Propagate relocation info to resolveRelocation.
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "llvm/ExecutionEngine/RuntimeDyld.h"
16 #include "ObjectImageCommon.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Support/MathExtras.h"
21 #include "llvm/Support/Path.h"
22
23 using namespace llvm;
24 using namespace llvm::object;
25
26 // Empty out-of-line virtual destructor as the key function.
27 RTDyldMemoryManager::~RTDyldMemoryManager() {}
28 RuntimeDyldImpl::~RuntimeDyldImpl() {}
29
30 namespace llvm {
31
32 // Resolve the relocations for all symbols we currently know about.
33 void RuntimeDyldImpl::resolveRelocations() {
34   // First, resolve relocations associated with external symbols.
35   resolveExternalSymbols();
36
37   // Just iterate over the sections we have and resolve all the relocations
38   // in them. Gross overkill, but it gets the job done.
39   for (int i = 0, e = Sections.size(); i != e; ++i) {
40     uint64_t Addr = Sections[i].LoadAddress;
41     DEBUG(dbgs() << "Resolving relocations Section #" << i
42             << "\t" << format("%p", (uint8_t *)Addr)
43             << "\n");
44     resolveRelocationList(Relocations[i], Addr);
45   }
46 }
47
48 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
49                                         uint64_t TargetAddress) {
50   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
51     if (Sections[i].Address == LocalAddress) {
52       reassignSectionAddress(i, TargetAddress);
53       return;
54     }
55   }
56   llvm_unreachable("Attempting to remap address of unknown section!");
57 }
58
59 // Subclasses can implement this method to create specialized image instances.
60 // The caller owns the pointer that is returned.
61 ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
62   return new ObjectImageCommon(InputBuffer);
63 }
64
65 ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
66   OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
67   if (!obj)
68     report_fatal_error("Unable to create object image from memory buffer!");
69
70   Arch = (Triple::ArchType)obj->getArch();
71
72   // Symbols found in this object
73   StringMap<SymbolLoc> LocalSymbols;
74   // Used sections from the object file
75   ObjSectionToIDMap LocalSections;
76
77   // Common symbols requiring allocation, with their sizes and alignments
78   CommonSymbolMap CommonSymbols;
79   // Maximum required total memory to allocate all common symbols
80   uint64_t CommonSize = 0;
81
82   error_code err;
83   // Parse symbols
84   DEBUG(dbgs() << "Parse symbols:\n");
85   for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
86        i != e; i.increment(err)) {
87     Check(err);
88     object::SymbolRef::Type SymType;
89     StringRef Name;
90     Check(i->getType(SymType));
91     Check(i->getName(Name));
92
93     uint32_t flags;
94     Check(i->getFlags(flags));
95
96     bool isCommon = flags & SymbolRef::SF_Common;
97     if (isCommon) {
98       // Add the common symbols to a list.  We'll allocate them all below.
99       uint64_t Align = getCommonSymbolAlignment(*i);
100       uint64_t Size = 0;
101       Check(i->getSize(Size));
102       CommonSize += Size + Align;
103       CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
104     } else {
105       if (SymType == object::SymbolRef::ST_Function ||
106           SymType == object::SymbolRef::ST_Data ||
107           SymType == object::SymbolRef::ST_Unknown) {
108         uint64_t FileOffset;
109         StringRef SectionData;
110         bool IsCode;
111         section_iterator si = obj->end_sections();
112         Check(i->getFileOffset(FileOffset));
113         Check(i->getSection(si));
114         if (si == obj->end_sections()) continue;
115         Check(si->getContents(SectionData));
116         Check(si->isText(IsCode));
117         const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
118                                 (uintptr_t)FileOffset;
119         uintptr_t SectOffset = (uintptr_t)(SymPtr -
120                                            (const uint8_t*)SectionData.begin());
121         unsigned SectionID = findOrEmitSection(*obj, *si, IsCode, LocalSections);
122         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
123         DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
124                      << " flags: " << flags
125                      << " SID: " << SectionID
126                      << " Offset: " << format("%p", SectOffset));
127         GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
128       }
129     }
130     DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
131   }
132
133   // Allocate common symbols
134   if (CommonSize != 0)
135     emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
136
137   // Parse and process relocations
138   DEBUG(dbgs() << "Parse relocations:\n");
139   for (section_iterator si = obj->begin_sections(),
140        se = obj->end_sections(); si != se; si.increment(err)) {
141     Check(err);
142     bool isFirstRelocation = true;
143     unsigned SectionID = 0;
