[RuntimeDyld] Add support for MachO __jump_table and __pointers sections, and
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "JITRegistrar.h"
16 #include "ObjectImageCommon.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELF.h"
21 #include "llvm/Support/MathExtras.h"
22 #include "llvm/Support/MutexGuard.h"
23
24 using namespace llvm;
25 using namespace llvm::object;
26
27 #define DEBUG_TYPE "dyld"
28
29 // Empty out-of-line virtual destructor as the key function.
30 RuntimeDyldImpl::~RuntimeDyldImpl() {}
31
32 // Pin the JITRegistrar's and ObjectImage*'s vtables to this file.
33 void JITRegistrar::anchor() {}
34 void ObjectImage::anchor() {}
35 void ObjectImageCommon::anchor() {}
36
37 namespace llvm {
38
39 void RuntimeDyldImpl::registerEHFrames() {}
40
41 void RuntimeDyldImpl::deregisterEHFrames() {}
42
43 // Resolve the relocations for all symbols we currently know about.
44 void RuntimeDyldImpl::resolveRelocations() {
45   MutexGuard locked(lock);
46
47   // First, resolve relocations associated with external symbols.
48   resolveExternalSymbols();
49
50   // Just iterate over the sections we have and resolve all the relocations
51   // in them. Gross overkill, but it gets the job done.
52   for (int i = 0, e = Sections.size(); i != e; ++i) {
53     // The Section here (Sections[i]) refers to the section in which the
54     // symbol for the relocation is located.  The SectionID in the relocation
55     // entry provides the section to which the relocation will be applied.
56     uint64_t Addr = Sections[i].LoadAddress;
57     DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
58                  << format("%p", (uint8_t *)Addr) << "\n");
59     resolveRelocationList(Relocations[i], Addr);
60     Relocations.erase(i);
61   }
62 }
63
64 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
65                                         uint64_t TargetAddress) {
66   MutexGuard locked(lock);
67   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
68     if (Sections[i].Address == LocalAddress) {
69       reassignSectionAddress(i, TargetAddress);
70       return;
71     }
72   }
73   llvm_unreachable("Attempting to remap address of unknown section!");
74 }
75
76 static error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
77   uint64_t Address;
78   if (error_code EC = Sym.getAddress(Address))
79     return EC;
80
81   if (Address == UnknownAddressOrSize) {
82     Result = UnknownAddressOrSize;
83     return object_error::success;
84   }
85
86   const ObjectFile *Obj = Sym.getObject();
87   section_iterator SecI(Obj->section_begin());
88   if (error_code EC = Sym.getSection(SecI))
89     return EC;
90
91  if (SecI == Obj->section_end()) {
92    Result = UnknownAddressOrSize;
93    return object_error::success;
94  }
95
96   uint64_t SectionAddress;
97   if (error_code EC = SecI->getAddress(SectionAddress))
98     return EC;
99
100   Result = Address - SectionAddress;
101   return object_error::success;
102 }
103
104 ObjectImage *RuntimeDyldImpl::loadObject(ObjectImage *InputObject) {
105   MutexGuard locked(lock);
106
107   std::unique_ptr<ObjectImage> Obj(InputObject);
108   if (!Obj)
109     return nullptr;
110
111   // Save information about our target
112   Arch = (Triple::ArchType)Obj->getArch();
113   IsTargetLittleEndian = Obj->getObjectFile()->isLittleEndian();
114
115   // Compute the memory size required to load all sections to be loaded
116   // and pass this information to the memory manager
117   if (MemMgr->needsToReserveAllocationSpace()) {
118     uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
119     computeTotalAllocSize(*Obj, CodeSize, DataSizeRO, DataSizeRW);
120     MemMgr->reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
121   }
122
123   // Symbols found in this object
124   StringMap<SymbolLoc> LocalSymbols;
125   // Used sections from the object file
126   ObjSectionToIDMap LocalSections;
127
128   // Common symbols requiring allocation, with their sizes and alignments
129   CommonSymbolMap CommonSymbols;
130   // Maximum required total memory to allocate all common symbols
131   uint64_t CommonSize = 0;
132
133   // Parse symbols
134   DEBUG(dbgs() << "Parse symbols:\n");
135   for (symbol_iterator I = Obj->begin_symbols(), E = Obj->end_symbols(); I != E;
136        ++I) {
137     object::SymbolRef::Type SymType;
138     StringRef Name;
139     Check(I->getType(SymType));
140     Check(I->getName(Name));
141
142     uint32_t Flags = I->getFlags();
143
144     bool IsCommon = Flags & SymbolRef::SF_Common;
145     if (IsCommon) {
146       // Add the common symbols to a list.  We'll allocate them all below.
