Move all of the header files which are involved in modelling the LLVM IR
[oota-llvm.git] / lib / ExecutionEngine / JIT / JIT.cpp
1 //===-- JIT.cpp - LLVM Just in Time Compiler ------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tool implements a just-in-time compiler for LLVM, allowing direct
11 // execution of LLVM bitcode in an efficient manner.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "JIT.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/CodeGen/JITCodeEmitter.h"
18 #include "llvm/CodeGen/MachineCodeInfo.h"
19 #include "llvm/Config/config.h"
20 #include "llvm/ExecutionEngine/GenericValue.h"
21 #include "llvm/ExecutionEngine/JITEventListener.h"
22 #include "llvm/ExecutionEngine/JITMemoryManager.h"
23 #include "llvm/IR/Constants.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Function.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/Support/Dwarf.h"
30 #include "llvm/Support/DynamicLibrary.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/ManagedStatic.h"
33 #include "llvm/Support/MutexGuard.h"
34 #include "llvm/Target/TargetJITInfo.h"
35 #include "llvm/Target/TargetMachine.h"
36
37 using namespace llvm;
38
39 #ifdef __APPLE__
40 // Apple gcc defaults to -fuse-cxa-atexit (i.e. calls __cxa_atexit instead
41 // of atexit). It passes the address of linker generated symbol __dso_handle
42 // to the function.
43 // This configuration change happened at version 5330.
44 # include <AvailabilityMacros.h>
45 # if defined(MAC_OS_X_VERSION_10_4) && \
46      ((MAC_OS_X_VERSION_MIN_REQUIRED > MAC_OS_X_VERSION_10_4) || \
47       (MAC_OS_X_VERSION_MIN_REQUIRED == MAC_OS_X_VERSION_10_4 && \
48        __APPLE_CC__ >= 5330))
49 #  ifndef HAVE___DSO_HANDLE
50 #   define HAVE___DSO_HANDLE 1
51 #  endif
52 # endif
53 #endif
54
55 #if HAVE___DSO_HANDLE
56 extern void *__dso_handle __attribute__ ((__visibility__ ("hidden")));
57 #endif
58
59 namespace {
60
61 static struct RegisterJIT {
62   RegisterJIT() { JIT::Register(); }
63 } JITRegistrator;
64
65 }
66
67 extern "C" void LLVMLinkInJIT() {
68 }
69
70 // Determine whether we can register EH tables.
71 #if (defined(__GNUC__) && !defined(__ARM_EABI__) && \
72      !defined(__USING_SJLJ_EXCEPTIONS__))
73 #define HAVE_EHTABLE_SUPPORT 1
74 #else
75 #define HAVE_EHTABLE_SUPPORT 0
76 #endif
77
78 #if HAVE_EHTABLE_SUPPORT
79
80 // libgcc defines the __register_frame function to dynamically register new
81 // dwarf frames for exception handling. This functionality is not portable
82 // across compilers and is only provided by GCC. We use the __register_frame
83 // function here so that code generated by the JIT cooperates with the unwinding
84 // runtime of libgcc. When JITting with exception handling enable, LLVM
85 // generates dwarf frames and registers it to libgcc with __register_frame.
86 //
87 // The __register_frame function works with Linux.
88 //
89 // Unfortunately, this functionality seems to be in libgcc after the unwinding
90 // library of libgcc for darwin was written. The code for darwin overwrites the
91 // value updated by __register_frame with a value fetched with "keymgr".
92 // "keymgr" is an obsolete functionality, which should be rewritten some day.
93 // In the meantime, since "keymgr" is on all libgccs shipped with apple-gcc, we
94 // need a workaround in LLVM which uses the "keymgr" to dynamically modify the
95 // values of an opaque key, used by libgcc to find dwarf tables.
96
97 extern "C" void __register_frame(void*);
98 extern "C" void __deregister_frame(void*);
99
100 #if defined(__APPLE__) && MAC_OS_X_VERSION_MAX_ALLOWED <= 1050
101 # define USE_KEYMGR 1
102 #else
103 # define USE_KEYMGR 0
104 #endif
105
106 #if USE_KEYMGR
107
108 namespace {
109
110 // LibgccObject - This is the structure defined in libgcc. There is no #include
111 // provided for this structure, so we also define it here. libgcc calls it
112 // "struct object". The structure is undocumented in libgcc.