144     StubMap Stubs;
145
146     for (relocation_iterator i = si->begin_relocations(),
147          e = si->end_relocations(); i != e; i.increment(err)) {
148       Check(err);
149
150       // If it's the first relocation in this section, find its SectionID
151       if (isFirstRelocation) {
152         SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
153         DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
154         isFirstRelocation = false;
155       }
156
157       processRelocationRef(SectionID, i, *obj, LocalSections, LocalSymbols,
158                            Stubs);
159     }
160   }
161
162   return obj.take();
163 }
164
165 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
166                                         const CommonSymbolMap &CommonSymbols,
167                                         uint64_t TotalSize,
168                                         SymbolTableMap &SymbolTable) {
169   // Allocate memory for the section
170   unsigned SectionID = Sections.size();
171   uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
172                                               SectionID, false);
173   if (!Addr)
174     report_fatal_error("Unable to allocate memory for common symbols!");
175   uint64_t Offset = 0;
176   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
177   memset(Addr, 0, TotalSize);
178
179   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
180                << " new addr: " << format("%p", Addr)
181                << " DataSize: " << TotalSize
182                << "\n");
183
184   // Assign the address of each symbol
185   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
186        itEnd = CommonSymbols.end(); it != itEnd; it++) {
187     uint64_t Size = it->second.first;
188     uint64_t Align = it->second.second;
189     StringRef Name;
190     it->first.getName(Name);
191     if (Align) {
192       // This symbol has an alignment requirement.
193       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
194       Addr += AlignOffset;
195       Offset += AlignOffset;
196       DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
197                       format("%p\n", Addr));
198     }
199     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
200     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
201     Offset += Size;
202     Addr += Size;
203   }
204 }
205
206 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
207                                       const SectionRef &Section,
208                                       bool IsCode) {
209
210   unsigned StubBufSize = 0,
211            StubSize = getMaxStubSize();
212   error_code err;
213   if (StubSize > 0) {
214     for (relocation_iterator i = Section.begin_relocations(),
215          e = Section.end_relocations(); i != e; i.increment(err), Check(err))
216       StubBufSize += StubSize;
217   }
218   StringRef data;
219   uint64_t Alignment64;
220   Check(Section.getContents(data));
221   Check(Section.getAlignment(Alignment64));
222
223   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
224   bool IsRequired;
225   bool IsVirtual;
226   bool IsZeroInit;
227   bool IsReadOnly;
228   uint64_t DataSize;
229   StringRef Name;
230   Check(Section.isRequiredForExecution(IsRequired));
231   Check(Section.isVirtual(IsVirtual));
232   Check(Section.isZeroInit(IsZeroInit));
233   Check(Section.isReadOnlyData(IsReadOnly));
234   Check(Section.getSize(DataSize));
235   Check(Section.getName(Name));
236
237   unsigned Allocate;
238   unsigned SectionID = Sections.size();
239   uint8_t *Addr;
240   const char *pData = 0;
241
242   // Some sections, such as debug info, don't need to be loaded for execution.
243   // Leave those where they are.
244   if (IsRequired) {
245     Allocate = DataSize + StubBufSize;
246     Addr = IsCode
247       ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
248       : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
249     if (!Addr)
250       report_fatal_error("Unable to allocate section memory!");
251
252     // Virtual sections have no data in the object image, so leave pData = 0
253     if (!IsVirtual)
254       pData = data.data();
255
256     // Zero-initialize or copy the data from the image
257     if (IsZeroInit || IsVirtual)
258       memset(Addr, 0, DataSize);
259     else
260       memcpy(Addr, pData, DataSize);
261
262     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
263                  << " Name: " << Name
264                  << " obj addr: " << format("%p", pData)
265                  << " new addr: " << format("%p", Addr)
266                  << " DataSize: " << DataSize
267                  << " StubBufSize: " << StubBufSize
268                  << " Allocate: " << Allocate
269                  << "\n");
270     Obj.updateSectionAddress(Section, (uint64_t)Addr);
271   }
272   else {
273     // Even if we didn't load the section, we need to record an entry for it
274     // to handle later processing (and by 'handle' I mean don't do anything
275     // with these sections).
