Make use of common-symbol alignment info in ELF loader.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "RuntimeDyldELF.h"
16 #include "JITRegistrar.h"
17 #include "ObjectImageCommon.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/IntervalMap.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/ExecutionEngine/ObjectImage.h"
24 #include "llvm/ExecutionEngine/ObjectBuffer.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Object/ELF.h"
28 using namespace llvm;
29 using namespace llvm::object;
30
31 namespace {
32
33 static inline
34 error_code check(error_code Err) {
35   if (Err) {
36     report_fatal_error(Err.message());
37   }
38   return Err;
39 }
40
41 template<support::endianness target_endianness, bool is64Bits>
42 class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
43   LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
44
45   typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
46   typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
47   typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
48   typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
49
50   typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;
51
52   typedef typename ELFDataTypeTypedefHelper<
53           target_endianness, is64Bits>::value_type addr_type;
54
55 public:
56   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
57
58   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
59   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
60
61   // Methods for type inquiry through isa, cast and dyn_cast
62   static inline bool classof(const Binary *v) {
63     return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
64             && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
65   }
66   static inline bool classof(
67       const ELFObjectFile<target_endianness, is64Bits> *v) {
68     return v->isDyldType();
69   }
70 };
71
72 template<support::endianness target_endianness, bool is64Bits>
73 class ELFObjectImage : public ObjectImageCommon {
74   protected:
75     DyldELFObject<target_endianness, is64Bits> *DyldObj;
76     bool Registered;
77
78   public:
79     ELFObjectImage(ObjectBuffer *Input,
80                    DyldELFObject<target_endianness, is64Bits> *Obj)
81     : ObjectImageCommon(Input, Obj),
82       DyldObj(Obj),
83       Registered(false) {}
84
85     virtual ~ELFObjectImage() {
86       if (Registered)
87         deregisterWithDebugger();
88     }
89
90     // Subclasses can override these methods to update the image with loaded
91     // addresses for sections and common symbols
92     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
93     {
94       DyldObj->updateSectionAddress(Sec, Addr);
95     }
96
97     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
98     {
99       DyldObj->updateSymbolAddress(Sym, Addr);
100     }
101
102     virtual void registerWithDebugger()
103     {
104       JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
105       Registered = true;
106     }
107     virtual void deregisterWithDebugger()
108     {
109       JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
110     }
111 };
112
113 // The MemoryBuffer passed into this constructor is just a wrapper around the
114 // actual memory.  Ultimately, the Binary parent class will take ownership of
115 // this MemoryBuffer object but not the underlying memory.
116 template<support::endianness target_endianness, bool is64Bits>
117 DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Wrapper,
118                                                           error_code &ec)
119   : ELFObjectFile<target_endianness, is64Bits>(Wrapper, ec) {
120   this->isDyldELFObject = true;
121 }
122
123 template<support::endianness target_endianness, bool is64Bits>
124 void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
125                                                        const SectionRef &Sec,
126                                                        uint64_t Addr) {
127   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
128   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
129                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
130
131   // This assumes the address passed in matches the target address bitness
132   // The template-based type cast handles everything else.
133   shdr->sh_addr = static_cast<addr_type>(Addr);
134 }
135
136 template<support::endianness target_endianness, bool is64Bits>
137 void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
138                                                        const SymbolRef &SymRef,
139                                                        uint64_t Addr) {
140
141   Elf_Sym *sym = const_cast<Elf_Sym*>(
142                                  ELFObjectFile<target_endianness, is64Bits>::
143                                    getSymbol(SymRef.getRawDataRefImpl()));
144
145   // This assumes the address passed in matches the target address bitness
146   // The template-based type cast handles everything else.
