[DomTree] verifyDomTree to unconditionally perform DT verification
[oota-llvm.git] / lib / IR / Dominators.cpp
1 //===- Dominators.cpp - Dominator Calculation -----------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements simple dominator construction algorithms for finding
11 // forward dominators.  Postdominators are available in libanalysis, but are not
12 // included in libvmcore, because it's not needed.  Forward dominators are
13 // needed to support the Verifier pass.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/IR/Dominators.h"
18 #include "llvm/ADT/DepthFirstIterator.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/IR/CFG.h"
22 #include "llvm/IR/Instructions.h"
23 #include "llvm/IR/PassManager.h"
24 #include "llvm/Support/CommandLine.h"
25 #include "llvm/Support/Compiler.h"
26 #include "llvm/Support/Debug.h"
27 #include "llvm/Support/GenericDomTreeConstruction.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include <algorithm>
30 using namespace llvm;
31
32 // Always verify dominfo if expensive checking is enabled.
33 #ifdef XDEBUG
34 static bool VerifyDomInfo = true;
35 #else
36 static bool VerifyDomInfo = false;
37 #endif
38 static cl::opt<bool,true>
39 VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
40                cl::desc("Verify dominator info (time consuming)"));
41
42 bool BasicBlockEdge::isSingleEdge() const {
43   const TerminatorInst *TI = Start->getTerminator();
44   unsigned NumEdgesToEnd = 0;
45   for (unsigned int i = 0, n = TI->getNumSuccessors(); i < n; ++i) {
46     if (TI->getSuccessor(i) == End)
47       ++NumEdgesToEnd;
48     if (NumEdgesToEnd >= 2)
49       return false;
50   }
51   assert(NumEdgesToEnd == 1);
52   return true;
53 }
54
55 //===----------------------------------------------------------------------===//
56 //  DominatorTree Implementation
57 //===----------------------------------------------------------------------===//
58 //
59 // Provide public access to DominatorTree information.  Implementation details
60 // can be found in Dominators.h, GenericDomTree.h, and
61 // GenericDomTreeConstruction.h.
62 //
63 //===----------------------------------------------------------------------===//
64
65 TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
66 TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
67
68 #define LLVM_COMMA ,
69 TEMPLATE_INSTANTIATION(void llvm::Calculate<Function LLVM_COMMA BasicBlock *>(
70     DominatorTreeBase<GraphTraits<BasicBlock *>::NodeType> &DT LLVM_COMMA
71         Function &F));
72 TEMPLATE_INSTANTIATION(
73     void llvm::Calculate<Function LLVM_COMMA Inverse<BasicBlock *> >(
74         DominatorTreeBase<GraphTraits<Inverse<BasicBlock *> >::NodeType> &DT
75             LLVM_COMMA Function &F));
76 #undef LLVM_COMMA
77
78 // dominates - Return true if Def dominates a use in User. This performs
79 // the special checks necessary if Def and User are in the same basic block.
80 // Note that Def doesn't dominate a use in Def itself!
81 bool DominatorTree::dominates(const Instruction *Def,
82                               const Instruction *User) const {
83   const BasicBlock *UseBB = User->getParent();
84   const BasicBlock *DefBB = Def->getParent();
85
86   // Any unreachable use is dominated, even if Def == User.
87   if (!isReachableFromEntry(UseBB))
88     return true;
89
90   // Unreachable definitions don't dominate anything.
91   if (!isReachableFromEntry(DefBB))
92     return false;
93
94   // An instruction doesn't dominate a use in itself.
95   if (Def == User)
96     return false;
97
98   // The value defined by an invoke dominates an instruction only if
99   // it dominates every instruction in UseBB.
100   // A PHI is dominated only if the instruction dominates every possible use
101   // in the UseBB.
102   if (isa<InvokeInst>(Def) || isa<PHINode>(User))
103     return dominates(Def, UseBB);
104
105   if (DefBB != UseBB)
106     return dominates(DefBB, UseBB);
107
108   // Loop through the basic block until we find Def or User.
109   BasicBlock::const_iterator I = DefBB->begin();
110   for (; &*I != Def && &*I != User; ++I)
111     /*empty*/;
112
113   return &*I == Def;
114 }
115
116 // true if Def would dominate a use in any instruction in UseBB.
117 // note that dominates(Def, Def->getParent()) is false.
118 bool DominatorTree::dominates(const Instruction *Def,
119                               const BasicBlock *UseBB) const {
120   const BasicBlock *DefBB = Def->getParent();
121
122   // Any unreachable use is dominated, even if DefBB == UseBB.
