Change resolveRelocation parameters so the relocations can find placeholder values...
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyldELF.cpp
1 //===-- RuntimeDyldELF.cpp - Run-time dynamic linker for MC-JIT -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of ELF support for the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "RuntimeDyldELF.h"
16 #include "JITRegistrar.h"
17 #include "ObjectImageCommon.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/IntervalMap.h"
22 #include "llvm/Object/ObjectFile.h"
23 #include "llvm/ExecutionEngine/ObjectImage.h"
24 #include "llvm/ExecutionEngine/ObjectBuffer.h"
25 #include "llvm/Support/ELF.h"
26 #include "llvm/ADT/Triple.h"
27 #include "llvm/Object/ELF.h"
28 using namespace llvm;
29 using namespace llvm::object;
30
31 namespace {
32
33 static inline
34 error_code check(error_code Err) {
35   if (Err) {
36     report_fatal_error(Err.message());
37   }
38   return Err;
39 }
40
41 template<support::endianness target_endianness, bool is64Bits>
42 class DyldELFObject : public ELFObjectFile<target_endianness, is64Bits> {
43   LLVM_ELF_IMPORT_TYPES(target_endianness, is64Bits)
44
45   typedef Elf_Shdr_Impl<target_endianness, is64Bits> Elf_Shdr;
46   typedef Elf_Sym_Impl<target_endianness, is64Bits> Elf_Sym;
47   typedef Elf_Rel_Impl<target_endianness, is64Bits, false> Elf_Rel;
48   typedef Elf_Rel_Impl<target_endianness, is64Bits, true> Elf_Rela;
49
50   typedef Elf_Ehdr_Impl<target_endianness, is64Bits> Elf_Ehdr;
51
52   typedef typename ELFDataTypeTypedefHelper<
53           target_endianness, is64Bits>::value_type addr_type;
54
55 public:
56   DyldELFObject(MemoryBuffer *Wrapper, error_code &ec);
57
58   void updateSectionAddress(const SectionRef &Sec, uint64_t Addr);
59   void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr);
60
61   // Methods for type inquiry through isa, cast and dyn_cast
62   static inline bool classof(const Binary *v) {
63     return (isa<ELFObjectFile<target_endianness, is64Bits> >(v)
64             && classof(cast<ELFObjectFile<target_endianness, is64Bits> >(v)));
65   }
66   static inline bool classof(
67       const ELFObjectFile<target_endianness, is64Bits> *v) {
68     return v->isDyldType();
69   }
70 };
71
72 template<support::endianness target_endianness, bool is64Bits>
73 class ELFObjectImage : public ObjectImageCommon {
74   protected:
75     DyldELFObject<target_endianness, is64Bits> *DyldObj;
76     bool Registered;
77
78   public:
79     ELFObjectImage(ObjectBuffer *Input,
80                    DyldELFObject<target_endianness, is64Bits> *Obj)
81     : ObjectImageCommon(Input, Obj),
82       DyldObj(Obj),
83       Registered(false) {}
84
85     virtual ~ELFObjectImage() {
86       if (Registered)
87         deregisterWithDebugger();
88     }
89
90     // Subclasses can override these methods to update the image with loaded
91     // addresses for sections and common symbols
92     virtual void updateSectionAddress(const SectionRef &Sec, uint64_t Addr)
93     {
94       DyldObj->updateSectionAddress(Sec, Addr);
95     }
96
97     virtual void updateSymbolAddress(const SymbolRef &Sym, uint64_t Addr)
98     {
99       DyldObj->updateSymbolAddress(Sym, Addr);
100     }
101
102     virtual void registerWithDebugger()
103     {
104       JITRegistrar::getGDBRegistrar().registerObject(*Buffer);
105       Registered = true;
106     }
107     virtual void deregisterWithDebugger()
108     {
109       JITRegistrar::getGDBRegistrar().deregisterObject(*Buffer);
110     }
111 };
112
113 // The MemoryBuffer passed into this constructor is just a wrapper around the
114 // actual memory.  Ultimately, the Binary parent class will take ownership of
115 // this MemoryBuffer object but not the underlying memory.
