Reapply [RuntimeDyldELF] Fold Placeholder into Addend
[oota-llvm.git] / lib / ExecutionEngine / RuntimeDyld / RuntimeDyld.cpp
1 //===-- RuntimeDyld.cpp - Run-time dynamic linker for MC-JIT ----*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MC-JIT runtime dynamic linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/ExecutionEngine/RuntimeDyld.h"
15 #include "RuntimeDyldCheckerImpl.h"
16 #include "RuntimeDyldCOFF.h"
17 #include "RuntimeDyldELF.h"
18 #include "RuntimeDyldImpl.h"
19 #include "RuntimeDyldMachO.h"
20 #include "llvm/Object/ELFObjectFile.h"
21 #include "llvm/Object/COFF.h"
22 #include "llvm/Support/MathExtras.h"
23 #include "llvm/Support/MutexGuard.h"
24
25 using namespace llvm;
26 using namespace llvm::object;
27
28 #define DEBUG_TYPE "dyld"
29
30 // Empty out-of-line virtual destructor as the key function.
31 RuntimeDyldImpl::~RuntimeDyldImpl() {}
32
33 // Pin LoadedObjectInfo's vtables to this file.
34 void RuntimeDyld::LoadedObjectInfo::anchor() {}
35
36 namespace llvm {
37
38 void RuntimeDyldImpl::registerEHFrames() {}
39
40 void RuntimeDyldImpl::deregisterEHFrames() {}
41
42 #ifndef NDEBUG
43 static void dumpSectionMemory(const SectionEntry &S, StringRef State) {
44   dbgs() << "----- Contents of section " << S.Name << " " << State << " -----";
45
46   if (S.Address == nullptr) {
47     dbgs() << "\n          <section not emitted>\n";
48     return;
49   }
50
51   const unsigned ColsPerRow = 16;
52
53   uint8_t *DataAddr = S.Address;
54   uint64_t LoadAddr = S.LoadAddress;
55
56   unsigned StartPadding = LoadAddr & (ColsPerRow - 1);
57   unsigned BytesRemaining = S.Size;
58
59   if (StartPadding) {
60     dbgs() << "\n" << format("0x%016" PRIx64,
61                              LoadAddr & ~(uint64_t)(ColsPerRow - 1)) << ":";
62     while (StartPadding--)
63       dbgs() << "   ";
64   }
65
66   while (BytesRemaining > 0) {
67     if ((LoadAddr & (ColsPerRow - 1)) == 0)
68       dbgs() << "\n" << format("0x%016" PRIx64, LoadAddr) << ":";
69
70     dbgs() << " " << format("%02x", *DataAddr);
71
72     ++DataAddr;
73     ++LoadAddr;
74     --BytesRemaining;
75   }
76
77   dbgs() << "\n";
78 }
79 #endif
80
81 // Resolve the relocations for all symbols we currently know about.
82 void RuntimeDyldImpl::resolveRelocations() {
83   MutexGuard locked(lock);
84
85   // First, resolve relocations associated with external symbols.
86   resolveExternalSymbols();
87
88   // Just iterate over the sections we have and resolve all the relocations
89   // in them. Gross overkill, but it gets the job done.
90   for (int i = 0, e = Sections.size(); i != e; ++i) {
91     // The Section here (Sections[i]) refers to the section in which the
92     // symbol for the relocation is located.  The SectionID in the relocation
93     // entry provides the section to which the relocation will be applied.
94     uint64_t Addr = Sections[i].LoadAddress;
95     DEBUG(dbgs() << "Resolving relocations Section #" << i << "\t"
96                  << format("%p", (uintptr_t)Addr) << "\n");
97     DEBUG(dumpSectionMemory(Sections[i], "before relocations"));
98     resolveRelocationList(Relocations[i], Addr);
99     DEBUG(dumpSectionMemory(Sections[i], "after relocations"));
100     Relocations.erase(i);
101   }
102 }
103
104 void RuntimeDyldImpl::mapSectionAddress(const void *LocalAddress,
105                                         uint64_t TargetAddress) {
106   MutexGuard locked(lock);
107   for (unsigned i = 0, e = Sections.size(); i != e; ++i) {
108     if (Sections[i].Address == LocalAddress) {
109       reassignSectionAddress(i, TargetAddress);
110       return;
111     }
112   }
113   llvm_unreachable("Attempting to remap address of unknown section!");
114 }
115
116 static std::error_code getOffset(const SymbolRef &Sym, uint64_t &Result) {
117   uint64_t Address;
118   if (std::error_code EC = Sym.getAddress(Address))
119     return EC;
120
121   if (Address == UnknownAddressOrSize) {
122     Result = UnknownAddressOrSize;
123     return object_error::success;
124   }
125
126   const ObjectFile *Obj = Sym.getObject();
127   section_iterator SecI(Obj->section_begin());
128   if (std::error_code EC = Sym.getSection(SecI))
129     return EC;
130
131   if (SecI == Obj->section_end()) {
132     Result = UnknownAddressOrSize;
133     return object_error::success;
134   }
135
136   uint64_t SectionAddress = SecI->getAddress();
137   Result = Address - SectionAddress;
138   return object_error::success;
139 }
140
141 std::pair<unsigned, unsigned>
142 RuntimeDyldImpl::loadObjectImpl(const object::ObjectFile &Obj) {
143   MutexGuard locked(lock);
144
145   // Grab the first Section ID. We'll use this later to construct the underlying
146   // range for the returned LoadedObjectInfo.