113 struct LibgccObject {
114   void *unused1;
115   void *unused2;
116   void *unused3;
117
118   /// frame - Pointer to the exception table.
119   void *frame;
120
121   /// encoding -  The encoding of the object?
122   union {
123     struct {
124       unsigned long sorted : 1;
125       unsigned long from_array : 1;
126       unsigned long mixed_encoding : 1;
127       unsigned long encoding : 8;
128       unsigned long count : 21;
129     } b;
130     size_t i;
131   } encoding;
132
133   /// fde_end - libgcc defines this field only if some macro is defined. We
134   /// include this field even if it may not there, to make libgcc happy.
135   char *fde_end;
136
137   /// next - At least we know it's a chained list!
138   struct LibgccObject *next;
139 };
140
141 // "kemgr" stuff. Apparently, all frame tables are stored there.
142 extern "C" void _keymgr_set_and_unlock_processwide_ptr(int, void *);
143 extern "C" void *_keymgr_get_and_lock_processwide_ptr(int);
144 #define KEYMGR_GCC3_DW2_OBJ_LIST        302     /* Dwarf2 object list  */
145
146 /// LibgccObjectInfo - libgcc defines this struct as km_object_info. It
147 /// probably contains all dwarf tables that are loaded.
148 struct LibgccObjectInfo {
149
150   /// seenObjects - LibgccObjects already parsed by the unwinding runtime.
151   ///
152   struct LibgccObject* seenObjects;
153
154   /// unseenObjects - LibgccObjects not parsed yet by the unwinding runtime.
155   ///
156   struct LibgccObject* unseenObjects;
157
158   unsigned unused[2];
159 };
160
161 /// darwin_register_frame - Since __register_frame does not work with darwin's
162 /// libgcc,we provide our own function, which "tricks" libgcc by modifying the
163 /// "Dwarf2 object list" key.
164 void DarwinRegisterFrame(void* FrameBegin) {
165   // Get the key.
166   LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
167     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
168   assert(LOI && "This should be preallocated by the runtime");
169
170   // Allocate a new LibgccObject to represent this frame. Deallocation of this
171   // object may be impossible: since darwin code in libgcc was written after
172   // the ability to dynamically register frames, things may crash if we
173   // deallocate it.
174   struct LibgccObject* ob = (struct LibgccObject*)
175     malloc(sizeof(struct LibgccObject));
176
177   // Do like libgcc for the values of the field.
178   ob->unused1 = (void *)-1;
179   ob->unused2 = 0;
180   ob->unused3 = 0;
181   ob->frame = FrameBegin;
182   ob->encoding.i = 0;
183   ob->encoding.b.encoding = llvm::dwarf::DW_EH_PE_omit;
184
185   // Put the info on both places, as libgcc uses the first or the second
186   // field. Note that we rely on having two pointers here. If fde_end was a
187   // char, things would get complicated.
188   ob->fde_end = (char*)LOI->unseenObjects;
189   ob->next = LOI->unseenObjects;
190
191   // Update the key's unseenObjects list.
192   LOI->unseenObjects = ob;
193
194   // Finally update the "key". Apparently, libgcc requires it.
195   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST,
196                                          LOI);
197
198 }
199
200 }
201 #endif // __APPLE__
202 #endif // HAVE_EHTABLE_SUPPORT
203
204 /// createJIT - This is the factory method for creating a JIT for the current
205 /// machine, it does not fall back to the interpreter.  This takes ownership
206 /// of the module.
207 ExecutionEngine *JIT::createJIT(Module *M,
208                                 std::string *ErrorStr,
209                                 JITMemoryManager *JMM,
210                                 bool GVsWithCode,
211                                 TargetMachine *TM) {
212   // Try to register the program as a source of symbols to resolve against.
213   //
214   // FIXME: Don't do this here.