116 template<support::endianness target_endianness, bool is64Bits>
117 DyldELFObject<target_endianness, is64Bits>::DyldELFObject(MemoryBuffer *Wrapper,
118                                                           error_code &ec)
119   : ELFObjectFile<target_endianness, is64Bits>(Wrapper, ec) {
120   this->isDyldELFObject = true;
121 }
122
123 template<support::endianness target_endianness, bool is64Bits>
124 void DyldELFObject<target_endianness, is64Bits>::updateSectionAddress(
125                                                        const SectionRef &Sec,
126                                                        uint64_t Addr) {
127   DataRefImpl ShdrRef = Sec.getRawDataRefImpl();
128   Elf_Shdr *shdr = const_cast<Elf_Shdr*>(
129                           reinterpret_cast<const Elf_Shdr *>(ShdrRef.p));
130
131   // This assumes the address passed in matches the target address bitness
132   // The template-based type cast handles everything else.
133   shdr->sh_addr = static_cast<addr_type>(Addr);
134 }
135
136 template<support::endianness target_endianness, bool is64Bits>
137 void DyldELFObject<target_endianness, is64Bits>::updateSymbolAddress(
138                                                        const SymbolRef &SymRef,
139                                                        uint64_t Addr) {
140
141   Elf_Sym *sym = const_cast<Elf_Sym*>(
142                                  ELFObjectFile<target_endianness, is64Bits>::
143                                    getSymbol(SymRef.getRawDataRefImpl()));
144
145   // This assumes the address passed in matches the target address bitness
146   // The template-based type cast handles everything else.
147   sym->st_value = static_cast<addr_type>(Addr);
148 }
149
150 } // namespace
151
152
153 namespace llvm {
154
155 ObjectImage *RuntimeDyldELF::createObjectImage(ObjectBuffer *Buffer) {
156   if (Buffer->getBufferSize() < ELF::EI_NIDENT)
157     llvm_unreachable("Unexpected ELF object size");
158   std::pair<unsigned char, unsigned char> Ident = std::make_pair(
159                          (uint8_t)Buffer->getBufferStart()[ELF::EI_CLASS],
160                          (uint8_t)Buffer->getBufferStart()[ELF::EI_DATA]);
161   error_code ec;
162
163   if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2LSB) {
164     DyldELFObject<support::little, false> *Obj =
165            new DyldELFObject<support::little, false>(Buffer->getMemBuffer(), ec);
166     return new ELFObjectImage<support::little, false>(Buffer, Obj);
167   }
168   else if (Ident.first == ELF::ELFCLASS32 && Ident.second == ELF::ELFDATA2MSB) {
169     DyldELFObject<support::big, false> *Obj =
170            new DyldELFObject<support::big, false>(Buffer->getMemBuffer(), ec);
171     return new ELFObjectImage<support::big, false>(Buffer, Obj);
172   }
173   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2MSB) {
174     DyldELFObject<support::big, true> *Obj =
175            new DyldELFObject<support::big, true>(Buffer->getMemBuffer(), ec);
176     return new ELFObjectImage<support::big, true>(Buffer, Obj);
177   }
178   else if (Ident.first == ELF::ELFCLASS64 && Ident.second == ELF::ELFDATA2LSB) {
179     DyldELFObject<support::little, true> *Obj =
180            new DyldELFObject<support::little, true>(Buffer->getMemBuffer(), ec);
181     return new ELFObjectImage<support::little, true>(Buffer, Obj);
182   }
183   else
184     llvm_unreachable("Unexpected ELF format");
185 }
186
187 RuntimeDyldELF::~RuntimeDyldELF() {
188 }
189
190 void RuntimeDyldELF::resolveX86_64Relocation(const SectionEntry &Section,
191                                              uint64_t Offset,
192                                              uint64_t Value,
193                                              uint32_t Type,
194                                              int64_t Addend) {
195   switch (Type) {
196   default:
197     llvm_unreachable("Relocation type not implemented yet!");
198   break;
199   case ELF::R_X86_64_64: {
200     uint64_t *Target = reinterpret_cast<uint64_t*>(Section.Address + Offset);
201     *Target = Value + Addend;
202     DEBUG(dbgs() << "Writing " << format("%p", (Value + Addend))
203                  << " at " << format("%p\n",Target));
204     break;
205   }
206   case ELF::R_X86_64_32:
207   case ELF::R_X86_64_32S: {
208     Value += Addend;
209     assert((Type == ELF::R_X86_64_32 && (Value <= UINT32_MAX)) ||
210            (Type == ELF::R_X86_64_32S && 
211              ((int64_t)Value <= INT32_MAX && (int64_t)Value >= INT32_MIN)));
212     uint32_t TruncatedAddr = (Value & 0xFFFFFFFF);
213     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
214     *Target = TruncatedAddr;
215     DEBUG(dbgs() << "Writing " << format("%p", TruncatedAddr)
216                  << " at " << format("%p\n",Target));
