last unresolved operand has just been resolved.
502     resolve();
503 }
504
505 void MDNode::resolveCycles() {
506   if (isResolved())
507     return;
508
509   // Resolve this node immediately.
510   resolve();
511
512   // Resolve all operands.
513   for (const auto &Op : operands()) {
514     auto *N = dyn_cast_or_null<MDNode>(Op);
515     if (!N)
516       continue;
517
518     assert(!N->isTemporary() &&
519            "Expected all forward declarations to be resolved");
520     if (!N->isResolved())
521       N->resolveCycles();
522   }
523 }
524
525 static bool hasSelfReference(MDNode *N) {
526   for (Metadata *MD : N->operands())
527     if (MD == N)
528       return true;
529   return false;
530 }
531
532 MDNode *MDNode::replaceWithPermanentImpl() {
533   if (hasSelfReference(this))
534     return replaceWithDistinctImpl();
535   return replaceWithUniquedImpl();
536 }
537
538 MDNode *MDNode::replaceWithUniquedImpl() {
539   // Try to uniquify in place.
540   MDNode *UniquedNode = uniquify();
541
542   if (UniquedNode == this) {
543     makeUniqued();
544     return this;
545   }
546
547   // Collision, so RAUW instead.
548   replaceAllUsesWith(UniquedNode);
549   deleteAsSubclass();
550   return UniquedNode;
551 }
552
553 MDNode *MDNode::replaceWithDistinctImpl() {
554   makeDistinct();
555   return this;
556 }
557
558 void MDTuple::recalculateHash() {
559   setHash(MDTupleInfo::KeyTy::calculateHash(this));
560 }
561
562 void MDNode::dropAllReferences() {
563   for (unsigned I = 0, E = NumOperands; I != E; ++I)
564     setOperand(I, nullptr);
565   if (!isResolved()) {
566     Context.getReplaceableUses()->resolveAllUses(/* ResolveUsers */ false);
567     (void)Context.takeReplaceableUses();
568   }
569 }
570
571 void MDNode::handleChangedOperand(void *Ref, Metadata *New) {
572   unsigned Op = static_cast<MDOperand *>(Ref) - op_begin();
573   assert(Op < getNumOperands() && "Expected valid operand");
574
575   if (!isUniqued()) {
576     // This node is not uniqued.  Just set the operand and be done with it.
577     setOperand(Op, New);
578     return;
579   }
580
581   // This node is uniqued.
582   eraseFromStore();
583
584   Metadata *Old = getOperand(Op);
585   setOperand(Op, New);
586
587   // Drop uniquing for self-reference cycles.
588   if (New == this) {
589     if (!isResolved())
590       resolve();
591     storeDistinctInContext();
592     return;
593   }
594
595   // Re-unique the node.
596   auto *Uniqued = uniquify();
597   if (Uniqued == this) {
598     if (!isResolved())
599       resolveAfterOperandChange(Old, New);
600     return;
601   }
602
603   // Collision.
604   if (!isResolved()) {
605     // Still unresolved, so RAUW.
606     //
607     // First, clear out all operands to prevent any recursion (similar to
608     // dropAllReferences(), but we still need the use-list).
609     for (unsigned O = 0, E = getNumOperands(); O != E; ++O)
610       setOperand(O, nullptr);
611     Context.getReplaceableUses()->replaceAllUsesWith(Uniqued);
612     deleteAsSubclass();
613     return;
614   }
615
616   // Store in non-uniqued form if RAUW isn't possible.