123   if (!isReachableFromEntry(UseBB))
124     return true;
125
126   // Unreachable definitions don't dominate anything.
127   if (!isReachableFromEntry(DefBB))
128     return false;
129
130   if (DefBB == UseBB)
131     return false;
132
133   const InvokeInst *II = dyn_cast<InvokeInst>(Def);
134   if (!II)
135     return dominates(DefBB, UseBB);
136
137   // Invoke results are only usable in the normal destination, not in the
138   // exceptional destination.
139   BasicBlock *NormalDest = II->getNormalDest();
140   BasicBlockEdge E(DefBB, NormalDest);
141   return dominates(E, UseBB);
142 }
143
144 bool DominatorTree::dominates(const BasicBlockEdge &BBE,
145                               const BasicBlock *UseBB) const {
146   // Assert that we have a single edge. We could handle them by simply
147   // returning false, but since isSingleEdge is linear on the number of
148   // edges, the callers can normally handle them more efficiently.
149   assert(BBE.isSingleEdge());
150
151   // If the BB the edge ends in doesn't dominate the use BB, then the
152   // edge also doesn't.
153   const BasicBlock *Start = BBE.getStart();
154   const BasicBlock *End = BBE.getEnd();
155   if (!dominates(End, UseBB))
156     return false;
157
158   // Simple case: if the end BB has a single predecessor, the fact that it
159   // dominates the use block implies that the edge also does.
160   if (End->getSinglePredecessor())
161     return true;
162
163   // The normal edge from the invoke is critical. Conceptually, what we would
164   // like to do is split it and check if the new block dominates the use.
165   // With X being the new block, the graph would look like:
166   //
167   //        DefBB
168   //          /\      .  .
169   //         /  \     .  .
170   //        /    \    .  .
171   //       /      \   |  |
172   //      A        X  B  C
173   //      |         \ | /
174   //      .          \|/
175   //      .      NormalDest
176   //      .
177   //
178   // Given the definition of dominance, NormalDest is dominated by X iff X
179   // dominates all of NormalDest's predecessors (X, B, C in the example). X
180   // trivially dominates itself, so we only have to find if it dominates the
181   // other predecessors. Since the only way out of X is via NormalDest, X can
182   // only properly dominate a node if NormalDest dominates that node too.
183   for (const_pred_iterator PI = pred_begin(End), E = pred_end(End);
184        PI != E; ++PI) {
185     const BasicBlock *BB = *PI;
186     if (BB == Start)
187       continue;
188
189     if (!dominates(End, BB))
190       return false;
191   }
192   return true;
193 }
194
195 bool DominatorTree::dominates(const BasicBlockEdge &BBE, const Use &U) const {
196   // Assert that we have a single edge. We could handle them by simply
197   // returning false, but since isSingleEdge is linear on the number of
198   // edges, the callers can normally handle them more efficiently.
199   assert(BBE.isSingleEdge());
200
201   Instruction *UserInst = cast<Instruction>(U.getUser());
202   // A PHI in the end of the edge is dominated by it.
203   PHINode *PN = dyn_cast<PHINode>(UserInst);
204   if (PN && PN->getParent() == BBE.getEnd() &&
205       PN->getIncomingBlock(U) == BBE.getStart())
206     return true;
207
208   // Otherwise use the edge-dominates-block query, which
209   // handles the crazy critical edge cases properly.
210   const BasicBlock *UseBB;
211   if (PN)
212     UseBB = PN->getIncomingBlock(U);
213   else
214     UseBB = UserInst->getParent();
215   return dominates(BBE, UseBB);
216 }
217
218 bool DominatorTree::dominates(const Instruction *Def, const Use &U) const {
219   Instruction *UserInst = cast<Instruction>(U.getUser());
220   const BasicBlock *DefBB = Def->getParent();
221
222   // Determine the block in which the use happens. PHI nodes use
223   // their operands on edges; simulate this by thinking of the use
224   // happening at the end of the predecessor block.
225   const BasicBlock *UseBB;
226   if (PHINode *PN = dyn_cast<PHINode>(UserInst))
227     UseBB = PN->getIncomingBlock(U);
228   else
229     UseBB = UserInst->getParent();
230
231   // Any unreachable use is dominated, even if Def == User.
232   if (!isReachableFromEntry(UseBB))
233     return true;
234
235   // Unreachable definitions don't dominate anything.
236   if (!isReachableFromEntry(DefBB))
237     return false;
238
239   // Invoke instructions define their return values on the edges
240   // to their normal successors, so we have to handle them specially.