217     break;
218   }
219   case ELF::R_X86_64_PC32: {
220     // Get the placeholder value from the generated object since
221     // a previous relocation attempt may have overwritten the loaded version
222     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
223                                                                    + Offset);
224     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
225     uint64_t  FinalAddress = Section.LoadAddress + Offset;
226     int64_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
227     assert(RealOffset <= INT32_MAX && RealOffset >= INT32_MIN);
228     int32_t TruncOffset = (RealOffset & 0xFFFFFFFF);
229     *Target = TruncOffset;
230     break;
231   }
232   }
233 }
234
235 void RuntimeDyldELF::resolveX86Relocation(const SectionEntry &Section,
236                                           uint64_t Offset,
237                                           uint32_t Value,
238                                           uint32_t Type,
239                                           int32_t Addend) {
240   switch (Type) {
241   case ELF::R_386_32: {
242     // Get the placeholder value from the generated object since
243     // a previous relocation attempt may have overwritten the loaded version
244     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
245                                                                    + Offset);
246     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
247     *Target = *Placeholder + Value + Addend;
248     break;
249   }
250   case ELF::R_386_PC32: {
251     // Get the placeholder value from the generated object since
252     // a previous relocation attempt may have overwritten the loaded version
253     uint32_t *Placeholder = reinterpret_cast<uint32_t*>(Section.ObjAddress
254                                                                    + Offset);
255     uint32_t *Target = reinterpret_cast<uint32_t*>(Section.Address + Offset);
256     uint32_t  FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
257     uint32_t RealOffset = *Placeholder + Value + Addend - FinalAddress;
258     *Target = RealOffset;
259     break;
260     }
261     default:
262       // There are other relocation types, but it appears these are the
263       // only ones currently used by the LLVM ELF object writer
264       llvm_unreachable("Relocation type not implemented yet!");
265       break;
266   }
267 }
268
269 void RuntimeDyldELF::resolveARMRelocation(const SectionEntry &Section,
270                                           uint64_t Offset,
271                                           uint32_t Value,
272                                           uint32_t Type,
273                                           int32_t Addend) {
274   // TODO: Add Thumb relocations.
275   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
276   uint32_t FinalAddress = ((Section.LoadAddress + Offset) & 0xFFFFFFFF);
277   Value += Addend;
278
279   DEBUG(dbgs() << "resolveARMRelocation, LocalAddress: "
280                << Section.Address + Offset
281                << " FinalAddress: " << format("%p",FinalAddress)
282                << " Value: " << format("%x",Value)
283                << " Type: " << format("%x",Type)
284                << " Addend: " << format("%x",Addend)
285                << "\n");
286
287   switch(Type) {
288   default:
289     llvm_unreachable("Not implemented relocation type!");
290
291   // Write a 32bit value to relocation address, taking into account the 
292   // implicit addend encoded in the target.
293   case ELF::R_ARM_ABS32 :
294     *TargetPtr += Value;
295     break;
296
297   // Write first 16 bit of 32 bit value to the mov instruction.
298   // Last 4 bit should be shifted.
299   case ELF::R_ARM_MOVW_ABS_NC :
300     // We are not expecting any other addend in the relocation address.
301     // Using 0x000F0FFF because MOVW has its 16 bit immediate split into 2 
302     // non-contiguous fields.
303     assert((*TargetPtr & 0x000F0FFF) == 0);
304     Value = Value & 0xFFFF;
305     *TargetPtr |= Value & 0xFFF;
306     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
307     break;
308
309   // Write last 16 bit of 32 bit value to the mov instruction.
310   // Last 4 bit should be shifted.
311   case ELF::R_ARM_MOVT_ABS :
312     // We are not expecting any other addend in the relocation address.
313     // Use 0x000F0FFF for the same reason as R_ARM_MOVW_ABS_NC.
314     assert((*TargetPtr & 0x000F0FFF) == 0);
315     Value = (Value >> 16) & 0xFFFF;
316     *TargetPtr |= Value & 0xFFF;
317     *TargetPtr |= ((Value >> 12) & 0xF) << 16;
318     break;
319
320   // Write 24 bit relative value to the branch instruction.
321   case ELF::R_ARM_PC24 :    // Fall through.
322   case ELF::R_ARM_CALL :    // Fall through.