617   storeDistinctInContext();
618 }
619
620 void MDNode::deleteAsSubclass() {
621   switch (getMetadataID()) {
622   default:
623     llvm_unreachable("Invalid subclass of MDNode");
624 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
625   case CLASS##Kind:                                                            \
626     delete cast<CLASS>(this);                                                  \
627     break;
628 #include "llvm/IR/Metadata.def"
629   }
630 }
631
632 template <class T, class InfoT>
633 static T *uniquifyImpl(T *N, DenseSet<T *, InfoT> &Store) {
634   if (T *U = getUniqued(Store, N))
635     return U;
636
637   Store.insert(N);
638   return N;
639 }
640
641 template <class NodeTy> struct MDNode::HasCachedHash {
642   typedef char Yes[1];
643   typedef char No[2];
644   template <class U, U Val> struct SFINAE {};
645
646   template <class U>
647   static Yes &check(SFINAE<void (U::*)(unsigned), &U::setHash> *);
648   template <class U> static No &check(...);
649
650   static const bool value = sizeof(check<NodeTy>(nullptr)) == sizeof(Yes);
651 };
652
653 MDNode *MDNode::uniquify() {
654   assert(!hasSelfReference(this) && "Cannot uniquify a self-referencing node");
655
656   // Try to insert into uniquing store.
657   switch (getMetadataID()) {
658   default:
659     llvm_unreachable("Invalid subclass of MDNode");
660 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
661   case CLASS##Kind: {                                                          \
662     CLASS *SubclassThis = cast<CLASS>(this);                                   \
663     std::integral_constant<bool, HasCachedHash<CLASS>::value>                  \
664         ShouldRecalculateHash;                                                 \
665     dispatchRecalculateHash(SubclassThis, ShouldRecalculateHash);              \
666     return uniquifyImpl(SubclassThis, getContext().pImpl->CLASS##s);           \
667   }
668 #include "llvm/IR/Metadata.def"
669   }
670 }
671
672 void MDNode::eraseFromStore() {
673   switch (getMetadataID()) {
674   default:
675     llvm_unreachable("Invalid subclass of MDNode");
676 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
677   case CLASS##Kind:                                                            \
678     getContext().pImpl->CLASS##s.erase(cast<CLASS>(this));                     \
679     break;
680 #include "llvm/IR/Metadata.def"
681   }
682 }
683
684 MDTuple *MDTuple::getImpl(LLVMContext &Context, ArrayRef<Metadata *> MDs,
685                           StorageType Storage, bool ShouldCreate) {
686   unsigned Hash = 0;
687   if (Storage == Uniqued) {
688     MDTupleInfo::KeyTy Key(MDs);
689     if (auto *N = getUniqued(Context.pImpl->MDTuples, Key))
690       return N;
691     if (!ShouldCreate)
692       return nullptr;
693     Hash = Key.getHash();
694   } else {
695     assert(ShouldCreate && "Expected non-uniqued nodes to always be created");
696   }
697
698   return storeImpl(new (MDs.size()) MDTuple(Context, Storage, Hash, MDs),
699                    Storage, Context.pImpl->MDTuples);
700 }
701
702 void MDNode::deleteTemporary(MDNode *N) {
703   assert(N->isTemporary() && "Expected temporary node");
704   N->replaceAllUsesWith(nullptr);
705   N->deleteAsSubclass();
706 }
707
708 void MDNode::storeDistinctInContext() {
709   assert(isResolved() && "Expected resolved nodes");
710   Storage = Distinct;
711
712   // Reset the hash.
713   switch (getMetadataID()) {
714   default:
715     llvm_unreachable("Invalid subclass of MDNode");
716 #define HANDLE_MDNODE_LEAF(CLASS)                                              \
717   case CLASS##Kind: {                                                          \
718     std::integral_constant<bool, HasCachedHash<CLASS>::value> ShouldResetHash; \
719     dispatchResetHash(cast<CLASS>(this), ShouldResetHash);                     \
720     break;                                                                     \
721   }
722 #include "llvm/IR/Metadata.def"
723   }
724
725   getContext().pImpl->DistinctMDNodes.insert(this);
726 }
727
728 void MDNode::replaceOperandWith(unsigned I, Metadata *New) {
729   if (getOperand(I) == New)
730     return;
731
732   if (!isUniqued()) {
733     setOperand(I, New);
734     return;
735   }
736
737   handleChangedOperand(mutable_begin() + I, New);
738 }
739
740 void MDNode::setOperand(unsigned I, Metadata *New) {
741   assert(I < NumOperands);
742   mutable_begin()[I].reset(New, isUniqued() ? this : nullptr);
743 }
744
745 /// \brief Get a node, or a self-reference that looks like it.