147   unsigned SectionsAddedBeginIdx = Sections.size();
148
149   // Save information about our target
150   Arch = (Triple::ArchType)Obj.getArch();
151   IsTargetLittleEndian = Obj.isLittleEndian();
152
153   // Compute the memory size required to load all sections to be loaded
154   // and pass this information to the memory manager
155   if (MemMgr.needsToReserveAllocationSpace()) {
156     uint64_t CodeSize = 0, DataSizeRO = 0, DataSizeRW = 0;
157     computeTotalAllocSize(Obj, CodeSize, DataSizeRO, DataSizeRW);
158     MemMgr.reserveAllocationSpace(CodeSize, DataSizeRO, DataSizeRW);
159   }
160
161   // Used sections from the object file
162   ObjSectionToIDMap LocalSections;
163
164   // Common symbols requiring allocation, with their sizes and alignments
165   CommonSymbolList CommonSymbols;
166
167   // Parse symbols
168   DEBUG(dbgs() << "Parse symbols:\n");
169   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
170        ++I) {
171     uint32_t Flags = I->getFlags();
172
173     bool IsCommon = Flags & SymbolRef::SF_Common;
174     if (IsCommon)
175       CommonSymbols.push_back(*I);
176     else {
177       object::SymbolRef::Type SymType;
178       Check(I->getType(SymType));
179
180       if (SymType == object::SymbolRef::ST_Function ||
181           SymType == object::SymbolRef::ST_Data ||
182           SymType == object::SymbolRef::ST_Unknown) {
183
184         StringRef Name;
185         uint64_t SectOffset;
186         Check(I->getName(Name));
187         Check(getOffset(*I, SectOffset));
188         section_iterator SI = Obj.section_end();
189         Check(I->getSection(SI));
190         if (SI == Obj.section_end())
191           continue;
192         StringRef SectionData;
193         Check(SI->getContents(SectionData));
194         bool IsCode = SI->isText();
195         unsigned SectionID =
196             findOrEmitSection(Obj, *SI, IsCode, LocalSections);
197         DEBUG(dbgs() << "\tType: " << SymType << " Name: " << Name
198                      << " SID: " << SectionID << " Offset: "
199                      << format("%p", (uintptr_t)SectOffset)
200                      << " flags: " << Flags << "\n");
201         JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
202         if (Flags & SymbolRef::SF_Weak)
203           RTDyldSymFlags |= JITSymbolFlags::Weak;
204         if (Flags & SymbolRef::SF_Exported)
205           RTDyldSymFlags |= JITSymbolFlags::Exported;
206         GlobalSymbolTable[Name] =
207           SymbolTableEntry(SectionID, SectOffset, RTDyldSymFlags);
208       }
209     }
210   }
211
212   // Allocate common symbols
213   emitCommonSymbols(Obj, CommonSymbols);
214
215   // Parse and process relocations
216   DEBUG(dbgs() << "Parse relocations:\n");
217   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
218        SI != SE; ++SI) {
219     unsigned SectionID = 0;
220     StubMap Stubs;
221     section_iterator RelocatedSection = SI->getRelocatedSection();
222
223     if (RelocatedSection == SE)
224       continue;
225
226     relocation_iterator I = SI->relocation_begin();
227     relocation_iterator E = SI->relocation_end();
228
229     if (I == E && !ProcessAllSections)
230       continue;
231
232     bool IsCode = RelocatedSection->isText();
233     SectionID =
234         findOrEmitSection(Obj, *RelocatedSection, IsCode, LocalSections);
235     DEBUG(dbgs() << "\tSectionID: " << SectionID << "\n");
236
237     for (; I != E;)
238       I = processRelocationRef(SectionID, I, Obj, LocalSections, Stubs);
239
240     // If there is an attached checker, notify it about the stubs for this
241     // section so that they can be verified.
242     if (Checker)
243       Checker->registerStubMap(Obj.getFileName(), SectionID, Stubs);
244   }
245
246   // Give the subclasses a chance to tie-up any loose ends.
247   finalizeLoad(Obj, LocalSections);
248
249   unsigned SectionsAddedEndIdx = Sections.size();
250
251   return std::make_pair(SectionsAddedBeginIdx, SectionsAddedEndIdx);
252 }
253
254 // A helper method for computeTotalAllocSize.
255 // Computes the memory size required to allocate sections with the given sizes,
256 // assuming that all sections are allocated with the given alignment
257 static uint64_t
258 computeAllocationSizeForSections(std::vector<uint64_t> &SectionSizes,
259                                  uint64_t Alignment) {
260   uint64_t TotalSize = 0;
261   for (size_t Idx = 0, Cnt = SectionSizes.size(); Idx < Cnt; Idx++) {
262     uint64_t AlignedSize =
263         (SectionSizes[Idx] + Alignment - 1) / Alignment * Alignment;
264     TotalSize += AlignedSize;
265   }
266   return TotalSize;
267 }
268
269 static bool isRequiredForExecution(const SectionRef &Section) {
270   const ObjectFile *Obj = Section.getObject();
271   if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
272     return ELFObj->getSectionFlags(Section) & ELF::SHF_ALLOC;
273   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj)) {
274     const coff_section *CoffSection = COFFObj->getCOFFSection(Section);
275     // Avoid loading zero-sized COFF sections.
