Interface changes to allow RuntimeDyld memory managers to set memory permissions...
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "dyld"
15 #include "ObjectImageCommon.h"
16 #include "RuntimeDyldImpl.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldMachO.h"
19 #include "llvm/Support/Path.h"
20 #include "llvm/Support/MathExtras.h"
21
22 using namespace llvm;
23 using namespace llvm::object;
24
25 // Empty out-of-line virtual destructor as the key function.
26 RTDyldMemoryManager::~RTDyldMemoryManager() {}
27 RuntimeDyldImpl::~RuntimeDyldImpl() {}
28
29 namespace llvm {
30
31 // Resolve the relocations for all symbols we currently know about.
32 void RuntimeDyldImpl::resolveRelocations() {
33   // First, resolve relocations associated with external symbols.
34   resolveExternalSymbols();
35
36   // Just iterate over the sections we have and resolve all the relocations
37   // in them. Gross overkill, but it gets the job done.
38   for (int i = 0, e = Sections.size(); i != e; ++i) {
39     uint64_t Addr = Sections[i].LoadAddress;
40     DEBUG(dbgs() << "Resolving relocations Section #" << i
41             << "\t" << format("%p", (uint8_t *)Addr)
42             << "\n");
43     resolveRelocationList(Relocations[i], Addr);
44   }
45 }
46
47 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
48                                         uint64_t TargetAddress) {
49   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
50     if (Sections[i].Address == LocalAddress) {
51       reassignSectionAddress(i, TargetAddress);
52       return;
53     }
54   }
55   llvm_unreachable("Attempting to remap address of unknown section!");
56 }
57
58 // Subclasses can implement this method to create specialized image instances.
59 // The caller owns the pointer that is returned.
60 ObjectImage *RuntimeDyldImpl::createObjectImage(ObjectBuffer *InputBuffer) {
61   return new ObjectImageCommon(InputBuffer);
62 }
63
64 ObjectImage *RuntimeDyldImpl::loadObject(ObjectBuffer *InputBuffer) {
65   OwningPtr<ObjectImage> obj(createObjectImage(InputBuffer));
66   if (!obj)
67     report_fatal_error("Unable to create object image from memory buffer!");
68
69   Arch = (Triple::ArchType)obj->getArch();
70
71   // Symbols found in this object
72   StringMap<SymbolLoc> LocalSymbols;
73   // Used sections from the object file
74   ObjSectionToIDMap LocalSections;
75
76   // Common symbols requiring allocation, with their sizes and alignments
77   CommonSymbolMap CommonSymbols;
78   // Maximum required total memory to allocate all common symbols
79   uint64_t CommonSize = 0;
80
81   error_code err;
82   // Parse symbols
83   DEBUG(dbgs() << "Parse symbols:\n");
84   for (symbol_iterator i = obj->begin_symbols(), e = obj->end_symbols();
85        i != e; i.increment(err)) {
86     Check(err);
87     object::SymbolRef::Type SymType;
88     StringRef Name;
89     Check(i->getType(SymType));
90     Check(i->getName(Name));
91
92     uint32_t flags;
93     Check(i->getFlags(flags));
94
95     bool isCommon = flags & SymbolRef::SF_Common;
96     if (isCommon) {
97       // Add the common symbols to a list.  We'll allocate them all below.