147       if (!GlobalSymbolTable.count(Name)) {
148         uint32_t Align;
149         Check(I->getAlignment(Align));
150         uint64_t Size = 0;
151         Check(I->getSize(Size));
152         CommonSize += Size + Align;
153         CommonSymbols[*I] = CommonSymbolInfo(Size, Align);
154       }
155     } else {
156       if (SymType == object::SymbolRef::ST_Function ||
157           SymType == object::SymbolRef::ST_Data ||
158           SymType == object::SymbolRef::ST_Unknown) {
159         uint64_t SectOffset;
160         StringRef SectionData;
161         bool IsCode;
162         section_iterator SI = Obj->end_sections();
163         Check(getOffset(*I, SectOffset));
164         Check(I->getSection(SI));
165         if (SI == Obj->end_sections())
166           continue;
167         Check(SI->getContents(SectionData));
168         Check(SI->isText(IsCode));
169         unsigned SectionID =
170             findOrEmitSection(*Obj, *SI, IsCode, LocalSections);
171         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
172         DEBUG(dbgs() << "\tOffset: " << format("%p", (uintptr_t)SectOffset)
173                      << " flags: " << Flags << " SID: " << SectionID);
174         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
175       }
176     }
177     DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
178   }
179
180   // Allocate common symbols
181   if (CommonSize != 0)
182     emitCommonSymbols(*Obj, CommonSymbols, CommonSize, GlobalSymbolTable);
183
184   // Parse and process relocations
185   DEBUG(dbgs() << "Parse relocations:\n");
186   for (section_iterator SI = Obj->begin_sections(), SE = Obj->end_sections();
187        SI != SE; ++SI) {
188     unsigned SectionID = 0;
189     StubMap Stubs;
190     section_iterator RelocatedSection = SI->getRelocatedSection();
191
192     relocation_iterator I = SI->relocation_begin();
193     relocation_iterator E = SI->relocation_end();
194
195     if (I == E && !ProcessAllSections)
196       continue;
197
198     bool IsCode = false;
199     Check(RelocatedSection->isText(IsCode));
200     SectionID =
201         findOrEmitSection(*Obj, *RelocatedSection, IsCode, LocalSections);
202     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
203
204     for (; I != E;)
205       I = processRelocationRef(SectionID, I, *Obj, LocalSections, LocalSymbols,
206                                Stubs);
207   }
208
209   // Give the subclasses a chance to tie-up any loose ends.
210   finalizeLoad(*Obj, LocalSections);
211
212   return Obj.release();
213 }
214
215 // A helper method for computeTotalAllocSize.