276     // In PE files, VirtualSize gives the section size, and SizeOfRawData
277     // may be zero for sections with content. In Obj files, SizeOfRawData 
278     // gives the section size, and VirtualSize is always zero. Hence
279     // the need to check for both cases below.
280     bool HasContent = (CoffSection->VirtualSize > 0) 
281       || (CoffSection->SizeOfRawData > 0);
282     bool IsDiscardable = CoffSection->Characteristics &
283       (COFF::IMAGE_SCN_MEM_DISCARDABLE | COFF::IMAGE_SCN_LNK_INFO);
284     return HasContent && !IsDiscardable;
285   }
286   
287   assert(isa<MachOObjectFile>(Obj));
288   return true;
289  }
290
291 static bool isReadOnlyData(const SectionRef &Section) {
292   const ObjectFile *Obj = Section.getObject();
293   if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
294     return !(ELFObj->getSectionFlags(Section) &
295              (ELF::SHF_WRITE | ELF::SHF_EXECINSTR));
296   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
297     return ((COFFObj->getCOFFSection(Section)->Characteristics &
298              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
299              | COFF::IMAGE_SCN_MEM_READ
300              | COFF::IMAGE_SCN_MEM_WRITE))
301              ==
302              (COFF::IMAGE_SCN_CNT_INITIALIZED_DATA
303              | COFF::IMAGE_SCN_MEM_READ));
304
305   assert(isa<MachOObjectFile>(Obj));
306   return false;
307 }
308
309 static bool isZeroInit(const SectionRef &Section) {
310   const ObjectFile *Obj = Section.getObject();
311   if (auto *ELFObj = dyn_cast<object::ELFObjectFileBase>(Obj))
312     return ELFObj->getSectionType(Section) == ELF::SHT_NOBITS;
313   if (auto *COFFObj = dyn_cast<object::COFFObjectFile>(Obj))
314     return COFFObj->getCOFFSection(Section)->Characteristics &
315             COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA;
316
317   auto *MachO = cast<MachOObjectFile>(Obj);
318   unsigned SectionType = MachO->getSectionType(Section);
319   return SectionType == MachO::S_ZEROFILL ||
320          SectionType == MachO::S_GB_ZEROFILL;
321 }
322
323 // Compute an upper bound of the memory size that is required to load all
324 // sections
325 void RuntimeDyldImpl::computeTotalAllocSize(const ObjectFile &Obj,
326                                             uint64_t &CodeSize,
327                                             uint64_t &DataSizeRO,
328                                             uint64_t &DataSizeRW) {
329   // Compute the size of all sections required for execution
330   std::vector<uint64_t> CodeSectionSizes;
331   std::vector<uint64_t> ROSectionSizes;
332   std::vector<uint64_t> RWSectionSizes;
333   uint64_t MaxAlignment = sizeof(void *);
334
335   // Collect sizes of all sections to be loaded;
336   // also determine the max alignment of all sections
337   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
338        SI != SE; ++SI) {
339     const SectionRef &Section = *SI;
340
341     bool IsRequired = isRequiredForExecution(Section);
342
343     // Consider only the sections that are required to be loaded for execution
344     if (IsRequired) {
345       StringRef Name;
346       uint64_t DataSize = Section.getSize();
347       uint64_t Alignment64 = Section.getAlignment();
348       bool IsCode = Section.isText();
349       bool IsReadOnly = isReadOnlyData(Section);
350       Check(Section.getName(Name));
351       unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
352
353       uint64_t StubBufSize = computeSectionStubBufSize(Obj, Section);
354       uint64_t SectionSize = DataSize + StubBufSize;
355
356       // The .eh_frame section (at least on Linux) needs an extra four bytes
357       // padded
358       // with zeroes added at the end.  For MachO objects, this section has a
359       // slightly different name, so this won't have any effect for MachO
360       // objects.
361       if (Name == ".eh_frame")
362         SectionSize += 4;
363
364       if (!SectionSize)
365         SectionSize = 1;
366
367       if (IsCode) {
368         CodeSectionSizes.push_back(SectionSize);
369       } else if (IsReadOnly) {
370         ROSectionSizes.push_back(SectionSize);
371       } else {
372         RWSectionSizes.push_back(SectionSize);
373       }
374
375       // update the max alignment
376       if (Alignment > MaxAlignment) {
377         MaxAlignment = Alignment;
378       }
379     }
380   }
381
382   // Compute the size of all common symbols
383   uint64_t CommonSize = 0;
384   for (symbol_iterator I = Obj.symbol_begin(), E = Obj.symbol_end(); I != E;
385        ++I) {
386     uint32_t Flags = I->getFlags();
387     if (Flags & SymbolRef::SF_Common) {
388       // Add the common symbols to a list.  We'll allocate them all below.