276     Allocate = 0;
277     Addr = 0;
278     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
279                  << " Name: " << Name
280                  << " obj addr: " << format("%p", data.data())
281                  << " new addr: 0"
282                  << " DataSize: " << DataSize
283                  << " StubBufSize: " << StubBufSize
284                  << " Allocate: " << Allocate
285                  << "\n");
286   }
287
288   Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
289                                   (uintptr_t)pData));
290   return SectionID;
291 }
292
293 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
294                                             const SectionRef &Section,
295                                             bool IsCode,
296                                             ObjSectionToIDMap &LocalSections) {
297
298   unsigned SectionID = 0;
299   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
300   if (i != LocalSections.end())
301     SectionID = i->second;
302   else {
303     SectionID = emitSection(Obj, Section, IsCode);
304     LocalSections[Section] = SectionID;
305   }
306   return SectionID;
307 }
308
309 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
310                                               unsigned SectionID) {
311   Relocations[SectionID].push_back(RE);
312 }
313
314 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
315                                              StringRef SymbolName) {
316   // Relocation by symbol.  If the symbol is found in the global symbol table,
317   // create an appropriate section relocation.  Otherwise, add it to
318   // ExternalSymbolRelocations.
319   SymbolTableMap::const_iterator Loc =
320       GlobalSymbolTable.find(SymbolName);
321   if (Loc == GlobalSymbolTable.end()) {
322     ExternalSymbolRelocations[SymbolName].push_back(RE);
323   } else {
324     // Copy the RE since we want to modify its addend.
325     RelocationEntry RECopy = RE;
326     RECopy.Addend += Loc->second.second;
327     Relocations[Loc->second.first].push_back(RECopy);
328   }
329 }
330
331 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
332   if (Arch == Triple::arm) {
333     // TODO: There is only ARM far stub now. We should add the Thumb stub,
334     // and stubs for branches Thumb - ARM and ARM - Thumb.
335     uint32_t *StubAddr = (uint32_t*)Addr;
336     *StubAddr = 0xe51ff004; // ldr pc,<label>
337     return (uint8_t*)++StubAddr;
338   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
339     uint32_t *StubAddr = (uint32_t*)Addr;
340     // 0:   3c190000        lui     t9,%hi(addr).
341     // 4:   27390000        addiu   t9,t9,%lo(addr).
342     // 8:   03200008        jr      t9.
343     // c:   00000000        nop.
344     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
345     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
346
347     *StubAddr = LuiT9Instr;
348     StubAddr++;
349     *StubAddr = AdduiT9Instr;
350     StubAddr++;
351     *StubAddr = JrT9Instr;
352     StubAddr++;
353     *StubAddr = NopInstr;
354     return Addr;
355   } else if (Arch == Triple::ppc64) {
356     // PowerPC64 stub: the address points to a function descriptor
357     // instead of the function itself. Load the function address
358     // on r11 and sets it to control register. Also loads the function
359     // TOC in r2 and environment pointer to r11.
360     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
361     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
362     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
363     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
364     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
365     writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
366     writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
367     writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
368     writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
369     writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
370     writeInt32BE(Addr+40, 0x4E800420); // bctr
371
372     return Addr;
373   }
374   return Addr;
375 }
376
377 // Assign an address to a symbol name and resolve all the relocations
378 // associated with it.
379 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
380                                              uint64_t Addr) {
381   // The address to use for relocation resolution is not
382   // the address of the local section buffer. We must be doing
383   // a remote execution environment of some sort. Relocations can't
384   // be applied until all the sections have been moved.  The client must
385   // trigger this with a call to MCJIT::finalize() or
386   // RuntimeDyld::resolveRelocations().
387   //
388   // Addr is a uint64_t because we can't assume the pointer width
389   // of the target is the same as that of the host. Just use a generic
390   // "big enough" type.