216 // Computes the memory size required to allocate sections with the given sizes,
217 // assuming that all sections are allocated with the given alignment
218 static uint64_t
219 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
220                                  uint64_t Alignment) {
221   uint64_t TotalSize = 0;
222   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
223     uint64_t AlignedSize =
224         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
225     TotalSize += AlignedSize;
226   }
227   return TotalSize;
228 }
229
230 // Compute an upper bound of the memory size that is required to load all
231 // sections
232 void RuntimeDyldImpl::computeTotalAllocSize(ObjectImage &Obj,
233                                             uint64_t &CodeSize,
234                                             uint64_t &DataSizeRO,
235                                             uint64_t &DataSizeRW) {
236   // Compute the size of all sections required for execution
237   std::vector<uint64_t> CodeSectionSizes;
238   std::vector<uint64_t> ROSectionSizes;
239   std::vector<uint64_t> RWSectionSizes;
240   uint64_t MaxAlignment = sizeof(void *);
241
242   // Collect sizes of all sections to be loaded;
243   // also determine the max alignment of all sections
244   for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
245        SI != SE; ++SI) {
246     const SectionRef &Section = *SI;
247
248     bool IsRequired;
249     Check(Section.isRequiredForExecution(IsRequired));
250
251     // Consider only the sections that are required to be loaded for execution
252     if (IsRequired) {
253       uint64_t DataSize = 0;
254       uint64_t Alignment64 = 0;
255       bool IsCode = false;
256       bool IsReadOnly = false;
257       StringRef Name;
258       Check(Section.getSize(DataSize));
259       Check(Section.getAlignment(Alignment64));
260       Check(Section.isText(IsCode));
261       Check(Section.isReadOnlyData(IsReadOnly));
262       Check(Section.getName(Name));
263       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
264
265       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
266       uint64_t SectionSize = DataSize + StubBufSize;
267
268       // The .eh_frame section (at least on Linux) needs an extra four bytes
269       // padded
270       // with zeroes added at the end.  For MachO objects, this section has a
271       // slightly different name, so this won't have any effect for MachO
272       // objects.
273       if (Name == ".eh_frame")
274         SectionSize += 4;
275
276       if (SectionSize > 0) {
277         // save the total size of the section
278         if (IsCode) {
279           CodeSectionSizes.push_back(SectionSize);
280         } else if (IsReadOnly) {
281           ROSectionSizes.push_back(SectionSize);
282         } else {
283           RWSectionSizes.push_back(SectionSize);
284         }
285         // update the max alignment
286         if (Alignment > MaxAlignment) {
287           MaxAlignment = Alignment;
288         }
289       }
290     }
291   }
292
293   // Compute the size of all common symbols
294   uint64_t CommonSize = 0;
295   for (symbol_iterator I = Obj.begin_symbols(), E = Obj.end_symbols(); I != E;
296        ++I) {
297     uint32_t Flags = I->getFlags();
298     if (Flags & SymbolRef::SF_Common) {
299       // Add the common symbols to a list.  We'll allocate them all below.
300       uint64_t Size = 0;
301       Check(I->getSize(Size));
302       CommonSize += Size;
303     }
304   }
305   if (CommonSize != 0) {
306     RWSectionSizes.push_back(CommonSize);
307   }
308
309   // Compute the required allocation space for each different type of sections
310   // (code, read-only data, read-write data) assuming that all sections are
311   // allocated with the max alignment. Note that we cannot compute with the
312   // individual alignments of the sections, because then the required size
313   // depends on the order, in which the sections are allocated.
314   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
315   DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
316   DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
317 }
318
319 // compute stub buffer size for the given section
320 unsigned RuntimeDyldImpl::computeSectionStubBufSize(ObjectImage &Obj,
321                                                     const SectionRef &Section) {
322   unsigned StubSize = getMaxStubSize();
323   if (StubSize == 0) {
324     return 0;
325   }
326   // FIXME: this is an inefficient way to handle this. We should computed the
327   // necessary section allocation size in loadObject by walking all the sections
328   // once.
329   unsigned StubBufSize = 0;
330   for (section_iterator SI = Obj.begin_sections(), SE = Obj.end_sections();
331        SI != SE; ++SI) {
332     section_iterator RelSecI = SI->getRelocatedSection();
333     if (!(RelSecI == Section))
334       continue;
335
336     for (const RelocationRef &Reloc : SI->relocations()) {
337       (void)Reloc;
338       StubBufSize += StubSize;
339     }
340   }
341
342   // Get section data size and alignment
343   uint64_t Alignment64;
344   uint64_t DataSize;
345   Check(Section.getSize(DataSize));
346   Check(Section.getAlignment(Alignment64));
347
348   // Add stubbuf size alignment
349   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
350   unsigned StubAlignment = getStubAlignment();
351   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
352   if (StubAlignment > EndAlignment)
353     StubBufSize += StubAlignment - EndAlignment;
354   return StubBufSize;
355 }
356
357 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
358                                         const CommonSymbolMap &CommonSymbols,
359                                         uint64_t TotalSize,
360                                         SymbolTableMap &SymbolTable) {
361   // Allocate memory for the section
362   unsigned SectionID = Sections.size();
363   uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void *),
364                                               SectionID, StringRef(), false);
365   if (!Addr)
366     report_fatal_error("Unable to allocate memory for common symbols!");
367   uint64_t Offset = 0;
368   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, 0));
369   memset(Addr, 0, TotalSize);
370
371   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
372                << format("%p", Addr) << " DataSize: " << TotalSize << "\n");
373
374   // Assign the address of each symbol
375   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
376        itEnd = CommonSymbols.end(); it != itEnd; ++it) {
377     uint64_t Size = it->second.first;
378     uint64_t Align = it->second.second;
379     StringRef Name;
380     it->first.getName(Name);
381     if (Align) {
382       // This symbol has an alignment requirement.