389       uint64_t Size = 0;
390       Check(I->getSize(Size));
391       CommonSize += Size;
392     }
393   }
394   if (CommonSize != 0) {
395     RWSectionSizes.push_back(CommonSize);
396   }
397
398   // Compute the required allocation space for each different type of sections
399   // (code, read-only data, read-write data) assuming that all sections are
400   // allocated with the max alignment. Note that we cannot compute with the
401   // individual alignments of the sections, because then the required size
402   // depends on the order, in which the sections are allocated.
403   CodeSize = computeAllocationSizeForSections(CodeSectionSizes, MaxAlignment);
404   DataSizeRO = computeAllocationSizeForSections(ROSectionSizes, MaxAlignment);
405   DataSizeRW = computeAllocationSizeForSections(RWSectionSizes, MaxAlignment);
406 }
407
408 // compute stub buffer size for the given section
409 unsigned RuntimeDyldImpl::computeSectionStubBufSize(const ObjectFile &Obj,
410                                                     const SectionRef &Section) {
411   unsigned StubSize = getMaxStubSize();
412   if (StubSize == 0) {
413     return 0;
414   }
415   // FIXME: this is an inefficient way to handle this. We should computed the
416   // necessary section allocation size in loadObject by walking all the sections
417   // once.
418   unsigned StubBufSize = 0;
419   for (section_iterator SI = Obj.section_begin(), SE = Obj.section_end();
420        SI != SE; ++SI) {
421     section_iterator RelSecI = SI->getRelocatedSection();
422     if (!(RelSecI == Section))
423       continue;
424
425     for (const RelocationRef &Reloc : SI->relocations()) {
426       (void)Reloc;
427       StubBufSize += StubSize;
428     }
429   }
430
431   // Get section data size and alignment
432   uint64_t DataSize = Section.getSize();
433   uint64_t Alignment64 = Section.getAlignment();
434
435   // Add stubbuf size alignment
436   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
437   unsigned StubAlignment = getStubAlignment();
438   unsigned EndAlignment = (DataSize | Alignment) & -(DataSize | Alignment);
439   if (StubAlignment > EndAlignment)
440     StubBufSize += StubAlignment - EndAlignment;
441   return StubBufSize;
442 }
443
444 uint64_t RuntimeDyldImpl::readBytesUnaligned(uint8_t *Src,
445                                              unsigned Size) const {
446   uint64_t Result = 0;
447   if (IsTargetLittleEndian) {
448     Src += Size - 1;
449     while (Size--)
450       Result = (Result << 8) | *Src--;
451   } else
452     while (Size--)
453       Result = (Result << 8) | *Src++;
454
455   return Result;
456 }
457
458 void RuntimeDyldImpl::writeBytesUnaligned(uint64_t Value, uint8_t *Dst,
459                                           unsigned Size) const {
460   if (IsTargetLittleEndian) {
461     while (Size--) {
462       *Dst++ = Value & 0xFF;
463       Value >>= 8;
464     }
465   } else {
466     Dst += Size - 1;
467     while (Size--) {
468       *Dst-- = Value & 0xFF;
469       Value >>= 8;
470     }
471   }
472 }
473
474 void RuntimeDyldImpl::emitCommonSymbols(const ObjectFile &Obj,
475                                         CommonSymbolList &CommonSymbols) {
476   if (CommonSymbols.empty())
477     return;
478
479   uint64_t CommonSize = 0;
480   CommonSymbolList SymbolsToAllocate;
481
482   DEBUG(dbgs() << "Processing common symbols...\n");
483
484   for (const auto &Sym : CommonSymbols) {
485     StringRef Name;
486     Check(Sym.getName(Name));
487
488     // Skip common symbols already elsewhere.
489     if (GlobalSymbolTable.count(Name) ||
490         Resolver.findSymbolInLogicalDylib(Name)) {
491       DEBUG(dbgs() << "\tSkipping already emitted common symbol '" << Name
492                    << "'\n");
493       continue;
494     }
495
496     uint32_t Align = 0;
497     uint64_t Size = 0;
498     Check(Sym.getAlignment(Align));
499     Check(Sym.getSize(Size));
500
501     CommonSize += Align + Size;
502     SymbolsToAllocate.push_back(Sym);
503   }
504
505   // Allocate memory for the section
506   unsigned SectionID = Sections.size();
507   uint8_t *Addr = MemMgr.allocateDataSection(CommonSize, sizeof(void *),
508                                              SectionID, StringRef(), false);
509   if (!Addr)
510     report_fatal_error("Unable to allocate memory for common symbols!");
511   uint64_t Offset = 0;
512   Sections.push_back(SectionEntry("<common symbols>", Addr, CommonSize, 0));
513   memset(Addr, 0, CommonSize);
514
515   DEBUG(dbgs() << "emitCommonSection SectionID: " << SectionID << " new addr: "
516                << format("%p", Addr) << " DataSize: " << CommonSize << "\n");
517
518   // Assign the address of each symbol
519   for (auto &Sym : SymbolsToAllocate) {
520     uint32_t Align;
521     uint64_t Size;
522     StringRef Name;
523     Check(Sym.getAlignment(Align));
524     Check(Sym.getSize(Size));
525     Check(Sym.getName(Name));
526     if (Align) {
527       // This symbol has an alignment requirement.