98       uint64_t Align = getCommonSymbolAlignment(*i);
99       uint64_t Size = 0;
100       Check(i->getSize(Size));
101       CommonSize += Size + Align;
102       CommonSymbols[*i] = CommonSymbolInfo(Size, Align);
103     } else {
104       if (SymType == object::SymbolRef::ST_Function ||
105           SymType == object::SymbolRef::ST_Data ||
106           SymType == object::SymbolRef::ST_Unknown) {
107         uint64_t FileOffset;
108         StringRef SectionData;
109         section_iterator si = obj->end_sections();
110         Check(i->getFileOffset(FileOffset));
111         Check(i->getSection(si));
112         if (si == obj->end_sections()) continue;
113         Check(si->getContents(SectionData));
114         const uint8_t* SymPtr = (const uint8_t*)InputBuffer->getBufferStart() +
115                                 (uintptr_t)FileOffset;
116         uintptr_t SectOffset = (uintptr_t)(SymPtr -
117                                            (const uint8_t*)SectionData.begin());
118         unsigned SectionID =
119           findOrEmitSection(*obj,
120                             *si,
121                             SymType == object::SymbolRef::ST_Function,
122                             LocalSections);
123         LocalSymbols[Name.data()] = SymbolLoc(SectionID, SectOffset);
124         DEBUG(dbgs() << "\tFileOffset: " << format("%p", (uintptr_t)FileOffset)
125                      << " flags: " << flags
126                      << " SID: " << SectionID
127                      << " Offset: " << format("%p", SectOffset));
128         bool isGlobal = flags & SymbolRef::SF_Global;
129         if (isGlobal)
130           GlobalSymbolTable[Name] = SymbolLoc(SectionID, SectOffset);
131       }
132     }
133     DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name << "\n");
134   }
135
136   // Allocate common symbols
137   if (CommonSize != 0)
138     emitCommonSymbols(*obj, CommonSymbols, CommonSize, LocalSymbols);
139
140   // Parse and process relocations
141   DEBUG(dbgs() << "Parse relocations:\n");
142   for (section_iterator si = obj->begin_sections(),
143        se = obj->end_sections(); si != se; si.increment(err)) {
144     Check(err);
145     bool isFirstRelocation = true;
146     unsigned SectionID = 0;
147     StubMap Stubs;
148
149     for (relocation_iterator i = si->begin_relocations(),
150          e = si->end_relocations(); i != e; i.increment(err)) {
151       Check(err);
152
153       // If it's the first relocation in this section, find its SectionID
154       if (isFirstRelocation) {
155         SectionID = findOrEmitSection(*obj, *si, true, LocalSections);
156         DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
157         isFirstRelocation = false;
158       }
159
160       ObjRelocationInfo RI;
161       RI.SectionID = SectionID;
162       Check(i->getAdditionalInfo(RI.AdditionalInfo));
163       Check(i->getOffset(RI.Offset));
164       Check(i->getSymbol(RI.Symbol));
165       Check(i->getType(RI.Type));
166
167       DEBUG(dbgs() << "\t\tAddend: " << RI.AdditionalInfo
168                    << " Offset: " << format("%p", (uintptr_t)RI.Offset)
169                    << " Type: " << (uint32_t)(RI.Type & 0xffffffffL)
170                    << "\n");
171       processRelocationRef(RI, *obj, LocalSections, LocalSymbols, Stubs);
172     }
173   }
174
175   return obj.take();
176 }
177
178 void RuntimeDyldImpl::emitCommonSymbols(ObjectImage &Obj,
179                                         const CommonSymbolMap &CommonSymbols,
180                                         uint64_t TotalSize,
181                                         SymbolTableMap &SymbolTable) {
182   // Allocate memory for the section
183   unsigned SectionID = Sections.size();
184   uint8_t *Addr = MemMgr->allocateDataSection(TotalSize, sizeof(void*),
185                                               SectionID, false);
186   if (!Addr)
187     report_fatal_error("Unable to allocate memory for common symbols!");
188   uint64_t Offset = 0;
189   Sections.push_back(SectionEntry(StringRef(), Addr, TotalSize, TotalSize, 0));
190   memset(Addr, 0, TotalSize);
191
192   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID
193                << " new addr: " << format("%p", Addr)
194                << " DataSize: " << TotalSize
195                << "\n");
196
197   // Assign the address of each symbol
198   for (CommonSymbolMap::const_iterator it = CommonSymbols.begin(),
199        itEnd = CommonSymbols.end(); it != itEnd; it++) {
200     uint64_t Size = it->second.first;
201     uint64_t Align = it->second.second;
202     StringRef Name;
203     it->first.getName(Name);
204     if (Align) {
205       // This symbol has an alignment requirement.