746 ///
747 /// Special handling for finding self-references, for use by \a
748 /// MDNode::concatenate() and \a MDNode::intersect() to maintain behaviour from
749 /// when self-referencing nodes were still uniqued.  If the first operand has
750 /// the same operands as \c Ops, return the first operand instead.
751 static MDNode *getOrSelfReference(LLVMContext &Context,
752                                   ArrayRef<Metadata *> Ops) {
753   if (!Ops.empty())
754     if (MDNode *N = dyn_cast_or_null<MDNode>(Ops[0]))
755       if (N->getNumOperands() == Ops.size() && N == N->getOperand(0)) {
756         for (unsigned I = 1, E = Ops.size(); I != E; ++I)
757           if (Ops[I] != N->getOperand(I))
758             return MDNode::get(Context, Ops);
759         return N;
760       }
761
762   return MDNode::get(Context, Ops);
763 }
764
765 MDNode *MDNode::concatenate(MDNode *A, MDNode *B) {
766   if (!A)
767     return B;
768   if (!B)
769     return A;
770
771   SmallVector<Metadata *, 4> MDs;
772   MDs.reserve(A->getNumOperands() + B->getNumOperands());
773   MDs.append(A->op_begin(), A->op_end());
774   MDs.append(B->op_begin(), B->op_end());
775
776   // FIXME: This preserves long-standing behaviour, but is it really the right
777   // behaviour?  Or was that an unintended side-effect of node uniquing?
778   return getOrSelfReference(A->getContext(), MDs);
779 }
780
781 MDNode *MDNode::intersect(MDNode *A, MDNode *B) {
782   if (!A || !B)
783     return nullptr;
784
785   SmallVector<Metadata *, 4> MDs;
786   for (Metadata *MD : A->operands())
787     if (std::find(B->op_begin(), B->op_end(), MD) != B->op_end())
788       MDs.push_back(MD);
789
790   // FIXME: This preserves long-standing behaviour, but is it really the right
791   // behaviour?  Or was that an unintended side-effect of node uniquing?
792   return getOrSelfReference(A->getContext(), MDs);
793 }
794
795 MDNode *MDNode::getMostGenericAliasScope(MDNode *A, MDNode *B) {
796   if (!A || !B)
797     return nullptr;
798
799   SmallVector<Metadata *, 4> MDs(B->op_begin(), B->op_end());
800   for (Metadata *MD : A->operands())
801     if (std::find(B->op_begin(), B->op_end(), MD) == B->op_end())
802       MDs.push_back(MD);
803
804   // FIXME: This preserves long-standing behaviour, but is it really the right
805   // behaviour?  Or was that an unintended side-effect of node uniquing?