528       uint64_t AlignOffset = OffsetToAlignment((uint64_t)Addr, Align);
529       Addr += AlignOffset;
530       Offset += AlignOffset;
531     }
532     uint32_t Flags = Sym.getFlags();
533     JITSymbolFlags RTDyldSymFlags = JITSymbolFlags::None;
534     if (Flags & SymbolRef::SF_Weak)
535       RTDyldSymFlags |= JITSymbolFlags::Weak;
536     if (Flags & SymbolRef::SF_Exported)
537       RTDyldSymFlags |= JITSymbolFlags::Exported;
538     DEBUG(dbgs() << "Allocating common symbol " << Name << " address "
539                  << format("%p", Addr) << "\n");
540     GlobalSymbolTable[Name] =
541       SymbolTableEntry(SectionID, Offset, RTDyldSymFlags);
542     Offset += Size;
543     Addr += Size;
544   }
545 }
546
547 unsigned RuntimeDyldImpl::emitSection(const ObjectFile &Obj,
548                                       const SectionRef &Section, bool IsCode) {
549
550   StringRef data;
551   uint64_t Alignment64 = Section.getAlignment();
552
553   unsigned Alignment = (unsigned)Alignment64 & 0xffffffffL;
554   unsigned PaddingSize = 0;
555   unsigned StubBufSize = 0;
556   StringRef Name;
557   bool IsRequired = isRequiredForExecution(Section);
558   bool IsVirtual = Section.isVirtual();
559   bool IsZeroInit = isZeroInit(Section);
560   bool IsReadOnly = isReadOnlyData(Section);
561   uint64_t DataSize = Section.getSize();
562   Check(Section.getName(Name));
563
564   StubBufSize = computeSectionStubBufSize(Obj, Section);
565
566   // The .eh_frame section (at least on Linux) needs an extra four bytes padded
567   // with zeroes added at the end.  For MachO objects, this section has a
568   // slightly different name, so this won't have any effect for MachO objects.
569   if (Name == ".eh_frame")
570     PaddingSize = 4;
571
572   uintptr_t Allocate;
573   unsigned SectionID = Sections.size();
574   uint8_t *Addr;
575   const char *pData = nullptr;
576
577   // In either case, set the location of the unrelocated section in memory,
578   // since we still process relocations for it even if we're not applying them.
579   Check(Section.getContents(data));
580   // Virtual sections have no data in the object image, so leave pData = 0
581   if (!IsVirtual)
582     pData = data.data();
583
584   // Some sections, such as debug info, don't need to be loaded for execution.
585   // Leave those where they are.
586   if (IsRequired) {
587     Allocate = DataSize + PaddingSize + StubBufSize;
588     if (!Allocate)
589       Allocate = 1;
590     Addr = IsCode ? MemMgr.allocateCodeSection(Allocate, Alignment, SectionID,
591                                                Name)
592                   : MemMgr.allocateDataSection(Allocate, Alignment, SectionID,
593                                                Name, IsReadOnly);
594     if (!Addr)
595       report_fatal_error("Unable to allocate section memory!");
596
597     // Zero-initialize or copy the data from the image
598     if (IsZeroInit || IsVirtual)
599       memset(Addr, 0, DataSize);
600     else
601       memcpy(Addr, pData, DataSize);
602
603     // Fill in any extra bytes we allocated for padding
604     if (PaddingSize != 0) {
605       memset(Addr + DataSize, 0, PaddingSize);
606       // Update the DataSize variable so that the stub offset is set correctly.
607       DataSize += PaddingSize;
608     }
609
610     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
611                  << " obj addr: " << format("%p", pData)
612                  << " new addr: " << format("%p", Addr)
613                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
614                  << " Allocate: " << Allocate << "\n");
615   } else {
616     // Even if we didn't load the section, we need to record an entry for it
617     // to handle later processing (and by 'handle' I mean don't do anything
618     // with these sections).
619     Allocate = 0;
620     Addr = nullptr;
621     DEBUG(dbgs() << "emitSection SectionID: " << SectionID << " Name: " << Name
622                  << " obj addr: " << format("%p", data.data()) << " new addr: 0"
623                  << " DataSize: " << DataSize << " StubBufSize: " << StubBufSize
624                  << " Allocate: " << Allocate << "\n");
625   }
626
627   Sections.push_back(SectionEntry(Name, Addr, DataSize, (uintptr_t)pData));
628
629   if (Checker)
630     Checker->registerSection(Obj.getFileName(), SectionID);
631
632   return SectionID;
633 }
634
635 unsigned RuntimeDyldImpl::findOrEmitSection(const ObjectFile &Obj,
636                                             const SectionRef &Section,
637                                             bool IsCode,
638                                             ObjSectionToIDMap &LocalSections) {
639
640   unsigned SectionID = 0;
641   ObjSectionToIDMap::iterator i = LocalSections.find(Section);
642   if (i != LocalSections.end())
643     SectionID = i->second;
644   else {
645     SectionID = emitSection(Obj, Section, IsCode);
646     LocalSections[Section] = SectionID;
647   }
648   return SectionID;
649 }
650
651 void RuntimeDyldImpl::addRelocationForSection(const RelocationEntry &RE,
652                                               unsigned SectionID) {
653   Relocations[SectionID].push_back(RE);
654 }
655
656 void RuntimeDyldImpl::addRelocationForSymbol(const RelocationEntry &RE,
657                                              StringRef SymbolName) {
658   // Relocation by symbol.  If the symbol is found in the global symbol table,
659   // create an appropriate section relocation.  Otherwise, add it to
660   // ExternalSymbolRelocations.