323   case ELF::R_ARM_JUMP24 :
324     int32_t RelValue = static_cast<int32_t>(Value - FinalAddress - 8);
325     RelValue = (RelValue & 0x03FFFFFC) >> 2;
326     *TargetPtr &= 0xFF000000;
327     *TargetPtr |= RelValue;
328     break;
329   }
330 }
331
332 void RuntimeDyldELF::resolveMIPSRelocation(const SectionEntry &Section,
333                                            uint64_t Offset,
334                                            uint32_t Value,
335                                            uint32_t Type,
336                                            int32_t Addend) {
337   uint32_t* TargetPtr = (uint32_t*)(Section.Address + Offset);
338   Value += Addend;
339
340   DEBUG(dbgs() << "resolveMipselocation, LocalAddress: "
341                << Section.Address + Offset
342                << " FinalAddress: "
343                << format("%p",Section.LoadAddress + Offset)
344                << " Value: " << format("%x",Value)
345                << " Type: " << format("%x",Type)
346                << " Addend: " << format("%x",Addend)
347                << "\n");
348
349   switch(Type) {
350   default:
351     llvm_unreachable("Not implemented relocation type!");
352     break;
353   case ELF::R_MIPS_32:
354     *TargetPtr = Value + (*TargetPtr);
355     break;
356   case ELF::R_MIPS_26:
357     *TargetPtr = ((*TargetPtr) & 0xfc000000) | (( Value & 0x0fffffff) >> 2);
358     break;
359   case ELF::R_MIPS_HI16:
360     // Get the higher 16-bits. Also add 1 if bit 15 is 1.
361     Value += ((*TargetPtr) & 0x0000ffff) << 16;
362     *TargetPtr = ((*TargetPtr) & 0xffff0000) |
363                  (((Value + 0x8000) >> 16) & 0xffff);
364     break;
365    case ELF::R_MIPS_LO16:
366     Value += ((*TargetPtr) & 0x0000ffff);
367     *TargetPtr = ((*TargetPtr) & 0xffff0000) | (Value & 0xffff);
368     break;
369    }
370 }
371
372 // Return the .TOC. section address to R_PPC64_TOC relocations.
373 uint64_t RuntimeDyldELF::findPPC64TOC() const {
374   // The TOC consists of sections .got, .toc, .tocbss, .plt in that
375   // order. The TOC starts where the first of these sections starts.
376   SectionList::const_iterator it = Sections.begin();
377   SectionList::const_iterator ite = Sections.end();
378   for (; it != ite; ++it) {
379     if (it->Name == ".got" ||
380         it->Name == ".toc" ||
381         it->Name == ".tocbss" ||
382         it->Name == ".plt")
383       break;
384   }
385   if (it == ite) {
386     // This may happen for
387     // * references to TOC base base (sym@toc, .odp relocation) without
388     // a .toc directive.
389     // In this case just use the first section (which is usually
390     // the .odp) since the code won't reference the .toc base
391     // directly.
392     it = Sections.begin();
393   }
394   assert (it != ite);
395   // Per the ppc64-elf-linux ABI, The TOC base is TOC value plus 0x8000
396   // thus permitting a full 64 Kbytes segment.
397   return it->LoadAddress + 0x8000;
398 }
399
400 // Returns the sections and offset associated with the ODP entry referenced
401 // by Symbol.
402 void RuntimeDyldELF::findOPDEntrySection(ObjectImage &Obj,
403                                          ObjSectionToIDMap &LocalSections,
404                                          RelocationValueRef &Rel) {
405   // Get the ELF symbol value (st_value) to compare with Relocation offset in
406   // .opd entries
407
408   error_code err;
409   for (section_iterator si = Obj.begin_sections(),
410      se = Obj.end_sections(); si != se; si.increment(err)) {
411     StringRef SectionName;
412     check(si->getName(SectionName));
413     if (SectionName != ".opd")
414       continue;
415
416     for (relocation_iterator i = si->begin_relocations(),
417          e = si->end_relocations(); i != e;) {
418       check(err);
419
420       // The R_PPC64_ADDR64 relocation indicates the first field
421       // of a .opd entry
422       uint64_t TypeFunc;
423       check(i->getType(TypeFunc));
424       if (TypeFunc != ELF::R_PPC64_ADDR64) {
425         i.increment(err);
426         continue;
427       }
428
429       SymbolRef TargetSymbol;
430       uint64_t TargetSymbolOffset;
431       int64_t TargetAdditionalInfo;
432       check(i->getSymbol(TargetSymbol));
433       check(i->getOffset(TargetSymbolOffset));
434       check(i->getAdditionalInfo(TargetAdditionalInfo));
435
436       i = i.increment(err);
437       if (i == e)
438         break;
439       check(err);
440
441       // Just check if following relocation is a R_PPC64_TOC
442       uint64_t TypeTOC;
443       check(i->getType(TypeTOC));
444       if (TypeTOC != ELF::R_PPC64_TOC)
445         continue;
446
447       // Finally compares the Symbol value and the target symbol offset
448       // to check if this .opd entry refers to the symbol the relocation
449       // points to.