806   return getOrSelfReference(A->getContext(), MDs);
807 }
808
809 MDNode *MDNode::getMostGenericFPMath(MDNode *A, MDNode *B) {
810   if (!A || !B)
811     return nullptr;
812
813   APFloat AVal = mdconst::extract<ConstantFP>(A->getOperand(0))->getValueAPF();
814   APFloat BVal = mdconst::extract<ConstantFP>(B->getOperand(0))->getValueAPF();
815   if (AVal.compare(BVal) == APFloat::cmpLessThan)
816     return A;
817   return B;
818 }
819
820 static bool isContiguous(const ConstantRange &A, const ConstantRange &B) {
821   return A.getUpper() == B.getLower() || A.getLower() == B.getUpper();
822 }
823
824 static bool canBeMerged(const ConstantRange &A, const ConstantRange &B) {
825   return !A.intersectWith(B).isEmptySet() || isContiguous(A, B);
826 }
827
828 static bool tryMergeRange(SmallVectorImpl<ConstantInt *> &EndPoints,
829                           ConstantInt *Low, ConstantInt *High) {
830   ConstantRange NewRange(Low->getValue(), High->getValue());
831   unsigned Size = EndPoints.size();
832   APInt LB = EndPoints[Size - 2]->getValue();
833   APInt LE = EndPoints[Size - 1]->getValue();
834   ConstantRange LastRange(LB, LE);
835   if (canBeMerged(NewRange, LastRange)) {
836     ConstantRange Union = LastRange.unionWith(NewRange);
837     Type *Ty = High->getType();
838     EndPoints[Size - 2] =
839         cast<ConstantInt>(ConstantInt::get(Ty, Union.getLower()));
840     EndPoints[Size - 1] =
841         cast<ConstantInt>(ConstantInt::get(Ty, Union.getUpper()));
842     return true;
843   }
844   return false;
845 }
846
847 static void addRange(SmallVectorImpl<ConstantInt *> &EndPoints,
848                      ConstantInt *Low, ConstantInt *High) {
849   if (!EndPoints.empty())
850     if (tryMergeRange(EndPoints, Low, High))
851       return;
852
853   EndPoints.push_back(Low);
854   EndPoints.push_back(High);
855 }
856
857 MDNode *MDNode::getMostGenericRange(MDNode *A, MDNode *B) {
858   // Given two ranges, we want to compute the union of the ranges. This
859   // is slightly complitade by having to combine the intervals and merge
860   // the ones that overlap.
861
862   if (!A || !B)
863     return nullptr;
864
865   if (A == B)
866     return A;
867
868   // First, walk both lists in older of the lower boundary of each interval.
869   // At each step, try to merge the new interval to the last one we adedd.
870   SmallVector<ConstantInt *, 4> EndPoints;
871   int AI = 0;
872   int BI = 0;
873   int AN = A->getNumOperands() / 2;
874   int BN = B->getNumOperands() / 2;
875   while (AI < AN && BI < BN) {
876     ConstantInt *ALow = mdconst::extract<ConstantInt>(A->getOperand(2 * AI));
877     ConstantInt *BLow = mdconst::extract<ConstantInt>(B->getOperand(2 * BI));
878
879     if (ALow->getValue().slt(BLow->getValue())) {
880       addRange(EndPoints, ALow,
881                mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
882       ++AI;
883     } else {
884       addRange(EndPoints, BLow,
885                mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
886       ++BI;
887     }
888   }
889   while (AI < AN) {
890     addRange(EndPoints, mdconst::extract<ConstantInt>(A->getOperand(2 * AI)),
891              mdconst::extract<ConstantInt>(A->getOperand(2 * AI + 1)));
892     ++AI;
893   }
894   while (BI < BN) {
895     addRange(EndPoints, mdconst::extract<ConstantInt>(B->getOperand(2 * BI)),
896              mdconst::extract<ConstantInt>(B->getOperand(2 * BI + 1)));
897     ++BI;
898   }
899
900   // If we have more than 2 ranges (4 endpoints) we have to try to merge
901   // the last and first ones.
902   unsigned Size = EndPoints.size();
903   if (Size > 4) {
904     ConstantInt *FB = EndPoints[0];
905     ConstantInt *FE = EndPoints[1];
906     if (tryMergeRange(EndPoints, FB, FE)) {
907       for (unsigned i = 0; i < Size - 2; ++i) {
908         EndPoints[i] = EndPoints[i + 2];
909       }
910       EndPoints.resize(Size - 2);
911     }
912   }
913
914   // If in the end we have a single range, it is possible that it is now the
915   // full range. Just drop the metadata in that case.