661   RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(SymbolName);
662   if (Loc == GlobalSymbolTable.end()) {
663     ExternalSymbolRelocations[SymbolName].push_back(RE);
664   } else {
665     // Copy the RE since we want to modify its addend.
666     RelocationEntry RECopy = RE;
667     const auto &SymInfo = Loc->second;
668     RECopy.Addend += SymInfo.getOffset();
669     Relocations[SymInfo.getSectionID()].push_back(RECopy);
670   }
671 }
672
673 uint8_t *RuntimeDyldImpl::createStubFunction(uint8_t *Addr,
674                                              unsigned AbiVariant) {
675   if (Arch == Triple::aarch64 || Arch == Triple::aarch64_be) {
676     // This stub has to be able to access the full address space,
677     // since symbol lookup won't necessarily find a handy, in-range,
678     // PLT stub for functions which could be anywhere.
679     // Stub can use ip0 (== x16) to calculate address
680     writeBytesUnaligned(0xd2e00010, Addr,    4); // movz ip0, #:abs_g3:<addr>
681     writeBytesUnaligned(0xf2c00010, Addr+4,  4); // movk ip0, #:abs_g2_nc:<addr>
682     writeBytesUnaligned(0xf2a00010, Addr+8,  4); // movk ip0, #:abs_g1_nc:<addr>
683     writeBytesUnaligned(0xf2800010, Addr+12, 4); // movk ip0, #:abs_g0_nc:<addr>
684     writeBytesUnaligned(0xd61f0200, Addr+16, 4); // br ip0
685
686     return Addr;
687   } else if (Arch == Triple::arm || Arch == Triple::armeb) {
688     // TODO: There is only ARM far stub now. We should add the Thumb stub,
689     // and stubs for branches Thumb - ARM and ARM - Thumb.
690     writeBytesUnaligned(0xe51ff004, Addr, 4); // ldr pc,<label>
691     return Addr + 4;
692   } else if (Arch == Triple::mipsel || Arch == Triple::mips) {
693     // 0:   3c190000        lui     t9,%hi(addr).
694     // 4:   27390000        addiu   t9,t9,%lo(addr).
695     // 8:   03200008        jr      t9.
696     // c:   00000000        nop.
697     const unsigned LuiT9Instr = 0x3c190000, AdduiT9Instr = 0x27390000;
698     const unsigned JrT9Instr = 0x03200008, NopInstr = 0x0;
699
700     writeBytesUnaligned(LuiT9Instr, Addr, 4);
701     writeBytesUnaligned(AdduiT9Instr, Addr+4, 4);
702     writeBytesUnaligned(JrT9Instr, Addr+8, 4);
703     writeBytesUnaligned(NopInstr, Addr+12, 4);
704     return Addr;
705   } else if (Arch == Triple::ppc64 || Arch == Triple::ppc64le) {
706     // Depending on which version of the ELF ABI is in use, we need to
707     // generate one of two variants of the stub.  They both start with
708     // the same sequence to load the target address into r12.
709     writeInt32BE(Addr,    0x3D800000); // lis   r12, highest(addr)
710     writeInt32BE(Addr+4,  0x618C0000); // ori   r12, higher(addr)
711     writeInt32BE(Addr+8,  0x798C07C6); // sldi  r12, r12, 32
712     writeInt32BE(Addr+12, 0x658C0000); // oris  r12, r12, h(addr)
713     writeInt32BE(Addr+16, 0x618C0000); // ori   r12, r12, l(addr)
714     if (AbiVariant == 2) {
715       // PowerPC64 stub ELFv2 ABI: The address points to the function itself.
716       // The address is already in r12 as required by the ABI.  Branch to it.
717       writeInt32BE(Addr+20, 0xF8410018); // std   r2,  24(r1)
718       writeInt32BE(Addr+24, 0x7D8903A6); // mtctr r12
719       writeInt32BE(Addr+28, 0x4E800420); // bctr
720     } else {
721       // PowerPC64 stub ELFv1 ABI: The address points to a function descriptor.
722       // Load the function address on r11 and sets it to control register. Also
723       // loads the function TOC in r2 and environment pointer to r11.