383       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
384       Addr += AlignOffset;
385       Offset += AlignOffset;
386       DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
387                    << format("%p\n", Addr));
388     }
389     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
390     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
391     Offset += Size;
392     Addr += Size;
393   }
394 }
395
396 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
397                                       const SectionRef &Section, bool IsCode) {
398
399   StringRef data;
400   uint64_t Alignment64;
401   Check(Section.getContents(data));
402   Check(Section.getAlignment(Alignment64));
403
404   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
405   bool IsRequired;
406   bool IsVirtual;
407   bool IsZeroInit;
408   bool IsReadOnly;
409   uint64_t DataSize;
410   unsigned PaddingSize = 0;
411   unsigned StubBufSize = 0;
412   StringRef Name;
413   Check(Section.isRequiredForExecution(IsRequired));
414   Check(Section.isVirtual(IsVirtual));
415   Check(Section.isZeroInit(IsZeroInit));
416   Check(Section.isReadOnlyData(IsReadOnly));
417   Check(Section.getSize(DataSize));
418   Check(Section.getName(Name));
419
420   StubBufSize = computeSectionStubBufSize(Obj, Section);
421
422   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
423   // with zeroes added at the end.  For MachO objects, this section has a
424   // slightly different name, so this won't have any effect for MachO objects.
425   if (Name == ".eh_frame")
426     PaddingSize = 4;
427
428   uintptr_t Allocate;
429   unsigned SectionID = Sections.size();
430   uint8_t *Addr;
431   const char *pData = nullptr;
432
433   // Some sections, such as debug info, don't need to be loaded for execution.
434   // Leave those where they are.
435   if (IsRequired) {
436     Allocate = DataSize + PaddingSize + StubBufSize;
437     Addr = IsCode ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID,
438                                                 Name)
439                   : MemMgr->allocateDataSection(Allocate, Alignment, SectionID,
440                                                 Name, IsReadOnly);
441     if (!Addr)
442       report_fatal_error("Unable to allocate section memory!");
443
444     // Virtual sections have no data in the object image, so leave pData = 0
445     if (!IsVirtual)
446       pData = data.data();
447
448     // Zero-initialize or copy the data from the image
449     if (IsZeroInit || IsVirtual)
450       memset(Addr, 0, DataSize);
451     else
452       memcpy(Addr, pData, DataSize);
453
454     // Fill in any extra bytes we allocated for padding
455     if (PaddingSize != 0) {
456       memset(Addr + DataSize, 0, PaddingSize);
457       // Update the DataSize variable so that the stub offset is set correctly.
458       DataSize += PaddingSize;
459     }
460
461     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
462                  << " obj addr: " << format("%p", pData)
463                  << " new addr: " << format("%p", Addr)
464                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
465                  << " Allocate: " << Allocate << "\n");
466     Obj.updateSectionAddress(Section, (uint64_t)Addr);
467   } else {
468     // Even if we didn't load the section, we need to record an entry for it
469     // to handle later processing (and by 'handle' I mean don't do anything
470     // with these sections).