215   sys::DynamicLibrary::LoadLibraryPermanently(0, NULL);
216
217   // If the target supports JIT code generation, create the JIT.
218   if (TargetJITInfo *TJ = TM->getJITInfo()) {
219     return new JIT(M, *TM, *TJ, JMM, GVsWithCode);
220   } else {
221     if (ErrorStr)
222       *ErrorStr = "target does not support JIT code generation";
223     return 0;
224   }
225 }
226
227 namespace {
228 /// This class supports the global getPointerToNamedFunction(), which allows
229 /// bugpoint or gdb users to search for a function by name without any context.
230 class JitPool {
231   SmallPtrSet<JIT*, 1> JITs;  // Optimize for process containing just 1 JIT.
232   mutable sys::Mutex Lock;
233 public:
234   void Add(JIT *jit) {
235     MutexGuard guard(Lock);
236     JITs.insert(jit);
237   }
238   void Remove(JIT *jit) {
239     MutexGuard guard(Lock);
240     JITs.erase(jit);
241   }
242   void *getPointerToNamedFunction(const char *Name) const {
243     MutexGuard guard(Lock);
244     assert(JITs.size() != 0 && "No Jit registered");
245     //search function in every instance of JIT
246     for (SmallPtrSet<JIT*, 1>::const_iterator Jit = JITs.begin(),
247            end = JITs.end();
248          Jit != end; ++Jit) {
249       if (Function *F = (*Jit)->FindFunctionNamed(Name))
250         return (*Jit)->getPointerToFunction(F);
251     }
252     // The function is not available : fallback on the first created (will
253     // search in symbol of the current program/library)
254     return (*JITs.begin())->getPointerToNamedFunction(Name);
255   }
256 };
257 ManagedStatic<JitPool> AllJits;
258 }
259 extern "C" {
260   // getPointerToNamedFunction - This function is used as a global wrapper to
261   // JIT::getPointerToNamedFunction for the purpose of resolving symbols when
262   // bugpoint is debugging the JIT. In that scenario, we are loading an .so and
263   // need to resolve function(s) that are being mis-codegenerated, so we need to
264   // resolve their addresses at runtime, and this is the way to do it.
265   void *getPointerToNamedFunction(const char *Name) {
266     return AllJits->getPointerToNamedFunction(Name);
267   }
268 }
269
270 JIT::JIT(Module *M, TargetMachine &tm, TargetJITInfo &tji,
271          JITMemoryManager *jmm, bool GVsWithCode)
272   : ExecutionEngine(M), TM(tm), TJI(tji),
273     JMM(jmm ? jmm : JITMemoryManager::CreateDefaultMemManager()),
274     AllocateGVsWithCode(GVsWithCode), isAlreadyCodeGenerating(false) {
275   setDataLayout(TM.getDataLayout());
276
277   jitstate = new JITState(M);
278
279   // Initialize JCE
280   JCE = createEmitter(*this, JMM, TM);
281
282   // Register in global list of all JITs.
283   AllJits->Add(this);
284
285   // Add target data
286   MutexGuard locked(lock);
287   FunctionPassManager &PM = jitstate->getPM(locked);
288   PM.add(new DataLayout(*TM.getDataLayout()));
289
290   // Turn the machine code intermediate representation into bytes in memory that
291   // may be executed.
292   if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
293     report_fatal_error("Target does not support machine code emission!");
294   }
295
296   // Register routine for informing unwinding runtime about new EH frames
297 #if HAVE_EHTABLE_SUPPORT
298 #if USE_KEYMGR
299   struct LibgccObjectInfo* LOI = (struct LibgccObjectInfo*)
300     _keymgr_get_and_lock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST);
301
302   // The key is created on demand, and libgcc creates it the first time an
303   // exception occurs. Since we need the key to register frames, we create
304   // it now.
305   if (!LOI)
306     LOI = (LibgccObjectInfo*)calloc(sizeof(struct LibgccObjectInfo), 1);
307   _keymgr_set_and_unlock_processwide_ptr(KEYMGR_GCC3_DW2_OBJ_LIST, LOI);
308   InstallExceptionTableRegister(DarwinRegisterFrame);
309   // Not sure about how to deregister on Darwin.