724       writeInt32BE(Addr+20, 0xF8410028); // std   r2,  40(r1)
725       writeInt32BE(Addr+24, 0xE96C0000); // ld    r11, 0(r12)
726       writeInt32BE(Addr+28, 0xE84C0008); // ld    r2,  0(r12)
727       writeInt32BE(Addr+32, 0x7D6903A6); // mtctr r11
728       writeInt32BE(Addr+36, 0xE96C0010); // ld    r11, 16(r2)
729       writeInt32BE(Addr+40, 0x4E800420); // bctr
730     }
731     return Addr;
732   } else if (Arch == Triple::systemz) {
733     writeInt16BE(Addr,    0xC418);     // lgrl %r1,.+8
734     writeInt16BE(Addr+2,  0x0000);
735     writeInt16BE(Addr+4,  0x0004);
736     writeInt16BE(Addr+6,  0x07F1);     // brc 15,%r1
737     // 8-byte address stored at Addr + 8
738     return Addr;
739   } else if (Arch == Triple::x86_64) {
740     *Addr      = 0xFF; // jmp
741     *(Addr+1)  = 0x25; // rip
742     // 32-bit PC-relative address of the GOT entry will be stored at Addr+2
743   } else if (Arch == Triple::x86) {
744     *Addr      = 0xE9; // 32-bit pc-relative jump.
745   }
746   return Addr;
747 }
748
749 // Assign an address to a symbol name and resolve all the relocations
750 // associated with it.
751 void RuntimeDyldImpl::reassignSectionAddress(unsigned SectionID,
752                                              uint64_t Addr) {
753   // The address to use for relocation resolution is not
754   // the address of the local section buffer. We must be doing
755   // a remote execution environment of some sort. Relocations can't
756   // be applied until all the sections have been moved.  The client must
757   // trigger this with a call to MCJIT::finalize() or
758   // RuntimeDyld::resolveRelocations().
759   //
760   // Addr is a uint64_t because we can't assume the pointer width
761   // of the target is the same as that of the host. Just use a generic
762   // "big enough" type.
763   DEBUG(dbgs() << "Reassigning address for section "
764                << SectionID << " (" << Sections[SectionID].Name << "): "
765                << format("0x%016" PRIx64, Sections[SectionID].LoadAddress) << " -> "
766                << format("0x%016" PRIx64, Addr) << "\n");
767   Sections[SectionID].LoadAddress = Addr;
768 }
769
770 void RuntimeDyldImpl::resolveRelocationList(const RelocationList &Relocs,
771                                             uint64_t Value) {
772   for (unsigned i = 0, e = Relocs.size(); i != e; ++i) {
773     const RelocationEntry &RE = Relocs[i];
774     // Ignore relocations for sections that were not loaded
775     if (Sections[RE.SectionID].Address == nullptr)
776       continue;
777     resolveRelocation(RE, Value);
778   }
779 }
780
781 void RuntimeDyldImpl::resolveExternalSymbols() {
782   while (!ExternalSymbolRelocations.empty()) {
783     StringMap<RelocationList>::iterator i = ExternalSymbolRelocations.begin();
784
785     StringRef Name = i->first();
786     if (Name.size() == 0) {
787       // This is an absolute symbol, use an address of zero.
788       DEBUG(dbgs() << "Resolving absolute relocations."
789                    << "\n");
790       RelocationList &Relocs = i->second;
791       resolveRelocationList(Relocs, 0);
792     } else {
793       uint64_t Addr = 0;
794       RTDyldSymbolTable::const_iterator Loc = GlobalSymbolTable.find(Name);
795       if (Loc == GlobalSymbolTable.end()) {
796         // This is an external symbol, try to get its address from the symbol
797         // resolver.
798         Addr = Resolver.findSymbol(Name.data()).getAddress();
799         // The call to getSymbolAddress may have caused additional modules to
800         // be loaded, which may have added new entries to the
801         // ExternalSymbolRelocations map.  Consquently, we need to update our
802         // iterator.  This is also why retrieval of the relocation list
803         // associated with this symbol is deferred until below this point.
804         // New entries may have been added to the relocation list.
805         i = ExternalSymbolRelocations.find(Name);
806       } else {
807         // We found the symbol in our global table.  It was probably in a
808         // Module that we loaded previously.
809         const auto &SymInfo = Loc->second;
810         Addr = getSectionLoadAddress(SymInfo.getSectionID()) +
811                SymInfo.getOffset();
812       }
813
814       // FIXME: Implement error handling that doesn't kill the host program!
815       if (!Addr)
816         report_fatal_error("Program used external function '" + Name +
817                            "' which could not be resolved!");
818
819       DEBUG(dbgs() << "Resolving relocations Name: " << Name << "\t"
820                    << format("0x%lx", Addr) << "\n");
821       // This list may have been updated when we called getSymbolAddress, so
822       // don't change this code to get the list earlier.