450       if (Rel.Addend != (intptr_t)TargetSymbolOffset)
451         continue;
452
453       section_iterator tsi(Obj.end_sections());
454       check(TargetSymbol.getSection(tsi));
455       Rel.SectionID = findOrEmitSection(Obj, (*tsi), true, LocalSections);
456       Rel.Addend = (intptr_t)TargetAdditionalInfo;
457       return;
458     }
459   }
460   llvm_unreachable("Attempting to get address of ODP entry!");
461 }
462
463 // Relocation masks following the #lo(value), #hi(value), #higher(value),
464 // and #highest(value) macros defined in section 4.5.1. Relocation Types
465 // in PPC-elf64abi document.
466 //
467 static inline
468 uint16_t applyPPClo (uint64_t value)
469 {
470   return value & 0xffff;
471 }
472
473 static inline
474 uint16_t applyPPChi (uint64_t value)
475 {
476   return (value >> 16) & 0xffff;
477 }
478
479 static inline
480 uint16_t applyPPChigher (uint64_t value)
481 {
482   return (value >> 32) & 0xffff;
483 }
484
485 static inline
486 uint16_t applyPPChighest (uint64_t value)
487 {
488   return (value >> 48) & 0xffff;
489 }
490
491 void RuntimeDyldELF::resolvePPC64Relocation(const SectionEntry &Section,
492                                             uint64_t Offset,
493                                             uint64_t Value,
494                                             uint32_t Type,
495                                             int64_t Addend) {
496   uint8_t* LocalAddress = Section.Address + Offset;
497   switch (Type) {
498   default:
499     llvm_unreachable("Relocation type not implemented yet!");
500   break;
501   case ELF::R_PPC64_ADDR16_LO :
502     writeInt16BE(LocalAddress, applyPPClo (Value + Addend));
503     break;
504   case ELF::R_PPC64_ADDR16_HI :
505     writeInt16BE(LocalAddress, applyPPChi (Value + Addend));
506     break;
507   case ELF::R_PPC64_ADDR16_HIGHER :
508     writeInt16BE(LocalAddress, applyPPChigher (Value + Addend));
509     break;
510   case ELF::R_PPC64_ADDR16_HIGHEST :
511     writeInt16BE(LocalAddress, applyPPChighest (Value + Addend));
512     break;
513   case ELF::R_PPC64_ADDR14 : {
514     assert(((Value + Addend) & 3) == 0);
515     // Preserve the AA/LK bits in the branch instruction
516     uint8_t aalk = *(LocalAddress+3);
517     writeInt16BE(LocalAddress + 2, (aalk & 3) | ((Value + Addend) & 0xfffc));
518   } break;
519   case ELF::R_PPC64_REL24 : {
520     uint64_t FinalAddress = (Section.LoadAddress + Offset);
521     int32_t delta = static_cast<int32_t>(Value - FinalAddress + Addend);
522     if (SignExtend32<24>(delta) != delta)
523       llvm_unreachable("Relocation R_PPC64_REL24 overflow");
524     // Generates a 'bl <address>' instruction
525     writeInt32BE(LocalAddress, 0x48000001 | (delta & 0x03FFFFFC));
526   } break;
527   case ELF::R_PPC64_ADDR64 :
528     writeInt64BE(LocalAddress, Value + Addend);
529     break;
530   case ELF::R_PPC64_TOC :
531     writeInt64BE(LocalAddress, findPPC64TOC());
532     break;
533   case ELF::R_PPC64_TOC16 : {
534     uint64_t TOCStart = findPPC64TOC();
535     Value = applyPPClo((Value + Addend) - TOCStart);
536     writeInt16BE(LocalAddress, applyPPClo(Value));
537   } break;
538   case ELF::R_PPC64_TOC16_DS : {
539     uint64_t TOCStart = findPPC64TOC();
540     Value = ((Value + Addend) - TOCStart);
541     writeInt16BE(LocalAddress, applyPPClo(Value));
542   } break;
543   }
544 }
545
546
547 void RuntimeDyldELF::resolveRelocation(const SectionEntry &Section,
548                                        uint64_t Offset,
549                                        uint64_t Value,
550                                        uint32_t Type,
551                                        int64_t Addend) {
552   switch (Arch) {
553   case Triple::x86_64:
554     resolveX86_64Relocation(Section, Offset, Value, Type, Addend);
555     break;
556   case Triple::x86:
557     resolveX86Relocation(Section, Offset,
558                          (uint32_t)(Value & 0xffffffffL), Type,
559                          (uint32_t)(Addend & 0xffffffffL));
560     break;
561   case Triple::arm:    // Fall through.
