Rename VMCore directory to IR.
[oota-llvm.git] / lib / IR / InlineAsm.cpp
1 //===-- InlineAsm.cpp - Implement the InlineAsm class ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the InlineAsm class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/InlineAsm.h"
15 #include "ConstantsContext.h"
16 #include "LLVMContextImpl.h"
17 #include "llvm/DerivedTypes.h"
18 #include <algorithm>
19 #include <cctype>
20 using namespace llvm;
21
22 // Implement the first virtual method in this class in this file so the
23 // InlineAsm vtable is emitted here.
24 InlineAsm::~InlineAsm() {
25 }
26
27
28 InlineAsm *InlineAsm::get(FunctionType *Ty, StringRef AsmString,
29                           StringRef Constraints, bool hasSideEffects,
30                           bool isAlignStack, AsmDialect asmDialect) {
31   InlineAsmKeyType Key(AsmString, Constraints, hasSideEffects, isAlignStack,
32                        asmDialect);
33   LLVMContextImpl *pImpl = Ty->getContext().pImpl;
34   return pImpl->InlineAsms.getOrCreate(PointerType::getUnqual(Ty), Key);
35 }
36
37 InlineAsm::InlineAsm(PointerType *Ty, const std::string &asmString,
38                      const std::string &constraints, bool hasSideEffects,
39                      bool isAlignStack, AsmDialect asmDialect)
40   : Value(Ty, Value::InlineAsmVal),
41     AsmString(asmString), Constraints(constraints),
42     HasSideEffects(hasSideEffects), IsAlignStack(isAlignStack),
43     Dialect(asmDialect) {
44
45   // Do various checks on the constraint string and type.
46   assert(Verify(getFunctionType(), constraints) &&
47          "Function type not legal for constraints!");
48 }
49
50 void InlineAsm::destroyConstant() {
51   getType()->getContext().pImpl->InlineAsms.remove(this);
52   delete this;
53 }
54
55 FunctionType *InlineAsm::getFunctionType() const {
56   return cast<FunctionType>(getType()->getElementType());
57 }
58     
59 ///Default constructor.
60 InlineAsm::ConstraintInfo::ConstraintInfo() :
61   Type(isInput), isEarlyClobber(false),
62   MatchingInput(-1), isCommutative(false),
63   isIndirect(false), isMultipleAlternative(false),
64   currentAlternativeIndex(0) {
65 }
66
67 /// Copy constructor.
68 InlineAsm::ConstraintInfo::ConstraintInfo(const ConstraintInfo &other) :
69   Type(other.Type), isEarlyClobber(other.isEarlyClobber),
70   MatchingInput(other.MatchingInput), isCommutative(other.isCommutative),
71   isIndirect(other.isIndirect), Codes(other.Codes),
72   isMultipleAlternative(other.isMultipleAlternative),
73   multipleAlternatives(other.multipleAlternatives),
74   currentAlternativeIndex(other.currentAlternativeIndex) {
75 }
76
77 /// Parse - Analyze the specified string (e.g. "==&{eax}") and fill in the
78 /// fields in this structure.  If the constraint string is not understood,
79 /// return true, otherwise return false.
80 bool InlineAsm::ConstraintInfo::Parse(StringRef Str,
81                      InlineAsm::ConstraintInfoVector &ConstraintsSoFar) {
82   StringRef::iterator I = Str.begin(), E = Str.end();
83   unsigned multipleAlternativeCount = Str.count('|') + 1;
84   unsigned multipleAlternativeIndex = 0;
85   ConstraintCodeVector *pCodes = &Codes;
86   
87   // Initialize
88   isMultipleAlternative = (multipleAlternativeCount > 1 ? true : false);
89   if (isMultipleAlternative) {
90     multipleAlternatives.resize(multipleAlternativeCount);
91     pCodes = &multipleAlternatives[0].Codes;
92   }
93   Type = isInput;
94   isEarlyClobber = false;
95   MatchingInput = -1;
96   isCommutative = false;
97   isIndirect = false;
98   currentAlternativeIndex = 0;
99   
100   // Parse prefixes.
101   if (*I == '~') {
102     Type = isClobber;
103     ++I;
104   } else if (*I == '=') {
105     ++I;
106     Type = isOutput;
107   }
108   
109   if (*I == '*') {
110     isIndirect = true;
111     ++I;
112   }
113   
114   if (I == E) return true;  // Just a prefix, like "==" or "~".
115   
116   // Parse the modifiers.
117   bool DoneWithModifiers = false;
118   while (!DoneWithModifiers) {
119     switch (*I) {
120     default:
121       DoneWithModifiers = true;
122       break;
123     case '&':     // Early clobber.
124       if (Type != isOutput ||      // Cannot early clobber anything but output.
125           isEarlyClobber)          // Reject &&&&&&
126         return true;
127       isEarlyClobber = true;
128       break;
129     case '%':     // Commutative.
130       if (Type == isClobber ||     // Cannot commute clobbers.
131           isCommutative)           // Reject %%%%%
132         return true;
133       isCommutative = true;
134       break;
135     case '#':     // Comment.
136     case '*':     // Register preferencing.
137       return true;     // Not supported.
138     }
139     
140     if (!DoneWithModifiers) {
141       ++I;
142       if (I == E) return true;   // Just prefixes and modifiers!
143     }
144   }
145   
146   // Parse the various constraints.
147   while (I != E) {
148     if (*I == '{') {   // Physical register reference.
149       // Find the end of the register name.