823       RelocationList &Relocs = i->second;
824       resolveRelocationList(Relocs, Addr);
825     }
826
827     ExternalSymbolRelocations.erase(i);
828   }
829 }
830
831 //===----------------------------------------------------------------------===//
832 // RuntimeDyld class implementation
833
834 uint64_t RuntimeDyld::LoadedObjectInfo::getSectionLoadAddress(
835                                                   StringRef SectionName) const {
836   for (unsigned I = BeginIdx; I != EndIdx; ++I)
837     if (RTDyld.Sections[I].Name == SectionName)
838       return RTDyld.Sections[I].LoadAddress;
839
840   return 0;
841 }
842
843 void RuntimeDyld::MemoryManager::anchor() {}
844 void RuntimeDyld::SymbolResolver::anchor() {}
845
846 RuntimeDyld::RuntimeDyld(RuntimeDyld::MemoryManager &MemMgr,
847                          RuntimeDyld::SymbolResolver &Resolver)
848     : MemMgr(MemMgr), Resolver(Resolver) {
849   // FIXME: There's a potential issue lurking here if a single instance of
850   // RuntimeDyld is used to load multiple objects.  The current implementation
851   // associates a single memory manager with a RuntimeDyld instance.  Even
852   // though the public class spawns a new 'impl' instance for each load,
853   // they share a single memory manager.  This can become a problem when page
854   // permissions are applied.
855   Dyld = nullptr;
856   ProcessAllSections = false;
857   Checker = nullptr;
858 }
859
860 RuntimeDyld::~RuntimeDyld() {}
861
862 static std::unique_ptr<RuntimeDyldCOFF>
863 createRuntimeDyldCOFF(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
864                       RuntimeDyld::SymbolResolver &Resolver,
865                       bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
866   std::unique_ptr<RuntimeDyldCOFF> Dyld =
867     RuntimeDyldCOFF::create(Arch, MM, Resolver);
868   Dyld->setProcessAllSections(ProcessAllSections);
869   Dyld->setRuntimeDyldChecker(Checker);
870   return Dyld;
871 }
872
873 static std::unique_ptr<RuntimeDyldELF>
874 createRuntimeDyldELF(RuntimeDyld::MemoryManager &MM,
875                      RuntimeDyld::SymbolResolver &Resolver,
876                      bool ProcessAllSections, RuntimeDyldCheckerImpl *Checker) {
877   std::unique_ptr<RuntimeDyldELF> Dyld(new RuntimeDyldELF(MM, Resolver));
878   Dyld->setProcessAllSections(ProcessAllSections);
879   Dyld->setRuntimeDyldChecker(Checker);
880   return Dyld;
881 }
882
883 static std::unique_ptr<RuntimeDyldMachO>
884 createRuntimeDyldMachO(Triple::ArchType Arch, RuntimeDyld::MemoryManager &MM,
885                        RuntimeDyld::SymbolResolver &Resolver,
886                        bool ProcessAllSections,
887                        RuntimeDyldCheckerImpl *Checker) {
888   std::unique_ptr<RuntimeDyldMachO> Dyld =
889     RuntimeDyldMachO::create(Arch, MM, Resolver);
890   Dyld->setProcessAllSections(ProcessAllSections);
891   Dyld->setRuntimeDyldChecker(Checker);
892   return Dyld;
893 }
894
895 std::unique_ptr<RuntimeDyld::LoadedObjectInfo>
896 RuntimeDyld::loadObject(const ObjectFile &Obj) {
897   if (!Dyld) {
898     if (Obj.isELF())
899       Dyld = createRuntimeDyldELF(MemMgr, Resolver, ProcessAllSections, Checker);
900     else if (Obj.isMachO())
901       Dyld = createRuntimeDyldMachO(
902                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
903                ProcessAllSections, Checker);
904     else if (Obj.isCOFF())
905       Dyld = createRuntimeDyldCOFF(
906                static_cast<Triple::ArchType>(Obj.getArch()), MemMgr, Resolver,
907                ProcessAllSections, Checker);
908     else
909       report_fatal_error("Incompatible object format!");
910   }
911
912   if (!Dyld->isCompatibleFile(Obj))
913     report_fatal_error("Incompatible object format!");
914
915   return Dyld->loadObject(Obj);
916 }
917
918 void *RuntimeDyld::getSymbolLocalAddress(StringRef Name) const {
919   if (!Dyld)
920     return nullptr;
921   return Dyld->getSymbolLocalAddress(Name);
922 }
923
924 RuntimeDyld::SymbolInfo RuntimeDyld::getSymbol(StringRef Name) const {
925   if (!Dyld)
926     return nullptr;
927   return Dyld->getSymbol(Name);
928 }
929
930 void RuntimeDyld::resolveRelocations() { Dyld->resolveRelocations(); }
931
932 void RuntimeDyld::reassignSectionAddress(unsigned SectionID, uint64_t Addr) {
933   Dyld->reassignSectionAddress(SectionID, Addr);
934 }
935
936 void RuntimeDyld::mapSectionAddress(const void *LocalAddress,
937                                     uint64_t TargetAddress) {
938   Dyld->mapSectionAddress(LocalAddress, TargetAddress);
939 }
940
941 bool RuntimeDyld::hasError() { return Dyld->hasError(); }
942
943 StringRef RuntimeDyld::getErrorString() { return Dyld->getErrorString(); }
944
945 void RuntimeDyld::registerEHFrames() {
946   if (Dyld)
947     Dyld->registerEHFrames();
948 }
949
950 void RuntimeDyld::deregisterEHFrames() {
951   if (Dyld)
952     Dyld->deregisterEHFrames();
953 }
954
955 } // end namespace llvm