562   case Triple::thumb:
563     resolveARMRelocation(Section, Offset,
564                          (uint32_t)(Value & 0xffffffffL), Type,
565                          (uint32_t)(Addend & 0xffffffffL));
566     break;
567   case Triple::mips:    // Fall through.
568   case Triple::mipsel:
569     resolveMIPSRelocation(Section, Offset,
570                           (uint32_t)(Value & 0xffffffffL), Type,
571                           (uint32_t)(Addend & 0xffffffffL));
572     break;
573   case Triple::ppc64:
574     resolvePPC64Relocation(Section, Offset, Value, Type, Addend);
575     break;
576   default: llvm_unreachable("Unsupported CPU type!");
577   }
578 }
579
580 void RuntimeDyldELF::processRelocationRef(const ObjRelocationInfo &Rel,
581                                           ObjectImage &Obj,
582                                           ObjSectionToIDMap &ObjSectionToID,
583                                           const SymbolTableMap &Symbols,
584                                           StubMap &Stubs) {
585
586   uint32_t RelType = (uint32_t)(Rel.Type & 0xffffffffL);
587   intptr_t Addend = (intptr_t)Rel.AdditionalInfo;
588   const SymbolRef &Symbol = Rel.Symbol;
589
590   // Obtain the symbol name which is referenced in the relocation
591   StringRef TargetName;
592   Symbol.getName(TargetName);
593   DEBUG(dbgs() << "\t\tRelType: " << RelType
594                << " Addend: " << Addend
595                << " TargetName: " << TargetName
596                << "\n");
597   RelocationValueRef Value;
598   // First search for the symbol in the local symbol table
599   SymbolTableMap::const_iterator lsi = Symbols.find(TargetName.data());
600   SymbolRef::Type SymType;
601   Symbol.getType(SymType);
602   if (lsi != Symbols.end()) {
603     Value.SectionID = lsi->second.first;
604     Value.Addend = lsi->second.second;
605   } else {
606     // Search for the symbol in the global symbol table
607     SymbolTableMap::const_iterator gsi =
608         GlobalSymbolTable.find(TargetName.data());
609     if (gsi != GlobalSymbolTable.end()) {
610       Value.SectionID = gsi->second.first;
611       Value.Addend = gsi->second.second;
612     } else {
613       switch (SymType) {
614         case SymbolRef::ST_Debug: {
615           // TODO: Now ELF SymbolRef::ST_Debug = STT_SECTION, it's not obviously
616           // and can be changed by another developers. Maybe best way is add
617           // a new symbol type ST_Section to SymbolRef and use it.
618           section_iterator si(Obj.end_sections());
619           Symbol.getSection(si);
620           if (si == Obj.end_sections())
621             llvm_unreachable("Symbol section not found, bad object file format!");
622           DEBUG(dbgs() << "\t\tThis is section symbol\n");
623           // Default to 'true' in case isText fails (though it never does).
624           bool isCode = true;
625           si->isText(isCode);
626           Value.SectionID = findOrEmitSection(Obj, 
627                                               (*si), 
628                                               isCode, 
629                                               ObjSectionToID);
630           Value.Addend = Addend;
631           break;
632         }
633         case SymbolRef::ST_Unknown: {
634           Value.SymbolName = TargetName.data();
635           Value.Addend = Addend;
636           break;
637         }
638         default:
639           llvm_unreachable("Unresolved symbol type!");
640           break;
641       }
642     }
643   }
644   DEBUG(dbgs() << "\t\tRel.SectionID: " << Rel.SectionID
645                << " Rel.Offset: " << Rel.Offset
646                << "\n");
647   if (Arch == Triple::arm &&
648       (RelType == ELF::R_ARM_PC24 ||
649        RelType == ELF::R_ARM_CALL ||
650        RelType == ELF::R_ARM_JUMP24)) {
651     // This is an ARM branch relocation, need to use a stub function.