916   if (EndPoints.size() == 2) {
917     ConstantRange Range(EndPoints[0]->getValue(), EndPoints[1]->getValue());
918     if (Range.isFullSet())
919       return nullptr;
920   }
921
922   SmallVector<Metadata *, 4> MDs;
923   MDs.reserve(EndPoints.size());
924   for (auto *I : EndPoints)
925     MDs.push_back(ConstantAsMetadata::get(I));
926   return MDNode::get(A->getContext(), MDs);
927 }
928
929 //===----------------------------------------------------------------------===//
930 // NamedMDNode implementation.
931 //
932
933 static SmallVector<TrackingMDRef, 4> &getNMDOps(void *Operands) {
934   return *(SmallVector<TrackingMDRef, 4> *)Operands;
935 }
936
937 NamedMDNode::NamedMDNode(const Twine &N)
938     : Name(N.str()), Parent(nullptr),
939       Operands(new SmallVector<TrackingMDRef, 4>()) {}
940
941 NamedMDNode::~NamedMDNode() {
942   dropAllReferences();
943   delete &getNMDOps(Operands);
944 }
945
946 unsigned NamedMDNode::getNumOperands() const {
947   return (unsigned)getNMDOps(Operands).size();
948 }
949
950 MDNode *NamedMDNode::getOperand(unsigned i) const {
951   assert(i < getNumOperands() && "Invalid Operand number!");
952   auto *N = getNMDOps(Operands)[i].get();
953   return cast_or_null<MDNode>(N);
954 }
955
956 void NamedMDNode::addOperand(MDNode *M) { getNMDOps(Operands).emplace_back(M); }
957
958 void NamedMDNode::setOperand(unsigned I, MDNode *New) {
959   assert(I < getNumOperands() && "Invalid operand number");
960   getNMDOps(Operands)[I].reset(New);
961 }
962
963 void NamedMDNode::eraseFromParent() {
964   getParent()->eraseNamedMetadata(this);
965 }
966
967 void NamedMDNode::dropAllReferences() {
968   getNMDOps(Operands).clear();
969 }
970
971 StringRef NamedMDNode::getName() const {
972   return StringRef(Name);
973 }
974
975 //===----------------------------------------------------------------------===//
976 // Instruction Metadata method implementations.
977 //
978 void MDAttachmentMap::set(unsigned ID, MDNode &MD) {
979   for (auto &I : Attachments)
980     if (I.first == ID) {
981       I.second.reset(&MD);
982       return;
983     }
984   Attachments.emplace_back(std::piecewise_construct, std::make_tuple(ID),
985                            std::make_tuple(&MD));
986 }
987
988 void MDAttachmentMap::erase(unsigned ID) {
989   if (empty())
990     return;
991
992   // Common case is one/last value.
993   if (Attachments.back().first == ID) {
994     Attachments.pop_back();
995     return;
996   }
997
998   for (auto I = Attachments.begin(), E = std::prev(Attachments.end()); I != E;
999        ++I)
1000     if (I->first == ID) {
1001       *I = std::move(Attachments.back());
1002       Attachments.pop_back();
1003       return;
1004     }
1005 }
1006
1007 MDNode *MDAttachmentMap::lookup(unsigned ID) const {
1008   for (const auto &I : Attachments)
1009     if (I.first == ID)
1010       return I.second;
1011   return nullptr;
1012 }
1013
1014 void MDAttachmentMap::getAll(
1015     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1016   Result.append(Attachments.begin(), Attachments.end());
1017
1018   // Sort the resulting array so it is stable.
1019   if (Result.size() > 1)
1020     array_pod_sort(Result.begin(), Result.end());
1021 }
1022
1023 void Instruction::setMetadata(StringRef Kind, MDNode *Node) {
1024   if (!Node && !hasMetadata())
1025     return;
1026   setMetadata(getContext().getMDKindID(Kind), Node);
1027 }
1028
1029 MDNode *Instruction::getMetadataImpl(StringRef Kind) const {
1030   return getMetadataImpl(getContext().getMDKindID(Kind));
1031 }
1032
1033 void Instruction::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
1034   SmallSet<unsigned, 5> KnownSet;
1035   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1036
1037   // Drop debug if needed
1038   if (KnownSet.erase(LLVMContext::MD_dbg))
1039     DbgLoc = DebugLoc();
1040
1041   if (!hasMetadataHashEntry())
1042     return; // Nothing to remove!