241   // Among other things, this means they don't dominate anything in
242   // their own block, except possibly a phi, so we don't need to
243   // walk the block in any case.
244   if (const InvokeInst *II = dyn_cast<InvokeInst>(Def)) {
245     BasicBlock *NormalDest = II->getNormalDest();
246     BasicBlockEdge E(DefBB, NormalDest);
247     return dominates(E, U);
248   }
249
250   // If the def and use are in different blocks, do a simple CFG dominator
251   // tree query.
252   if (DefBB != UseBB)
253     return dominates(DefBB, UseBB);
254
255   // Ok, def and use are in the same block. If the def is an invoke, it
256   // doesn't dominate anything in the block. If it's a PHI, it dominates
257   // everything in the block.
258   if (isa<PHINode>(UserInst))
259     return true;
260
261   // Otherwise, just loop through the basic block until we find Def or User.
262   BasicBlock::const_iterator I = DefBB->begin();
263   for (; &*I != Def && &*I != UserInst; ++I)
264     /*empty*/;
265
266   return &*I != UserInst;
267 }
268
269 bool DominatorTree::isReachableFromEntry(const Use &U) const {
270   Instruction *I = dyn_cast<Instruction>(U.getUser());
271
272   // ConstantExprs aren't really reachable from the entry block, but they
273   // don't need to be treated like unreachable code either.
274   if (!I) return true;
275
276   // PHI nodes use their operands on their incoming edges.
277   if (PHINode *PN = dyn_cast<PHINode>(I))
278     return isReachableFromEntry(PN->getIncomingBlock(U));
279
280   // Everything else uses their operands in their own block.
281   return isReachableFromEntry(I->getParent());
282 }
283
284 void DominatorTree::verifyDomTree() const {
285   Function &F = *getRoot()->getParent();
286
287   DominatorTree OtherDT;
288   OtherDT.recalculate(F);
289   if (compare(OtherDT)) {
290     errs() << "DominatorTree is not up to date!\nComputed:\n";
291     print(errs());
292     errs() << "\nActual:\n";
293     OtherDT.print(errs());
294     abort();
295   }
296 }
297
298 //===----------------------------------------------------------------------===//
299 //  DominatorTreeAnalysis and related pass implementations
300 //===----------------------------------------------------------------------===//
301 //
302 // This implements the DominatorTreeAnalysis which is used with the new pass
303 // manager. It also implements some methods from utility passes.
304 //
305 //===----------------------------------------------------------------------===//
306
307 DominatorTree DominatorTreeAnalysis::run(Function &F) {
308   DominatorTree DT;
309   DT.recalculate(F);
310   return DT;
311 }
312
313 char DominatorTreeAnalysis::PassID;
314
315 DominatorTreePrinterPass::DominatorTreePrinterPass(raw_ostream &OS) : OS(OS) {}
316
317 PreservedAnalyses DominatorTreePrinterPass::run(Function &F,
318                                                 FunctionAnalysisManager *AM) {
319   OS << "DominatorTree for function: " << F.getName() << "\n";
320   AM->getResult<DominatorTreeAnalysis>(F).print(OS);
321
322   return PreservedAnalyses::all();
323 }
324
325 PreservedAnalyses DominatorTreeVerifierPass::run(Function &F,
326                                                  FunctionAnalysisManager *AM) {
327   AM->getResult<DominatorTreeAnalysis>(F).verifyDomTree();
328
329   return PreservedAnalyses::all();
330 }
331
332 //===----------------------------------------------------------------------===//
333 //  DominatorTreeWrapperPass Implementation
334 //===----------------------------------------------------------------------===//
335 //
336 // The implementation details of the wrapper pass that holds a DominatorTree
337 // suitable for use with the legacy pass manager.
338 //
339 //===----------------------------------------------------------------------===//
340
341 char DominatorTreeWrapperPass::ID = 0;
342 INITIALIZE_PASS(DominatorTreeWrapperPass, "domtree",
343                 "Dominator Tree Construction", true, true)
344
345 bool DominatorTreeWrapperPass::runOnFunction(Function &F) {
346   DT.recalculate(F);
347   return false;
348 }
349
350 void DominatorTreeWrapperPass::verifyAnalysis() const {
351     if (VerifyDomInfo)
352       DT.verifyDomTree();
353 }
354
355 void DominatorTreeWrapperPass::print(raw_ostream &OS, const Module *) const {
356   DT.print(OS);
357 }
358