471     Allocate = 0;
472     Addr = nullptr;
473     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
474                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
475                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
476                  << " Allocate: " << Allocate << "\n");
477   }
478
479   Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
480   return SectionID;
481 }
482
483 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
484                                             const SectionRef &Section,
485                                             bool IsCode,
486                                             ObjSectionToIDMap &LocalSections) {
487
488   unsigned SectionID = 0;
489   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
490   if (i != LocalSections.end())
491     SectionID = i->second;
492   else {
493     SectionID = emitSection(Obj, Section, IsCode);
494     LocalSections[Section] = SectionID;
495   }
496   return SectionID;
497 }
498
499 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
500                                               unsigned SectionID) {
501   Relocations[SectionID].push_back(RE);
502 }
503
504 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
505                                              StringRef SymbolName) {
506   // Relocation by symbol.  If the symbol is found in the global symbol table,
507   // create an appropriate section relocation.  Otherwise, add it to
508   // ExternalSymbolRelocations.
509   SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
510   if (Loc == GlobalSymbolTable.end()) {
511     ExternalSymbolRelocations[SymbolName].push_back(RE);
512   } else {
513     // Copy the RE since we want to modify its addend.
514     RelocationEntry RECopy = RE;
515     RECopy.Addend += Loc->second.second;
516     Relocations[Loc->second.first].push_back(RECopy);
517   }
518 }
519
520 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
521   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be ||
522       Arch == Triple::arm64 || Arch == Triple::arm64_be) {
523     // This stub has to be able to access the full address space,
524     // since symbol lookup won't necessarily find a handy, in-range,
525     // PLT stub for functions which could be anywhere.
526     uint32_t *StubAddr = (uint32_t *)Addr;
527
528     // Stub can use ip0 (== x16) to calculate address
529     *StubAddr = 0xd2e00010; // movz ip0, #:abs_g3:<addr>
530     StubAddr++;
531     *StubAddr = 0xf2c00010; // movk ip0, #:abs_g2_nc:<addr>
532     StubAddr++;
533     *StubAddr = 0xf2a00010; // movk ip0, #:abs_g1_nc:<addr>
534     StubAddr++;
535     *StubAddr = 0xf2800010; // movk ip0, #:abs_g0_nc:<addr>
536     StubAddr++;
537     *StubAddr = 0xd61f0200; // br ip0
538
539     return Addr;
540   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
541     // TODO: There is only ARM far stub now. We should add the Thumb stub,
542     // and stubs for branches Thumb - ARM and ARM - Thumb.
543     uint32_t *StubAddr = (uint32_t *)Addr;
544     *StubAddr = 0xe51ff004; // ldr pc,<label>
545     return (uint8_t *)++StubAddr;
546   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
547     uint32_t *StubAddr = (uint32_t *)Addr;
548     // 0:   3c190000        lui     t9,%hi(addr).
549     // 4:   27390000        addiu   t9,t9,%lo(addr).
550     // 8:   03200008        jr      t9.
551     // c:   00000000        nop.
552     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
553     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
554
555     *StubAddr = LuiT9Instr;
556     StubAddr++;
557     *StubAddr = AdduiT9Instr;
558     StubAddr++;
559     *StubAddr = JrT9Instr;
560     StubAddr++;
561     *StubAddr = NopInstr;
562     return Addr;
563   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
564     // PowerPC64 stub: the address points to a function descriptor
565     // instead of the function itself. Load the function address
566     // on r11 and sets it to control register. Also loads the function
567     // TOC in r2 and environment pointer to r11.
568     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
569     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
570     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
571     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
572     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
573     writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
574     writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
575     writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
576     writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
577     writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
578     writeInt32BE(Addr+40, 0x4E800420); // bctr
579
580     return Addr;
581   } else if (Arch == Triple::systemz) {
582     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
583     writeInt16BE(Addr+2,  0x0000);
584     writeInt16BE(Addr+4,  0x0004);
585     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
586     // 8-byte address stored at Addr + 8
587     return Addr;
588   } else if (Arch == Triple::x86_64) {
589     *Addr      = 0xFF; // jmp
590     *(Addr+1)  = 0x25; // rip
591     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
592   } else if (Arch == Triple::x86) {
593     *Addr      = 0xE9; // 32-bit pc-relative jump.