147   sym->st_value = static_cast<addr_type>(Addr);
148 }
149
150 } // namespace
151
152
153 namespace llvm {
154
155 ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
156   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
157     llvm_unreachable("Unexpected ELF object size");
158   std::pair<unsigned char, unsigned char> Ident = std::make_pair(
159                          (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
160                          (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
161   error_code ec;
162
163   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
164     DyldELFObject<support::little, false> *Obj =
165            new DyldELFObject<support::little, false>(Buffer->getMemBuffer(), ec);
166     return new ELFObjectImage<support::little, false>(Buffer, Obj);
167   }
168   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
169     DyldELFObject<support::big, false> *Obj =
170            new DyldELFObject<support::big, false>(Buffer->getMemBuffer(), ec);
171     return new ELFObjectImage<support::big, false>(Buffer, Obj);
172   }
173   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
174     DyldELFObject<support::big, true> *Obj =
175            new DyldELFObject<support::big, true>(Buffer->getMemBuffer(), ec);
176     return new ELFObjectImage<support::big, true>(Buffer, Obj);
177   }
178   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
179     DyldELFObject<support::little, true> *Obj =
180            new DyldELFObject<support::little, true>(Buffer->getMemBuffer(), ec);
181     return new ELFObjectImage<support::little, true>(Buffer, Obj);
182   }
183   else
184     llvm_unreachable("Unexpected ELF format");
185 }
186
187 RuntimeDyldELF::~RuntimeDyldELF() {
188 }
189
190 void RuntimeDyldELF::resolveX86_64Relocation(uint8_t *LocalAddress,
191                                              uint64_t FinalAddress,
192                                              uint64_t Value,
193                                              uint32_t Type,
194                                              int64_t Addend) {
195   switch (Type) {
196   default:
197     llvm_unreachable("Relocation type not implemented yet!");
198   break;
199   case ELF::R_X86_64_64: {
200     uint64_t *Target = (uint64_t*)(LocalAddress);
201     *Target = Value + Addend;
202     break;
203   }
204   case ELF::R_X86_64_32:
205   case ELF::R_X86_64_32S: {
206     Value += Addend;
207     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
208            (Type == ELF::R_X86_64_32S && 
209              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
210     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
211     uint32_t *Target = reinterpret_cast<uint32_t*>(LocalAddress);
212     *Target = TruncatedAddr;
213     break;
214   }
215   case ELF::R_X86_64_PC32: {
216     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
217     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
218     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
219     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
220     *Placeholder = TruncOffset;
221     break;
222   }
223   }
224 }
225
226 void RuntimeDyldELF::resolveX86Relocation(uint8_t *LocalAddress,
227                                           uint32_t FinalAddress,
228                                           uint32_t Value,
229                                           uint32_t Type,
230                                           int32_t Addend) {
231   switch (Type) {
232   case ELF::R_386_32: {
233     uint32_t *Target = (uint32_t*)(LocalAddress);
234     uint32_t Placeholder = *Target;
235     *Target = Placeholder + Value + Addend;
236     break;
237   }
238   case ELF::R_386_PC32: {
239     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(LocalAddress);
240     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
241     *Placeholder = RealOffset;
242     break;
243     }
244     default:
245       // There are other relocation types, but it appears these are the
246       // only ones currently used by the LLVM ELF object writer
247       llvm_unreachable("Relocation type not implemented yet!");
248       break;
249   }
250 }
251
252 void RuntimeDyldELF::resolveARMRelocation(uint8_t *LocalAddress,
253                                           uint32_t FinalAddress,
254                                           uint32_t Value,
255                                           uint32_t Type,
256                                           int32_t Addend) {
257   // TODO: Add Thumb relocations.
258   uint32_t* TargetPtr = (uint32_t*)LocalAddress;
259   Value += Addend;
260
261   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: " << LocalAddress
262                << " FinalAddress: " << format("%p",FinalAddress)
263                << " Value: " << format("%x",Value)
264                << " Type: " << format("%x",Type)
265                << " Addend: " << format("%x",Addend)
266                << "\n");
267
268   switch(Type) {
269   default:
270     llvm_unreachable("Not implemented relocation type!");
271
272   // Write a 32bit value to relocation address, taking into account the 
273   // implicit addend encoded in the target.