391   Sections[SectionID].LoadAddress = Addr;
392 }
393
394 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
395                                             uint64_t Value) {
396   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
397     const RelocationEntry &RE = Relocs[i];
398     // Ignore relocations for sections that were not loaded
399     if (Sections[RE.SectionID].Address == 0)
400       continue;
401     resolveRelocation(RE, Value);
402   }
403 }
404
405 void RuntimeDyldImpl::resolveExternalSymbols() {
406   StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
407                                       e = ExternalSymbolRelocations.end();
408   for (; i != e; i++) {
409     StringRef Name = i->first();
410     RelocationList &Relocs = i->second;
411     SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
412     if (Loc == GlobalSymbolTable.end()) {
413       if (Name.size() == 0) {
414         // This is an absolute symbol, use an address of zero.
415         DEBUG(dbgs() << "Resolving absolute relocations." << "\n");
416         resolveRelocationList(Relocs, 0);
417       } else {
418         // This is an external symbol, try to get its address from
419         // MemoryManager.
420         uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
421                                                                    true);
422         DEBUG(dbgs() << "Resolving relocations Name: " << Name
423                 << "\t" << format("%p", Addr)
424                 << "\n");
425         resolveRelocationList(Relocs, (uintptr_t)Addr);
426       }
427     } else {
428       report_fatal_error("Expected external symbol");
429     }
430   }
431 }
432
433
434 //===----------------------------------------------------------------------===//
435 // RuntimeDyld class implementation
436 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
437   // FIXME: There's a potential issue lurking here if a single instance of
438   // RuntimeDyld is used to load multiple objects.  The current implementation
439   // associates a single memory manager with a RuntimeDyld instance.  Even
440   // though the public class spawns a new 'impl' instance for each load,
441   // they share a single memory manager.  This can become a problem when page
442   // permissions are applied.
443   Dyld = 0;
444   MM = mm;
445 }
446
447 RuntimeDyld::~RuntimeDyld() {
448   delete Dyld;
449 }
450
451 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
452   if (!Dyld) {
453     sys::LLVMFileType type = sys::IdentifyFileType(
454             InputBuffer->getBufferStart(),
455             static_cast<unsigned>(InputBuffer->getBufferSize()));
456     switch (type) {
457       case sys::ELF_Relocatable_FileType:
458       case sys::ELF_Executable_FileType:
459       case sys::ELF_SharedObject_FileType:
460       case sys::ELF_Core_FileType:
461         Dyld = new RuntimeDyldELF(MM);
462         break;
463       case sys::Mach_O_Object_FileType:
464       case sys::Mach_O_Executable_FileType:
465       case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
466       case sys::Mach_O_Core_FileType:
467       case sys::Mach_O_PreloadExecutable_FileType:
468       case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
469       case sys::Mach_O_DynamicLinker_FileType:
470       case sys::Mach_O_Bundle_FileType:
471       case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
472       case sys::Mach_O_DSYMCompanion_FileType:
473         Dyld = new RuntimeDyldMachO(MM);
474         break;
475       case sys::Unknown_FileType:
476       case sys::Bitcode_FileType:
477       case sys::Archive_FileType:
478       case sys::COFF_FileType:
479         report_fatal_error("Incompatible object format!");
480     }
481   } else {
482     if (!Dyld->isCompatibleFormat(InputBuffer))
483       report_fatal_error("Incompatible object format!");
484   }
485
486   return Dyld->loadObject(InputBuffer);
487 }
488
489 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
490   return Dyld->getSymbolAddress(Name);
491 }
492
493 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
494   return Dyld->getSymbolLoadAddress(Name);
495 }
496
497 void RuntimeDyld::resolveRelocations() {
498   Dyld->resolveRelocations();
499 }
500
501 void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
502                                          uint64_t Addr) {
503   Dyld->reassignSectionAddress(SectionID, Addr);
504 }
505
506 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
507                                     uint64_t TargetAddress) {
508   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
509 }
510
511 StringRef RuntimeDyld::getErrorString() {
512   return Dyld->getErrorString();
513 }
514
515 } // end namespace llvm