594   }
595   return Addr;
596 }
597
598 // Assign an address to a symbol name and resolve all the relocations
599 // associated with it.
600 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
601                                              uint64_t Addr) {
602   // The address to use for relocation resolution is not
603   // the address of the local section buffer. We must be doing
604   // a remote execution environment of some sort. Relocations can't
605   // be applied until all the sections have been moved.  The client must
606   // trigger this with a call to MCJIT::finalize() or
607   // RuntimeDyld::resolveRelocations().
608   //
609   // Addr is a uint64_t because we can't assume the pointer width
610   // of the target is the same as that of the host. Just use a generic
611   // "big enough" type.
612   Sections[SectionID].LoadAddress = Addr;
613 }
614
615 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
616                                             uint64_t Value) {
617   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
618     const RelocationEntry &RE = Relocs[i];
619     // Ignore relocations for sections that were not loaded
620     if (Sections[RE.SectionID].Address == nullptr)
621       continue;
622     resolveRelocation(RE, Value);
623   }
624 }
625
626 void RuntimeDyldImpl::resolveExternalSymbols() {
627   while (!ExternalSymbolRelocations.empty()) {
628     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
629
630     StringRef Name = i->first();
631     if (Name.size() == 0) {
632       // This is an absolute symbol, use an address of zero.
633       DEBUG(dbgs() << "Resolving absolute relocations."
634                    << "\n");
635       RelocationList &Relocs = i->second;
636       resolveRelocationList(Relocs, 0);
637     } else {
638       uint64_t Addr = 0;
639       SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
640       if (Loc == GlobalSymbolTable.end()) {
641         // This is an external symbol, try to get its address from
642         // MemoryManager.
643         Addr = MemMgr->getSymbolAddress(Name.data());
644         // The call to getSymbolAddress may have caused additional modules to
645         // be loaded, which may have added new entries to the
646         // ExternalSymbolRelocations map.  Consquently, we need to update our
647         // iterator.  This is also why retrieval of the relocation list
648         // associated with this symbol is deferred until below this point.
649         // New entries may have been added to the relocation list.
650         i = ExternalSymbolRelocations.find(Name);
651       } else {
652         // We found the symbol in our global table.  It was probably in a
653         // Module that we loaded previously.
654         SymbolLoc SymLoc = Loc->second;
655         Addr = getSectionLoadAddress(SymLoc.first) + SymLoc.second;
656       }
657
658       // FIXME: Implement error handling that doesn't kill the host program!
659       if (!Addr)
660         report_fatal_error("Program used external function '" + Name +
661                            "' which could not be resolved!");
662
663       updateGOTEntries(Name, Addr);
664       DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
665                    << format("0x%lx", Addr) << "\n");
666       // This list may have been updated when we called getSymbolAddress, so
667       // don't change this code to get the list earlier.
668       RelocationList &Relocs = i->second;
669       resolveRelocationList(Relocs, Addr);
670     }
671
672     ExternalSymbolRelocations.erase(i);
673   }
674 }
675
676 //===----------------------------------------------------------------------===//
677 // RuntimeDyld class implementation
678 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
679   // FIXME: There's a potential issue lurking here if a single instance of
680   // RuntimeDyld is used to load multiple objects.  The current implementation
681   // associates a single memory manager with a RuntimeDyld instance.  Even
682   // though the public class spawns a new 'impl' instance for each load,
683   // they share a single memory manager.  This can become a problem when page
684   // permissions are applied.