274   case ELF::R_ARM_ABS32 :
275     *TargetPtr += Value;
276     break;
277
278   // Write first 16 bit of 32 bit value to the mov instruction.
279   // Last 4 bit should be shifted.
280   case ELF::R_ARM_MOVW_ABS_NC :
281     // We are not expecting any other addend in the relocation address.
282     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 
283     // non-contiguous fields.
284     assert((*TargetPtr & 0x000F0FFF) == 0);
285     Value = Value & 0xFFFF;
286     *TargetPtr |= Value & 0xFFF;
287     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
288     break;
289
290   // Write last 16 bit of 32 bit value to the mov instruction.
291   // Last 4 bit should be shifted.
292   case ELF::R_ARM_MOVT_ABS :
293     // We are not expecting any other addend in the relocation address.
294     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
295     assert((*TargetPtr & 0x000F0FFF) == 0);
296     Value = (Value >> 16) & 0xFFFF;
297     *TargetPtr |= Value & 0xFFF;
298     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
299     break;
300
301   // Write 24 bit relative value to the branch instruction.
302   case ELF::R_ARM_PC24 :    // Fall through.
303   case ELF::R_ARM_CALL :    // Fall through.
304   case ELF::R_ARM_JUMP24 :
305     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
306     RelValue = (RelValue & 0x03FFFFFC) >> 2;
307     *TargetPtr &= 0xFF000000;
308     *TargetPtr |= RelValue;
309     break;
310   }
311 }
312
313 void RuntimeDyldELF::resolveMIPSRelocation(uint8_t *LocalAddress,
314                                            uint32_t FinalAddress,
315                                            uint32_t Value,
316                                            uint32_t Type,
317                                            int32_t Addend) {
318   uint32_t* TargetPtr = (uint32_t*)LocalAddress;
319   Value += Addend;
320
321   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: " << LocalAddress
322                << " FinalAddress: " << format("%p",FinalAddress)
323                << " Value: " << format("%x",Value)
324                << " Type: " << format("%x",Type)
325                << " Addend: " << format("%x",Addend)
326                << "\n");
327
328   switch(Type) {
329   default:
330     llvm_unreachable("Not implemented relocation type!");
331     break;
332   case ELF::R_MIPS_32:
333     *TargetPtr = Value + (*TargetPtr);
334     break;
335   case ELF::R_MIPS_26:
336     *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
337     break;
338   case ELF::R_MIPS_HI16:
339     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
340     Value += ((*TargetPtr) & 0x0000ffff) << 16;
341     *TargetPtr = ((*TargetPtr) & 0xffff0000) |
342                  (((Value + 0x8000) >> 16) & 0xffff);
343     break;
344    case ELF::R_MIPS_LO16:
345     Value += ((*TargetPtr) & 0x0000ffff);
346     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
347     break;
348    }
349 }
350
351 // Return the .TOC. section address to R_PPC64_TOC relocations.
352 uint64_t RuntimeDyldELF::findPPC64TOC() const {
353   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
354   // order. The TOC starts where the first of these sections starts.
355   SectionList::const_iterator it = Sections.begin();
356   SectionList::const_iterator ite = Sections.end();
357   for (; it != ite; ++it) {
358     if (it->Name == ".got" ||
359         it->Name == ".toc" ||
360         it->Name == ".tocbss" ||
361         it->Name == ".plt")
362       break;
363   }
364   if (it == ite) {
365     // This may happen for
366     // * references to TOC base base (sym@toc, .odp relocation) without
367     // a .toc directive.
368     // In this case just use the first section (which is usually
369     // the .odp) since the code won't reference the .toc base
370     // directly.
371     it = Sections.begin();
372   }
373   assert (it != ite);
374   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
375   // thus permitting a full 64 Kbytes segment.
376   return it->LoadAddress + 0x8000;
377 }
378
379 // Returns the sections and offset associated with the ODP entry referenced
380 // by Symbol.