206       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
207       Addr += AlignOffset;
208       Offset += AlignOffset;
209       DEBUG(dbgs() << "Allocating common symbol " << Name << " address " <<
210                       format("%p\n", Addr));
211     }
212     Obj.updateSymbolAddress(it->first, (uint64_t)Addr);
213     SymbolTable[Name.data()] = SymbolLoc(SectionID, Offset);
214     Offset += Size;
215     Addr += Size;
216   }
217 }
218
219 unsigned RuntimeDyldImpl::emitSection(ObjectImage &Obj,
220                                       const SectionRef &Section,
221                                       bool IsCode) {
222
223   unsigned StubBufSize = 0,
224            StubSize = getMaxStubSize();
225   error_code err;
226   if (StubSize > 0) {
227     for (relocation_iterator i = Section.begin_relocations(),
228          e = Section.end_relocations(); i != e; i.increment(err), Check(err))
229       StubBufSize += StubSize;
230   }
231   StringRef data;
232   uint64_t Alignment64;
233   Check(Section.getContents(data));
234   Check(Section.getAlignment(Alignment64));
235
236   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
237   bool IsRequired;
238   bool IsVirtual;
239   bool IsZeroInit;
240   bool IsReadOnly;
241   uint64_t DataSize;
242   StringRef Name;
243   Check(Section.isRequiredForExecution(IsRequired));
244   Check(Section.isVirtual(IsVirtual));
245   Check(Section.isZeroInit(IsZeroInit));
246   Check(Section.isReadOnlyData(IsReadOnly));
247   Check(Section.getSize(DataSize));
248   Check(Section.getName(Name));
249
250   unsigned Allocate;
251   unsigned SectionID = Sections.size();
252   uint8_t *Addr;
253   const char *pData = 0;
254
255   // Some sections, such as debug info, don't need to be loaded for execution.
256   // Leave those where they are.
257   if (IsRequired) {
258     Allocate = DataSize + StubBufSize;
259     Addr = IsCode
260       ? MemMgr->allocateCodeSection(Allocate, Alignment, SectionID)
261       : MemMgr->allocateDataSection(Allocate, Alignment, SectionID, IsReadOnly);
262     if (!Addr)
263       report_fatal_error("Unable to allocate section memory!");
264
265     // Virtual sections have no data in the object image, so leave pData = 0
266     if (!IsVirtual)
267       pData = data.data();
268
269     // Zero-initialize or copy the data from the image
270     if (IsZeroInit || IsVirtual)
271       memset(Addr, 0, DataSize);
272     else
273       memcpy(Addr, pData, DataSize);
274
275     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
276                  << " Name: " << Name
277                  << " obj addr: " << format("%p", pData)
278                  << " new addr: " << format("%p", Addr)
279                  << " DataSize: " << DataSize
280                  << " StubBufSize: " << StubBufSize
281                  << " Allocate: " << Allocate
282                  << "\n");
283     Obj.updateSectionAddress(Section, (uint64_t)Addr);
284   }
285   else {
286     // Even if we didn't load the section, we need to record an entry for it
287     // to handle later processing (and by 'handle' I mean don't do anything
288     // with these sections).
289     Allocate = 0;
290     Addr = 0;
291     DEBUG(dbgs() << "emitSection SectionID: " << SectionID
292                  << " Name: " << Name
293                  << " obj addr: " << format("%p", data.data())
294                  << " new addr: 0"
295                  << " DataSize: " << DataSize
296                  << " StubBufSize: " << StubBufSize
297                  << " Allocate: " << Allocate
298                  << "\n");
299   }
300
301   Sections.push_back(SectionEntry(Name, Addr, Allocate, DataSize,
302                                   (uintptr_t)pData));
303   return SectionID;
304 }
305
306 unsigned RuntimeDyldImpl::findOrEmitSection(ObjectImage &Obj,
307                                             const SectionRef &Section,
308                                             bool IsCode,
309                                             ObjSectionToIDMap &LocalSections) {
310
311   unsigned SectionID = 0;
312   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
313   if (i != LocalSections.end())
314     SectionID = i->second;
315   else {
316     SectionID = emitSection(Obj, Section, IsCode);
317     LocalSections[Section] = SectionID;
318   }
319   return SectionID;
320 }
321
322 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
323                                               unsigned SectionID) {
324   Relocations[SectionID].push_back(RE);
325 }
326
327 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
328                                              StringRef SymbolName) {
329   // Relocation by symbol.  If the symbol is found in the global symbol table,
330   // create an appropriate section relocation.  Otherwise, add it to
331   // ExternalSymbolRelocations.