1043
1044   auto &InstructionMetadata = getContext().pImpl->InstructionMetadata;
1045
1046   if (KnownSet.empty()) {
1047     // Just drop our entry at the store.
1048     InstructionMetadata.erase(this);
1049     setHasMetadataHashEntry(false);
1050     return;
1051   }
1052
1053   auto &Info = InstructionMetadata[this];
1054   Info.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1055     return !KnownSet.count(I.first);
1056   });
1057
1058   if (Info.empty()) {
1059     // Drop our entry at the store.
1060     InstructionMetadata.erase(this);
1061     setHasMetadataHashEntry(false);
1062   }
1063 }
1064
1065 /// setMetadata - Set the metadata of of the specified kind to the specified
1066 /// node.  This updates/replaces metadata if already present, or removes it if
1067 /// Node is null.
1068 void Instruction::setMetadata(unsigned KindID, MDNode *Node) {
1069   if (!Node && !hasMetadata())
1070     return;
1071
1072   // Handle 'dbg' as a special case since it is not stored in the hash table.
1073   if (KindID == LLVMContext::MD_dbg) {
1074     DbgLoc = DebugLoc(Node);
1075     return;
1076   }
1077   
1078   // Handle the case when we're adding/updating metadata on an instruction.
1079   if (Node) {
1080     auto &Info = getContext().pImpl->InstructionMetadata[this];
1081     assert(!Info.empty() == hasMetadataHashEntry() &&
1082            "HasMetadata bit is wonked");
1083     if (Info.empty())
1084       setHasMetadataHashEntry(true);
1085     Info.set(KindID, *Node);
1086     return;
1087   }
1088
1089   // Otherwise, we're removing metadata from an instruction.
1090   assert((hasMetadataHashEntry() ==
1091           (getContext().pImpl->InstructionMetadata.count(this) > 0)) &&
1092          "HasMetadata bit out of date!");
1093   if (!hasMetadataHashEntry())
1094     return;  // Nothing to remove!
1095   auto &Info = getContext().pImpl->InstructionMetadata[this];
1096
1097   // Handle removal of an existing value.
1098   Info.erase(KindID);
1099
1100   if (!Info.empty())
1101     return;
1102
1103   getContext().pImpl->InstructionMetadata.erase(this);
1104   setHasMetadataHashEntry(false);
1105 }
1106
1107 void Instruction::setAAMetadata(const AAMDNodes &N) {
1108   setMetadata(LLVMContext::MD_tbaa, N.TBAA);
1109   setMetadata(LLVMContext::MD_alias_scope, N.Scope);
1110   setMetadata(LLVMContext::MD_noalias, N.NoAlias);
1111 }
1112
1113 MDNode *Instruction::getMetadataImpl(unsigned KindID) const {
1114   // Handle 'dbg' as a special case since it is not stored in the hash table.
1115   if (KindID == LLVMContext::MD_dbg)
1116     return DbgLoc.getAsMDNode();
1117
1118   if (!hasMetadataHashEntry())
1119     return nullptr;
1120   auto &Info = getContext().pImpl->InstructionMetadata[this];
1121   assert(!Info.empty() && "bit out of sync with hash table");
1122
1123   return Info.lookup(KindID);
1124 }
1125
1126 void Instruction::getAllMetadataImpl(
1127     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1128   Result.clear();
1129   
1130   // Handle 'dbg' as a special case since it is not stored in the hash table.