381 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
382                                          ObjSectionToIDMap &LocalSections,
383                                          RelocationValueRef &Rel) {
384   // Get the ELF symbol value (st_value) to compare with Relocation offset in
385   // .opd entries
386
387   error_code err;
388   for (section_iterator si = Obj.begin_sections(),
389      se = Obj.end_sections(); si != se; si.increment(err)) {
390     StringRef SectionName;
391     check(si->getName(SectionName));
392     if (SectionName != ".opd")
393       continue;
394
395     for (relocation_iterator i = si->begin_relocations(),
396          e = si->end_relocations(); i != e;) {
397       check(err);
398
399       // The R_PPC64_ADDR64 relocation indicates the first field
400       // of a .opd entry
401       uint64_t TypeFunc;
402       check(i->getType(TypeFunc));
403       if (TypeFunc != ELF::R_PPC64_ADDR64) {
404         i.increment(err);
405         continue;
406       }
407
408       SymbolRef TargetSymbol;
409       uint64_t TargetSymbolOffset;
410       int64_t TargetAdditionalInfo;
411       check(i->getSymbol(TargetSymbol));
412       check(i->getOffset(TargetSymbolOffset));
413       check(i->getAdditionalInfo(TargetAdditionalInfo));
414
415       i = i.increment(err);
416       if (i == e)
417         break;
418       check(err);
419
420       // Just check if following relocation is a R_PPC64_TOC
421       uint64_t TypeTOC;
422       check(i->getType(TypeTOC));
423       if (TypeTOC != ELF::R_PPC64_TOC)
424         continue;
425
426       // Finally compares the Symbol value and the target symbol offset
427       // to check if this .opd entry refers to the symbol the relocation
428       // points to.
429       if (Rel.Addend != (intptr_t)TargetSymbolOffset)
430         continue;
431
432       section_iterator tsi(Obj.end_sections());
433       check(TargetSymbol.getSection(tsi));
434       Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
435       Rel.Addend = (intptr_t)TargetAdditionalInfo;
436       return;
437     }
438   }
439   llvm_unreachable("Attempting to get address of ODP entry!");
440 }
441
442 // Relocation masks following the #lo(value), #hi(value), #higher(value),
443 // and #highest(value) macros defined in section 4.5.1. Relocation Types
444 // in PPC-elf64abi document.
445 //
446 static inline
447 uint16_t applyPPClo (uint64_t value)
448 {
449   return value & 0xffff;
450 }
451
452 static inline
453 uint16_t applyPPChi (uint64_t value)
454 {
455   return (value >> 16) & 0xffff;
456 }
457
458 static inline
459 uint16_t applyPPChigher (uint64_t value)
460 {
461   return (value >> 32) & 0xffff;
462 }
463
464 static inline
465 uint16_t applyPPChighest (uint64_t value)
466 {
467   return (value >> 48) & 0xffff;
468 }
469
470 void RuntimeDyldELF::resolvePPC64Relocation(uint8_t *LocalAddress,
471                                             uint64_t FinalAddress,
472                                             uint64_t Value,
473                                             uint32_t Type,
474                                             int64_t Addend) {
475   switch (Type) {
476   default:
477     llvm_unreachable("Relocation type not implemented yet!");
478   break;
479   case ELF::R_PPC64_ADDR16_LO :
480     writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
481     break;
482   case ELF::R_PPC64_ADDR16_HI :
483     writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
484     break;
485   case ELF::R_PPC64_ADDR16_HIGHER :
486     writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
487     break;
488   case ELF::R_PPC64_ADDR16_HIGHEST :
489     writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
490     break;
491   case ELF::R_PPC64_ADDR14 : {
492     assert(((Value + Addend) & 3) == 0);
493     // Preserve the AA/LK bits in the branch instruction
494     uint8_t aalk = *(LocalAddress+3);
495     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
496   } break;
497   case ELF::R_PPC64_REL24 : {
498     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
499     if (SignExtend32<24>(delta) != delta)
500       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
501     // Generates a 'bl <address>' instruction
502     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