685   Dyld = nullptr;
686   MM = mm;
687   ProcessAllSections = false;
688 }
689
690 RuntimeDyld::~RuntimeDyld() { delete Dyld; }
691
692 static std::unique_ptr<RuntimeDyldELF>
693 createRuntimeDyldELF(RTDyldMemoryManager *MM, bool ProcessAllSections) {
694   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM));
695   Dyld->setProcessAllSections(ProcessAllSections);
696   return Dyld;
697 }
698
699 static std::unique_ptr<RuntimeDyldMachO>
700 createRuntimeDyldMachO(RTDyldMemoryManager *MM, bool ProcessAllSections) {
701   std::unique_ptr<RuntimeDyldMachO> Dyld(new RuntimeDyldMachO(MM));
702   Dyld->setProcessAllSections(ProcessAllSections);
703   return Dyld;
704 }
705
706 ObjectImage *RuntimeDyld::loadObject(std::unique_ptr<ObjectFile> InputObject) {
707   std::unique_ptr<ObjectImage> InputImage;
708
709   ObjectFile &Obj = *InputObject;
710
711   if (InputObject->isELF()) {
712     InputImage.reset(RuntimeDyldELF::createObjectImageFromFile(std::move(InputObject)));
713     if (!Dyld)
714       Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
715   } else if (InputObject->isMachO()) {
716     InputImage.reset(RuntimeDyldMachO::createObjectImageFromFile(std::move(InputObject)));
717     if (!Dyld)
718       Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
719   } else
720     report_fatal_error("Incompatible object format!");
721
722   if (!Dyld->isCompatibleFile(&Obj))
723     report_fatal_error("Incompatible object format!");
724
725   Dyld->loadObject(InputImage.get());
726   return InputImage.release();
727 }
728
729 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
730   std::unique_ptr<ObjectImage> InputImage;
731   sys::fs::file_magic Type = sys::fs::identify_magic(InputBuffer->getBuffer());
732
733   switch (Type) {
734   case sys::fs::file_magic::elf_relocatable:
735   case sys::fs::file_magic::elf_executable:
736   case sys::fs::file_magic::elf_shared_object:
737   case sys::fs::file_magic::elf_core:
738     InputImage.reset(RuntimeDyldELF::createObjectImage(InputBuffer));
739     if (!Dyld)
740       Dyld = createRuntimeDyldELF(MM, ProcessAllSections).release();
741     break;
742   case sys::fs::file_magic::macho_object:
743   case sys::fs::file_magic::macho_executable:
744   case sys::fs::file_magic::macho_fixed_virtual_memory_shared_lib:
745   case sys::fs::file_magic::macho_core:
746   case sys::fs::file_magic::macho_preload_executable:
747   case sys::fs::file_magic::macho_dynamically_linked_shared_lib:
748   case sys::fs::file_magic::macho_dynamic_linker:
749   case sys::fs::file_magic::macho_bundle:
750   case sys::fs::file_magic::macho_dynamically_linked_shared_lib_stub:
751   case sys::fs::file_magic::macho_dsym_companion:
752     InputImage.reset(RuntimeDyldMachO::createObjectImage(InputBuffer));
753     if (!Dyld)
754       Dyld = createRuntimeDyldMachO(MM, ProcessAllSections).release();
755     break;
756   case sys::fs::file_magic::unknown:
757   case sys::fs::file_magic::bitcode:
758   case sys::fs::file_magic::archive:
759   case sys::fs::file_magic::coff_object:
760   case sys::fs::file_magic::coff_import_library:
761   case sys::fs::file_magic::pecoff_executable:
762   case sys::fs::file_magic::macho_universal_binary:
763   case sys::fs::file_magic::windows_resource:
764     report_fatal_error("Incompatible object format!");
765   }
766
767   if (!Dyld->isCompatibleFormat(InputBuffer))
768     report_fatal_error("Incompatible object format!");
769
770   Dyld->loadObject(InputImage.get());
771   return InputImage.release();
772 }
773
774 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
775   if (!Dyld)
776     return nullptr;
777   return Dyld->getSymbolAddress(Name);
778 }
779
780 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
781   if (!Dyld)
782     return 0;
783   return Dyld->getSymbolLoadAddress(Name);
784 }
785
786 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
787
788 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
789   Dyld->reassignSectionAddress(SectionID, Addr);
790 }
791
792 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
793                                     uint64_t TargetAddress) {
794   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
795 }
796
797 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
798
799 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
800
801 void RuntimeDyld::registerEHFrames() {
802   if (Dyld)
803     Dyld->registerEHFrames();
804 }
805
806 void RuntimeDyld::deregisterEHFrames() {
807   if (Dyld)
808     Dyld->deregisterEHFrames();
809 }
810
811 } // end namespace llvm