310 #else
311   InstallExceptionTableRegister(__register_frame);
312   InstallExceptionTableDeregister(__deregister_frame);
313 #endif // __APPLE__
314 #endif // HAVE_EHTABLE_SUPPORT
315
316   // Initialize passes.
317   PM.doInitialization();
318 }
319
320 JIT::~JIT() {
321   // Unregister all exception tables registered by this JIT.
322   DeregisterAllTables();
323   // Cleanup.
324   AllJits->Remove(this);
325   delete jitstate;
326   delete JCE;
327   // JMM is a ownership of JCE, so we no need delete JMM here.
328   delete &TM;
329 }
330
331 /// addModule - Add a new Module to the JIT.  If we previously removed the last
332 /// Module, we need re-initialize jitstate with a valid Module.
333 void JIT::addModule(Module *M) {
334   MutexGuard locked(lock);
335
336   if (Modules.empty()) {
337     assert(!jitstate && "jitstate should be NULL if Modules vector is empty!");
338
339     jitstate = new JITState(M);
340
341     FunctionPassManager &PM = jitstate->getPM(locked);
342     PM.add(new DataLayout(*TM.getDataLayout()));
343
344     // Turn the machine code intermediate representation into bytes in memory
345     // that may be executed.
346     if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
347       report_fatal_error("Target does not support machine code emission!");
348     }
349
350     // Initialize passes.
351     PM.doInitialization();
352   }
353
354   ExecutionEngine::addModule(M);
355 }
356
357 /// removeModule - If we are removing the last Module, invalidate the jitstate
358 /// since the PassManager it contains references a released Module.
359 bool JIT::removeModule(Module *M) {
360   bool result = ExecutionEngine::removeModule(M);
361
362   MutexGuard locked(lock);
363
364   if (jitstate && jitstate->getModule() == M) {
365     delete jitstate;
366     jitstate = 0;
367   }
368
369   if (!jitstate && !Modules.empty()) {
370     jitstate = new JITState(Modules[0]);
371
372     FunctionPassManager &PM = jitstate->getPM(locked);
373     PM.add(new DataLayout(*TM.getDataLayout()));
374
375     // Turn the machine code intermediate representation into bytes in memory
376     // that may be executed.
377     if (TM.addPassesToEmitMachineCode(PM, *JCE)) {
378       report_fatal_error("Target does not support machine code emission!");
379     }
380
381     // Initialize passes.
382     PM.doInitialization();
383   }
384   return result;
385 }
386
387 /// run - Start execution with the specified function and arguments.
388 ///
389 GenericValue JIT::runFunction(Function *F,
390                               const std::vector<GenericValue> &ArgValues) {
391   assert(F && "Function *F was null at entry to run()");
392
393   void *FPtr = getPointerToFunction(F);
394   assert(FPtr && "Pointer to fn's code was null after getPointerToFunction");
395   FunctionType *FTy = F->getFunctionType();
396   Type *RetTy = FTy->getReturnType();
397
398   assert((FTy->getNumParams() == ArgValues.size() ||
399           (FTy->isVarArg() && FTy->getNumParams() <= ArgValues.size())) &&
400          "Wrong number of arguments passed into function!");
401   assert(FTy->getNumParams() == ArgValues.size() &&
402          "This doesn't support passing arguments through varargs (yet)!");
403
404   // Handle some common cases first.  These cases correspond to common `main'
405   // prototypes.
406   if (RetTy->isIntegerTy(32) || RetTy->isVoidTy()) {
407     switch (ArgValues.size()) {
408     case 3:
409       if (FTy->getParamType(0)->isIntegerTy(32) &&
410           FTy->getParamType(1)->isPointerTy() &&
411           FTy->getParamType(2)->isPointerTy()) {
412         int (*PF)(int, char **, const char **) =
413           (int(*)(int, char **, const char **))(intptr_t)FPtr;
414
415         // Call the function.