503   } break;
504   case ELF::R_PPC64_ADDR64 :
505     writeInt64BE(LocalAddress, Value + Addend);
506     break;
507   case ELF::R_PPC64_TOC :
508     writeInt64BE(LocalAddress, findPPC64TOC());
509     break;
510   case ELF::R_PPC64_TOC16 : {
511     uint64_t TOCStart = findPPC64TOC();
512     Value = applyPPClo((Value + Addend) - TOCStart);
513     writeInt16BE(LocalAddress, applyPPClo(Value));
514   } break;
515   case ELF::R_PPC64_TOC16_DS : {
516     uint64_t TOCStart = findPPC64TOC();
517     Value = ((Value + Addend) - TOCStart);
518     writeInt16BE(LocalAddress, applyPPClo(Value));
519   } break;
520   }
521 }
522
523
524 void RuntimeDyldELF::resolveRelocation(uint8_t *LocalAddress,
525                                        uint64_t FinalAddress,
526                                        uint64_t Value,
527                                        uint32_t Type,
528                                        int64_t Addend) {
529   switch (Arch) {
530   case Triple::x86_64:
531     resolveX86_64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
532     break;
533   case Triple::x86:
534     resolveX86Relocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
535                          (uint32_t)(Value & 0xffffffffL), Type,
536                          (uint32_t)(Addend & 0xffffffffL));
537     break;
538   case Triple::arm:    // Fall through.
539   case Triple::thumb:
540     resolveARMRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
541                          (uint32_t)(Value & 0xffffffffL), Type,
542                          (uint32_t)(Addend & 0xffffffffL));
543     break;
544   case Triple::mips:    // Fall through.
545   case Triple::mipsel:
546     resolveMIPSRelocation(LocalAddress, (uint32_t)(FinalAddress & 0xffffffffL),
547                           (uint32_t)(Value & 0xffffffffL), Type,
548                           (uint32_t)(Addend & 0xffffffffL));
549     break;
550   case Triple::ppc64:
551     resolvePPC64Relocation(LocalAddress, FinalAddress, Value, Type, Addend);
552     break;
553   default: llvm_unreachable("Unsupported CPU type!");
554   }
555 }
556
557 void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
558                                           ObjectImage &Obj,
559                                           ObjSectionToIDMap &ObjSectionToID,
560                                           const SymbolTableMap &Symbols,
561                                           StubMap &Stubs) {
562
563   uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
564   intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
565   const SymbolRef &Symbol = Rel.Symbol;
566
567   // Obtain the symbol name which is referenced in the relocation
568   StringRef TargetName;
569   Symbol.getName(TargetName);
570   DEBUG(dbgs() << "\t\tRelType: " << RelType
571                << " Addend: " << Addend
572                << " TargetName: " << TargetName
573                << "\n");
574   RelocationValueRef Value;
575   // First search for the symbol in the local symbol table
576   SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
577   SymbolRef::Type SymType;
578   Symbol.getType(SymType);
579   if (lsi != Symbols.end()) {
580     Value.SectionID = lsi->second.first;
581     Value.Addend = lsi->second.second;
582   } else {
583     // Search for the symbol in the global symbol table
584     SymbolTableMap::const_iterator gsi =
585         GlobalSymbolTable.find(TargetName.data());
586     if (gsi != GlobalSymbolTable.end()) {
587       Value.SectionID = gsi->second.first;
588       Value.Addend = gsi->second.second;
589     } else {
590       switch (SymType) {
591         case SymbolRef::ST_Debug: {
592           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
593           // and can be changed by another developers. Maybe best way is add
594           // a new symbol type ST_Section to SymbolRef and use it.
595           section_iterator si(Obj.end_sections());
596           Symbol.getSection(si);
597           if (si == Obj.end_sections())
598             llvm_unreachable("Symbol section not found, bad object file format!");
599           DEBUG(dbgs() << "\t\tThis is section symbol\n");
600           // Default to 'true' in case isText fails (though it never does).