150       StringRef::iterator ConstraintEnd = std::find(I+1, E, '}');
151       if (ConstraintEnd == E) return true;  // "{foo"
152       pCodes->push_back(std::string(I, ConstraintEnd+1));
153       I = ConstraintEnd+1;
154     } else if (isdigit(*I)) {     // Matching Constraint
155       // Maximal munch numbers.
156       StringRef::iterator NumStart = I;
157       while (I != E && isdigit(*I))
158         ++I;
159       pCodes->push_back(std::string(NumStart, I));
160       unsigned N = atoi(pCodes->back().c_str());
161       // Check that this is a valid matching constraint!
162       if (N >= ConstraintsSoFar.size() || ConstraintsSoFar[N].Type != isOutput||
163           Type != isInput)
164         return true;  // Invalid constraint number.
165       
166       // If Operand N already has a matching input, reject this.  An output
167       // can't be constrained to the same value as multiple inputs.
168       if (isMultipleAlternative) {
169         InlineAsm::SubConstraintInfo &scInfo =
170           ConstraintsSoFar[N].multipleAlternatives[multipleAlternativeIndex];
171         if (scInfo.MatchingInput != -1)
172           return true;
173         // Note that operand #n has a matching input.
174         scInfo.MatchingInput = ConstraintsSoFar.size();
175       } else {
176         if (ConstraintsSoFar[N].hasMatchingInput())
177           return true;
178         // Note that operand #n has a matching input.
179         ConstraintsSoFar[N].MatchingInput = ConstraintsSoFar.size();
180         }
181     } else if (*I == '|') {
182       multipleAlternativeIndex++;
183       pCodes = &multipleAlternatives[multipleAlternativeIndex].Codes;
184       ++I;
185     } else if (*I == '^') {
186       // Multi-letter constraint
187       // FIXME: For now assuming these are 2-character constraints.
188       pCodes->push_back(std::string(I+1, I+3));
189       I += 3;
190     } else {
191       // Single letter constraint.
192       pCodes->push_back(std::string(I, I+1));
193       ++I;
194     }
195   }
196
197   return false;
198 }
199
200 /// selectAlternative - Point this constraint to the alternative constraint
201 /// indicated by the index.
202 void InlineAsm::ConstraintInfo::selectAlternative(unsigned index) {
203   if (index < multipleAlternatives.size()) {
204     currentAlternativeIndex = index;
205     InlineAsm::SubConstraintInfo &scInfo =
206       multipleAlternatives[currentAlternativeIndex];
207     MatchingInput = scInfo.MatchingInput;
208     Codes = scInfo.Codes;
209   }
210 }
211
212 InlineAsm::ConstraintInfoVector
213 InlineAsm::ParseConstraints(StringRef Constraints) {
214   ConstraintInfoVector Result;
215   
216   // Scan the constraints string.
217   for (StringRef::iterator I = Constraints.begin(),
218          E = Constraints.end(); I != E; ) {
219     ConstraintInfo Info;
220
221     // Find the end of this constraint.
222     StringRef::iterator ConstraintEnd = std::find(I, E, ',');
223
224     if (ConstraintEnd == I ||  // Empty constraint like ",,"
225         Info.Parse(StringRef(I, ConstraintEnd-I), Result)) {
226       Result.clear();          // Erroneous constraint?
227       break;
228     }
229
230     Result.push_back(Info);
231     
232     // ConstraintEnd may be either the next comma or the end of the string.  In
233     // the former case, we skip the comma.
234     I = ConstraintEnd;
235     if (I != E) {
236       ++I;
237       if (I == E) { Result.clear(); break; }    // don't allow "xyz,"
238     }
239   }
240   
241   return Result;
242 }
243
244 /// Verify - Verify that the specified constraint string is reasonable for the
245 /// specified function type, and otherwise validate the constraint string.
246 bool InlineAsm::Verify(FunctionType *Ty, StringRef ConstStr) {
247   if (Ty->isVarArg()) return false;
248   
249   ConstraintInfoVector Constraints = ParseConstraints(ConstStr);
250   
251   // Error parsing constraints.
252   if (Constraints.empty() && !ConstStr.empty()) return false;
253   
254   unsigned NumOutputs = 0, NumInputs = 0, NumClobbers = 0;
255   unsigned NumIndirect = 0;
256   
257   for (unsigned i = 0, e = Constraints.size(); i != e; ++i) {
258     switch (Constraints[i].Type) {
259     case InlineAsm::isOutput:
260       if ((NumInputs-NumIndirect) != 0 || NumClobbers != 0)
261         return false;  // outputs before inputs and clobbers.
262       if (!Constraints[i].isIndirect) {
263         ++NumOutputs;
264         break;
265       }
266       ++NumIndirect;
267       // FALLTHROUGH for Indirect Outputs.
268     case InlineAsm::isInput:
269       if (NumClobbers) return false;               // inputs before clobbers.
270       ++NumInputs;
271       break;
272     case InlineAsm::isClobber:
273       ++NumClobbers;
274       break;
275     }
276   }
277   
278   switch (NumOutputs) {
279   case 0:
280     if (!Ty->getReturnType()->isVoidTy()) return false;
281     break;
282   case 1:
283     if (Ty->getReturnType()->isStructTy()) return false;
284     break;
285   default:
286     StructType *STy = dyn_cast<StructType>(Ty->getReturnType());
287     if (STy == 0 || STy->getNumElements() != NumOutputs)
288       return false;
289     break;
290   }      
291   
292   if (Ty->getNumParams() != NumInputs) return false;
293   return true;
294 }
295