332   SymbolTableMap::const_iterator Loc =
333       GlobalSymbolTable.find(SymbolName);
334   if (Loc == GlobalSymbolTable.end()) {
335     ExternalSymbolRelocations[SymbolName].push_back(RE);
336   } else {
337     // Copy the RE since we want to modify its addend.
338     RelocationEntry RECopy = RE;
339     RECopy.Addend += Loc->second.second;
340     Relocations[Loc->second.first].push_back(RECopy);
341   }
342 }
343
344 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr) {
345   if (Arch == Triple::arm) {
346     // TODO: There is only ARM far stub now. We should add the Thumb stub,
347     // and stubs for branches Thumb - ARM and ARM - Thumb.
348     uint32_t *StubAddr = (uint32_t*)Addr;
349     *StubAddr = 0xe51ff004; // ldr pc,<label>
350     return (uint8_t*)++StubAddr;
351   } else if (Arch == Triple::mipsel) {
352     uint32_t *StubAddr = (uint32_t*)Addr;
353     // 0:   3c190000        lui     t9,%hi(addr).
354     // 4:   27390000        addiu   t9,t9,%lo(addr).
355     // 8:   03200008        jr      t9.
356     // c:   00000000        nop.
357     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
358     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
359
360     *StubAddr = LuiT9Instr;
361     StubAddr++;
362     *StubAddr = AdduiT9Instr;
363     StubAddr++;
364     *StubAddr = JrT9Instr;
365     StubAddr++;
366     *StubAddr = NopInstr;
367     return Addr;
368   } else if (Arch == Triple::ppc64) {
369     // PowerPC64 stub: the address points to a function descriptor
370     // instead of the function itself. Load the function address
371     // on r11 and sets it to control register. Also loads the function
372     // TOC in r2 and environment pointer to r11.
373     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
374     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
375     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
376     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
377     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
378     writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
379     writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
380     writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
381     writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
382     writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
383     writeInt32BE(Addr+40, 0x4E800420); // bctr
384
385     return Addr;
386   }
387   return Addr;
388 }
389
390 // Assign an address to a symbol name and resolve all the relocations
391 // associated with it.
392 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
393                                              uint64_t Addr) {
394   // The address to use for relocation resolution is not
395   // the address of the local section buffer. We must be doing
396   // a remote execution environment of some sort. Relocations can't
397   // be applied until all the sections have been moved.  The client must
398   // trigger this with a call to MCJIT::finalize() or
399   // RuntimeDyld::resolveRelocations().
400   //
401   // Addr is a uint64_t because we can't assume the pointer width
402   // of the target is the same as that of the host. Just use a generic
403   // "big enough" type.
404   Sections[SectionID].LoadAddress = Addr;
405 }
406
407 void RuntimeDyldImpl::resolveRelocationEntry(const RelocationEntry &RE,
408                                              uint64_t Value) {
409   // Ignore relocations for sections that were not loaded
410   if (Sections[RE.SectionID].Address != 0) {
411     DEBUG(dbgs() << "\tSectionID: " << RE.SectionID
412           << " + " << RE.Offset << " ("
413           << format("%p", Sections[RE.SectionID].Address + RE.Offset) << ")"
414           << " RelType: " << RE.RelType
415           << " Addend: " << RE.Addend
416           << "\n");
417
418     resolveRelocation(Sections[RE.SectionID], RE.Offset,
419                       Value, RE.RelType, RE.Addend);
420   }
421 }
422
423 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
424                                             uint64_t Value) {
425   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
426     resolveRelocationEntry(Relocs[i], Value);
427   }
428 }
429
430 void RuntimeDyldImpl::resolveExternalSymbols() {
431   StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin(),
432                                       e = ExternalSymbolRelocations.end();
433   for (; i != e; i++) {
434     StringRef Name = i->first();
435     RelocationList &Relocs = i->second;
436     SymbolTableMap::const_iterator Loc = GlobalSymbolTable.find(Name);
437     if (Loc == GlobalSymbolTable.end()) {
438       // This is an external symbol, try to get it address from
439       // MemoryManager.