601           bool isCode = true;
602           si->isText(isCode);
603           Value.SectionID = findOrEmitSection(Obj, 
604                                               (*si), 
605                                               isCode, 
606                                               ObjSectionToID);
607           Value.Addend = Addend;
608           break;
609         }
610         case SymbolRef::ST_Unknown: {
611           Value.SymbolName = TargetName.data();
612           Value.Addend = Addend;
613           break;
614         }
615         default:
616           llvm_unreachable("Unresolved symbol type!");
617           break;
618       }
619     }
620   }
621   DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
622                << " Rel.Offset: " << Rel.Offset
623                << "\n");
624   if (Arch == Triple::arm &&
625       (RelType == ELF::R_ARM_PC24 ||
626        RelType == ELF::R_ARM_CALL ||
627        RelType == ELF::R_ARM_JUMP24)) {
628     // This is an ARM branch relocation, need to use a stub function.
629     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
630     SectionEntry &Section = Sections[Rel.SectionID];
631     uint8_t *Target = Section.Address + Rel.Offset;
632
633     // Look for an existing stub.
634     StubMap::const_iterator i = Stubs.find(Value);
635     if (i != Stubs.end()) {
636       resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
637                         i->second, RelType, 0);
638       DEBUG(dbgs() << " Stub function found\n");
639     } else {
640       // Create a new stub function.
641       DEBUG(dbgs() << " Create a new stub function\n");
642       Stubs[Value] = Section.StubOffset;
643       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
644                                                    Section.StubOffset);
645       RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
646                          ELF::R_ARM_ABS32, Value.Addend);
647       if (Value.SymbolName)
648         addRelocationForSymbol(RE, Value.SymbolName);
649       else
650         addRelocationForSection(RE, Value.SectionID);
651
652       resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address +
653                         Section.StubOffset, RelType, 0);
654       Section.StubOffset += getMaxStubSize();
655     }
656   } else if (Arch == Triple::mipsel && RelType == ELF::R_MIPS_26) {
657     // This is an Mips branch relocation, need to use a stub function.
658     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
659     SectionEntry &Section = Sections[Rel.SectionID];
660     uint8_t *Target = Section.Address + Rel.Offset;
661     uint32_t *TargetAddress = (uint32_t *)Target;
662
663     // Extract the addend from the instruction.
664     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
665
666     Value.Addend += Addend;
667
668     //  Look up for existing stub.
669     StubMap::const_iterator i = Stubs.find(Value);
670     if (i != Stubs.end()) {
671       resolveRelocation(Target, (uint64_t)Target,
672                         (uint64_t)Section.Address +
673                         i->second, RelType, 0);
674       DEBUG(dbgs() << " Stub function found\n");
675     } else {
676       // Create a new stub function.
677       DEBUG(dbgs() << " Create a new stub function\n");
678       Stubs[Value] = Section.StubOffset;
679       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
680                                                    Section.StubOffset);
681
682       // Creating Hi and Lo relocations for the filled stub instructions.
683       RelocationEntry REHi(Rel.SectionID,
684                            StubTargetAddr - Section.Address,
685                            ELF::R_MIPS_HI16, Value.Addend);
686       RelocationEntry RELo(Rel.SectionID,
687                            StubTargetAddr - Section.Address + 4,
688                            ELF::R_MIPS_LO16, Value.Addend);
689
690       if (Value.SymbolName) {
691         addRelocationForSymbol(REHi, Value.SymbolName);
692         addRelocationForSymbol(RELo, Value.SymbolName);
693       } else {
694         addRelocationForSection(REHi, Value.SectionID);
695         addRelocationForSection(RELo, Value.SectionID);
696       }
697
698       resolveRelocation(Target, (uint64_t)Target,
699                         (uint64_t)Section.Address +
700                         Section.StubOffset, RelType, 0);
701       Section.StubOffset += getMaxStubSize();
702     }
703   } else if (Arch == Triple::ppc64) {
704     if (RelType == ELF::R_PPC64_REL24) {
705       // A PPC branch relocation will need a stub function if the target is
706       // an external symbol (Symbol::ST_Unknown) or if the target address
707       // is not within the signed 24-bits branch address.