652     DEBUG(dbgs() << "\t\tThis is an ARM branch relocation.");
653     SectionEntry &Section = Sections[Rel.SectionID];
654
655     // Look for an existing stub.
656     StubMap::const_iterator i = Stubs.find(Value);
657     if (i != Stubs.end()) {
658         resolveRelocation(Section, Rel.Offset,
659                           (uint64_t)Section.Address + i->second, RelType, 0);
660       DEBUG(dbgs() << " Stub function found\n");
661     } else {
662       // Create a new stub function.
663       DEBUG(dbgs() << " Create a new stub function\n");
664       Stubs[Value] = Section.StubOffset;
665       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
666                                                    Section.StubOffset);
667       RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
668                          ELF::R_ARM_ABS32, Value.Addend);
669       if (Value.SymbolName)
670         addRelocationForSymbol(RE, Value.SymbolName);
671       else
672         addRelocationForSection(RE, Value.SectionID);
673
674       resolveRelocation(Section, Rel.Offset,
675                         (uint64_t)Section.Address + Section.StubOffset,
676                         RelType, 0);
677       Section.StubOffset += getMaxStubSize();
678     }
679   } else if (Arch == Triple::mipsel && RelType == ELF::R_MIPS_26) {
680     // This is an Mips branch relocation, need to use a stub function.
681     DEBUG(dbgs() << "\t\tThis is a Mips branch relocation.");
682     SectionEntry &Section = Sections[Rel.SectionID];
683     uint8_t *Target = Section.Address + Rel.Offset;
684     uint32_t *TargetAddress = (uint32_t *)Target;
685
686     // Extract the addend from the instruction.
687     uint32_t Addend = ((*TargetAddress) & 0x03ffffff) << 2;
688
689     Value.Addend += Addend;
690
691     //  Look up for existing stub.
692     StubMap::const_iterator i = Stubs.find(Value);
693     if (i != Stubs.end()) {
694       resolveRelocation(Section, Rel.Offset,
695                         (uint64_t)Section.Address + i->second, RelType, 0);
696       DEBUG(dbgs() << " Stub function found\n");
697     } else {
698       // Create a new stub function.
699       DEBUG(dbgs() << " Create a new stub function\n");
700       Stubs[Value] = Section.StubOffset;
701       uint8_t *StubTargetAddr = createStubFunction(Section.Address +
702                                                    Section.StubOffset);
703
704       // Creating Hi and Lo relocations for the filled stub instructions.
705       RelocationEntry REHi(Rel.SectionID,
706                            StubTargetAddr - Section.Address,
707                            ELF::R_MIPS_HI16, Value.Addend);
708       RelocationEntry RELo(Rel.SectionID,
709                            StubTargetAddr - Section.Address + 4,
710                            ELF::R_MIPS_LO16, Value.Addend);
711
712       if (Value.SymbolName) {
713         addRelocationForSymbol(REHi, Value.SymbolName);
714         addRelocationForSymbol(RELo, Value.SymbolName);
715       } else {
716         addRelocationForSection(REHi, Value.SectionID);
717         addRelocationForSection(RELo, Value.SectionID);
718       }
719
720       resolveRelocation(Section, Rel.Offset,
721                         (uint64_t)Section.Address + Section.StubOffset,
722                         RelType, 0);
723       Section.StubOffset += getMaxStubSize();
724     }
725   } else if (Arch == Triple::ppc64) {
726     if (RelType == ELF::R_PPC64_REL24) {
727       // A PPC branch relocation will need a stub function if the target is
728       // an external symbol (Symbol::ST_Unknown) or if the target address
729       // is not within the signed 24-bits branch address.
730       SectionEntry &Section = Sections[Rel.SectionID];
731       uint8_t *Target = Section.Address + Rel.Offset;
732       bool RangeOverflow = false;
733       if (SymType != SymbolRef::ST_Unknown) {
734         // A function call may points to the .opd entry, so the final symbol value
735         // in calculated based in the relocation values in .opd section.