1131   if (DbgLoc) {
1132     Result.push_back(
1133         std::make_pair((unsigned)LLVMContext::MD_dbg, DbgLoc.getAsMDNode()));
1134     if (!hasMetadataHashEntry()) return;
1135   }
1136
1137   assert(hasMetadataHashEntry() &&
1138          getContext().pImpl->InstructionMetadata.count(this) &&
1139          "Shouldn't have called this");
1140   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1141   assert(!Info.empty() && "Shouldn't have called this");
1142   Info.getAll(Result);
1143 }
1144
1145 void Instruction::getAllMetadataOtherThanDebugLocImpl(
1146     SmallVectorImpl<std::pair<unsigned, MDNode *>> &Result) const {
1147   Result.clear();
1148   assert(hasMetadataHashEntry() &&
1149          getContext().pImpl->InstructionMetadata.count(this) &&
1150          "Shouldn't have called this");
1151   const auto &Info = getContext().pImpl->InstructionMetadata.find(this)->second;
1152   assert(!Info.empty() && "Shouldn't have called this");
1153   Info.getAll(Result);
1154 }
1155
1156 /// clearMetadataHashEntries - Clear all hashtable-based metadata from
1157 /// this instruction.
1158 void Instruction::clearMetadataHashEntries() {
1159   assert(hasMetadataHashEntry() && "Caller should check");
1160   getContext().pImpl->InstructionMetadata.erase(this);
1161   setHasMetadataHashEntry(false);
1162 }
1163
1164 MDNode *Function::getMetadata(unsigned KindID) const {
1165   if (!hasMetadata())
1166     return nullptr;
1167   return getContext().pImpl->FunctionMetadata[this].lookup(KindID);
1168 }
1169
1170 MDNode *Function::getMetadata(StringRef Kind) const {
1171   if (!hasMetadata())
1172     return nullptr;
1173   return getMetadata(getContext().getMDKindID(Kind));
1174 }
1175
1176 void Function::setMetadata(unsigned KindID, MDNode *MD) {
1177   if (MD) {
1178     if (!hasMetadata())
1179       setHasMetadataHashEntry(true);
1180
1181     getContext().pImpl->FunctionMetadata[this].set(KindID, *MD);
1182     return;
1183   }
1184
1185   // Nothing to unset.
1186   if (!hasMetadata())
1187     return;
1188
1189   auto &Store = getContext().pImpl->FunctionMetadata[this];
1190   Store.erase(KindID);
1191   if (Store.empty())
1192     clearMetadata();
1193 }
1194
1195 void Function::setMetadata(StringRef Kind, MDNode *MD) {
1196   if (!MD && !hasMetadata())
1197     return;
1198   setMetadata(getContext().getMDKindID(Kind), MD);
1199 }
1200
1201 void Function::getAllMetadata(
1202     SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs) const {
1203   MDs.clear();
1204
1205   if (!hasMetadata())
1206     return;
1207
1208   getContext().pImpl->FunctionMetadata[this].getAll(MDs);
1209 }
1210
1211 void Function::dropUnknownMetadata(ArrayRef<unsigned> KnownIDs) {
1212   if (!hasMetadata())
1213     return;
1214   if (KnownIDs.empty()) {
1215     clearMetadata();
1216     return;
1217   }
1218
1219   SmallSet<unsigned, 5> KnownSet;
1220   KnownSet.insert(KnownIDs.begin(), KnownIDs.end());
1221
1222   auto &Store = getContext().pImpl->FunctionMetadata[this];
1223   assert(!Store.empty());
1224
1225   Store.remove_if([&KnownSet](const std::pair<unsigned, TrackingMDNodeRef> &I) {
1226     return !KnownSet.count(I.first);
1227   });
1228
1229   if (Store.empty())
1230     clearMetadata();
1231 }
1232
1233 void Function::clearMetadata() {
1234   if (!hasMetadata())
1235     return;
1236   getContext().pImpl->FunctionMetadata.erase(this);
1237   setHasMetadataHashEntry(false);
1238 }