708       SectionEntry &Section = Sections[Rel.SectionID];
709       uint8_t *Target = Section.Address + Rel.Offset;
710       bool RangeOverflow = false;
711       if (SymType != SymbolRef::ST_Unknown) {
712         // A function call may points to the .opd entry, so the final symbol value
713         // in calculated based in the relocation values in .opd section.
714         findOPDEntrySection(Obj, ObjSectionToID, Value);
715         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
716         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
717         // If it is within 24-bits branch range, just set the branch target
718         if (SignExtend32<24>(delta) == delta) {
719           RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
720           if (Value.SymbolName)
721             addRelocationForSymbol(RE, Value.SymbolName);
722           else
723             addRelocationForSection(RE, Value.SectionID);
724         } else {
725           RangeOverflow = true;
726         }
727       }
728       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
729         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
730         // larger than 24-bits.
731         StubMap::const_iterator i = Stubs.find(Value);
732         if (i != Stubs.end()) {
733           // Symbol function stub already created, just relocate to it
734           resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address
735                             + i->second, RelType, 0);
736           DEBUG(dbgs() << " Stub function found\n");
737         } else {
738           // Create a new stub function.
739           DEBUG(dbgs() << " Create a new stub function\n");
740           Stubs[Value] = Section.StubOffset;
741           uint8_t *StubTargetAddr = createStubFunction(Section.Address +
742                                                        Section.StubOffset);
743           RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
744                              ELF::R_PPC64_ADDR64, Value.Addend);
745
746           // Generates the 64-bits address loads as exemplified in section
747           // 4.5.1 in PPC64 ELF ABI.
748           RelocationEntry REhst(Rel.SectionID,
749                                 StubTargetAddr - Section.Address + 2,
750                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
751           RelocationEntry REhr(Rel.SectionID,
752                                StubTargetAddr - Section.Address + 6,
753                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
754           RelocationEntry REh(Rel.SectionID,
755                               StubTargetAddr - Section.Address + 14,
756                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
757           RelocationEntry REl(Rel.SectionID,
758                               StubTargetAddr - Section.Address + 18,
759                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
760
761           if (Value.SymbolName) {
762             addRelocationForSymbol(REhst, Value.SymbolName);
763             addRelocationForSymbol(REhr,  Value.SymbolName);
764             addRelocationForSymbol(REh,   Value.SymbolName);
765             addRelocationForSymbol(REl,   Value.SymbolName);
766           } else {
767             addRelocationForSection(REhst, Value.SectionID);
768             addRelocationForSection(REhr,  Value.SectionID);
769             addRelocationForSection(REh,   Value.SectionID);
770             addRelocationForSection(REl,   Value.SectionID);
771           }
772
773           resolveRelocation(Target, (uint64_t)Target, (uint64_t)Section.Address
774                             + Section.StubOffset, RelType, 0);
775           if (SymType == SymbolRef::ST_Unknown)
776             // Restore the TOC for external calls
777             writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
778           Section.StubOffset += getMaxStubSize();
779         }
780       }
781     } else {
782       RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
783       // Extra check to avoid relocation againt empty symbols (usually
784       // the R_PPC64_TOC).
785       if (Value.SymbolName && !TargetName.empty())
786         addRelocationForSymbol(RE, Value.SymbolName);
787       else
788         addRelocationForSection(RE, Value.SectionID);
789     }
790   } else {
791     RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
792     if (Value.SymbolName)
793       addRelocationForSymbol(RE, Value.SymbolName);
794     else
795       addRelocationForSection(RE, Value.SectionID);
796   }
797 }
798
799 unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
800   // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
801   uint64_t Align;
802   Check(Sym.getValue(Align));
803   return Align;
804 }
805
806 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
807   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
808     return false;
809   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
810 }
811 } // namespace llvm