736         findOPDEntrySection(Obj, ObjSectionToID, Value);
737         uint8_t *RelocTarget = Sections[Value.SectionID].Address + Value.Addend;
738         int32_t delta = static_cast<int32_t>(Target - RelocTarget);
739         // If it is within 24-bits branch range, just set the branch target
740         if (SignExtend32<24>(delta) == delta) {
741           RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
742           if (Value.SymbolName)
743             addRelocationForSymbol(RE, Value.SymbolName);
744           else
745             addRelocationForSection(RE, Value.SectionID);
746         } else {
747           RangeOverflow = true;
748         }
749       }
750       if (SymType == SymbolRef::ST_Unknown || RangeOverflow == true) {
751         // It is an external symbol (SymbolRef::ST_Unknown) or within a range
752         // larger than 24-bits.
753         StubMap::const_iterator i = Stubs.find(Value);
754         if (i != Stubs.end()) {
755           // Symbol function stub already created, just relocate to it
756           resolveRelocation(Section, Rel.Offset,
757                             (uint64_t)Section.Address + i->second, RelType, 0);
758           DEBUG(dbgs() << " Stub function found\n");
759         } else {
760           // Create a new stub function.
761           DEBUG(dbgs() << " Create a new stub function\n");
762           Stubs[Value] = Section.StubOffset;
763           uint8_t *StubTargetAddr = createStubFunction(Section.Address +
764                                                        Section.StubOffset);
765           RelocationEntry RE(Rel.SectionID, StubTargetAddr - Section.Address,
766                              ELF::R_PPC64_ADDR64, Value.Addend);
767
768           // Generates the 64-bits address loads as exemplified in section
769           // 4.5.1 in PPC64 ELF ABI.
770           RelocationEntry REhst(Rel.SectionID,
771                                 StubTargetAddr - Section.Address + 2,
772                                 ELF::R_PPC64_ADDR16_HIGHEST, Value.Addend);
773           RelocationEntry REhr(Rel.SectionID,
774                                StubTargetAddr - Section.Address + 6,
775                                ELF::R_PPC64_ADDR16_HIGHER, Value.Addend);
776           RelocationEntry REh(Rel.SectionID,
777                               StubTargetAddr - Section.Address + 14,
778                               ELF::R_PPC64_ADDR16_HI, Value.Addend);
779           RelocationEntry REl(Rel.SectionID,
780                               StubTargetAddr - Section.Address + 18,
781                               ELF::R_PPC64_ADDR16_LO, Value.Addend);
782
783           if (Value.SymbolName) {
784             addRelocationForSymbol(REhst, Value.SymbolName);
785             addRelocationForSymbol(REhr,  Value.SymbolName);
786             addRelocationForSymbol(REh,   Value.SymbolName);
787             addRelocationForSymbol(REl,   Value.SymbolName);
788           } else {
789             addRelocationForSection(REhst, Value.SectionID);
790             addRelocationForSection(REhr,  Value.SectionID);
791             addRelocationForSection(REh,   Value.SectionID);
792             addRelocationForSection(REl,   Value.SectionID);
793           }
794
795           resolveRelocation(Section, Rel.Offset,
796                             (uint64_t)Section.Address + Section.StubOffset,
797                             RelType, 0);
798           if (SymType == SymbolRef::ST_Unknown)
799             // Restore the TOC for external calls
800             writeInt32BE(Target+4, 0xE8410028); // ld r2,40(r1)
801           Section.StubOffset += getMaxStubSize();
802         }
803       }
804     } else {
805       RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
806       // Extra check to avoid relocation againt empty symbols (usually
807       // the R_PPC64_TOC).
808       if (Value.SymbolName && !TargetName.empty())
809         addRelocationForSymbol(RE, Value.SymbolName);
810       else
811         addRelocationForSection(RE, Value.SectionID);
812     }
813   } else {
814     RelocationEntry RE(Rel.SectionID, Rel.Offset, RelType, Value.Addend);
815     if (Value.SymbolName)
816       addRelocationForSymbol(RE, Value.SymbolName);
817     else
818       addRelocationForSection(RE, Value.SectionID);
819   }
820 }
821
822 unsigned RuntimeDyldELF::getCommonSymbolAlignment(const SymbolRef &Sym) {
823   // In ELF, the value of an SHN_COMMON symbol is its alignment requirement.
824   uint64_t Align;
825   Check(Sym.getValue(Align));
826   return Align;
827 }
828
829 bool RuntimeDyldELF::isCompatibleFormat(const ObjectBuffer *Buffer) const {
830   if (Buffer->getBufferSize() < strlen(ELF::ElfMagic))
831     return false;
832   return (memcmp(Buffer->getBufferStart(), ELF::ElfMagic, strlen(ELF::ElfMagic))) == 0;
833 }
834 } // namespace llvm