440       uint8_t *Addr = (uint8_t*) MemMgr->getPointerToNamedFunction(Name.data(),
441                                                                    true);
442       DEBUG(dbgs() << "Resolving relocations Name: " << Name
443               << "\t" << format("%p", Addr)
444               << "\n");
445       resolveRelocationList(Relocs, (uintptr_t)Addr);
446     } else {
447       report_fatal_error("Expected external symbol");
448     }
449   }
450 }
451
452
453 //===----------------------------------------------------------------------===//
454 // RuntimeDyld class implementation
455 RuntimeDyld::RuntimeDyld(RTDyldMemoryManager *mm) {
456   // FIXME: There's a potential issue lurking here if a single instance of
457   // RuntimeDyld is used to load multiple objects.  The current implementation
458   // associates a single memory manager with a RuntimeDyld instance.  Even
459   // though the public class spawns a new 'impl' instance for each load,
460   // they share a single memory manager.  This can become a problem when page
461   // permissions are applied.
462   Dyld = 0;
463   MM = mm;
464 }
465
466 RuntimeDyld::~RuntimeDyld() {
467   delete Dyld;
468 }
469
470 ObjectImage *RuntimeDyld::loadObject(ObjectBuffer *InputBuffer) {
471   if (!Dyld) {
472     sys::LLVMFileType type = sys::IdentifyFileType(
473             InputBuffer->getBufferStart(),
474             static_cast<unsigned>(InputBuffer->getBufferSize()));
475     switch (type) {
476       case sys::ELF_Relocatable_FileType:
477       case sys::ELF_Executable_FileType:
478       case sys::ELF_SharedObject_FileType:
479       case sys::ELF_Core_FileType:
480         Dyld = new RuntimeDyldELF(MM);
481         break;
482       case sys::Mach_O_Object_FileType:
483       case sys::Mach_O_Executable_FileType:
484       case sys::Mach_O_FixedVirtualMemorySharedLib_FileType:
485       case sys::Mach_O_Core_FileType:
486       case sys::Mach_O_PreloadExecutable_FileType:
487       case sys::Mach_O_DynamicallyLinkedSharedLib_FileType:
488       case sys::Mach_O_DynamicLinker_FileType:
489       case sys::Mach_O_Bundle_FileType:
490       case sys::Mach_O_DynamicallyLinkedSharedLibStub_FileType:
491       case sys::Mach_O_DSYMCompanion_FileType:
492         Dyld = new RuntimeDyldMachO(MM);
493         break;
494       case sys::Unknown_FileType:
495       case sys::Bitcode_FileType:
496       case sys::Archive_FileType:
497       case sys::COFF_FileType:
498         report_fatal_error("Incompatible object format!");
499     }
500   } else {
501     if (!Dyld->isCompatibleFormat(InputBuffer))
502       report_fatal_error("Incompatible object format!");
503   }
504
505   return Dyld->loadObject(InputBuffer);
506 }
507
508 void *RuntimeDyld::getSymbolAddress(StringRef Name) {
509   return Dyld->getSymbolAddress(Name);
510 }
511
512 uint64_t RuntimeDyld::getSymbolLoadAddress(StringRef Name) {
513   return Dyld->getSymbolLoadAddress(Name);
514 }
515
516 void RuntimeDyld::resolveRelocations() {
517   Dyld->resolveRelocations();
518 }
519
520 void RuntimeDyld::reassignSectionAddress(unsigned SectionID,
521                                          uint64_t Addr) {
522   Dyld->reassignSectionAddress(SectionID, Addr);
523 }
524
525 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
526                                     uint64_t TargetAddress) {
527   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
528 }
529
530 StringRef RuntimeDyld::getErrorString() {
531   return Dyld->getErrorString();
532 }
533
534 } // end namespace llvm