416         GenericValue rv;
417         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
418                                  (char **)GVTOP(ArgValues[1]),
419                                  (const char **)GVTOP(ArgValues[2])));
420         return rv;
421       }
422       break;
423     case 2:
424       if (FTy->getParamType(0)->isIntegerTy(32) &&
425           FTy->getParamType(1)->isPointerTy()) {
426         int (*PF)(int, char **) = (int(*)(int, char **))(intptr_t)FPtr;
427
428         // Call the function.
429         GenericValue rv;
430         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue(),
431                                  (char **)GVTOP(ArgValues[1])));
432         return rv;
433       }
434       break;
435     case 1:
436       if (FTy->getParamType(0)->isIntegerTy(32)) {
437         GenericValue rv;
438         int (*PF)(int) = (int(*)(int))(intptr_t)FPtr;
439         rv.IntVal = APInt(32, PF(ArgValues[0].IntVal.getZExtValue()));
440         return rv;
441       }
442       if (FTy->getParamType(0)->isPointerTy()) {
443         GenericValue rv;
444         int (*PF)(char *) = (int(*)(char *))(intptr_t)FPtr;
445         rv.IntVal = APInt(32, PF((char*)GVTOP(ArgValues[0])));
446         return rv;
447       }
448       break;
449     }
450   }
451
452   // Handle cases where no arguments are passed first.
453   if (ArgValues.empty()) {
454     GenericValue rv;
455     switch (RetTy->getTypeID()) {
456     default: llvm_unreachable("Unknown return type for function call!");
457     case Type::IntegerTyID: {
458       unsigned BitWidth = cast<IntegerType>(RetTy)->getBitWidth();
459       if (BitWidth == 1)
460         rv.IntVal = APInt(BitWidth, ((bool(*)())(intptr_t)FPtr)());
461       else if (BitWidth <= 8)
462         rv.IntVal = APInt(BitWidth, ((char(*)())(intptr_t)FPtr)());
463       else if (BitWidth <= 16)
464         rv.IntVal = APInt(BitWidth, ((short(*)())(intptr_t)FPtr)());
465       else if (BitWidth <= 32)
466         rv.IntVal = APInt(BitWidth, ((int(*)())(intptr_t)FPtr)());
467       else if (BitWidth <= 64)
468         rv.IntVal = APInt(BitWidth, ((int64_t(*)())(intptr_t)FPtr)());
469       else
470         llvm_unreachable("Integer types > 64 bits not supported");
471       return rv;
472     }
473     case Type::VoidTyID:
474       rv.IntVal = APInt(32, ((int(*)())(intptr_t)FPtr)());
475       return rv;
476     case Type::FloatTyID:
477       rv.FloatVal = ((float(*)())(intptr_t)FPtr)();
478       return rv;
479     case Type::DoubleTyID:
480       rv.DoubleVal = ((double(*)())(intptr_t)FPtr)();
481       return rv;
482     case Type::X86_FP80TyID:
483     case Type::FP128TyID:
484     case Type::PPC_FP128TyID:
485       llvm_unreachable("long double not supported yet");
486     case Type::PointerTyID:
487       return PTOGV(((void*(*)())(intptr_t)FPtr)());
488     }
489   }
490
491   // Okay, this is not one of our quick and easy cases.  Because we don't have a
492   // full FFI, we have to codegen a nullary stub function that just calls the
493   // function we are interested in, passing in constants for all of the
494   // arguments.  Make this function and return.
495
496   // First, create the function.
497   FunctionType *STy=FunctionType::get(RetTy, false);
498   Function *Stub = Function::Create(STy, Function::InternalLinkage, "",
499                                     F->getParent());
500
501   // Insert a basic block.
502   BasicBlock *StubBB = BasicBlock::Create(F->getContext(), "", Stub);
503
504   // Convert all of the GenericValue arguments over to constants.  Note that we
505   // currently don't support varargs.
506   SmallVector<Value*, 8> Args;
507   for (unsigned i = 0, e = ArgValues.size(); i != e; ++i) {
508     Constant *C = 0;
509     Type *ArgTy = FTy->getParamType(i);
510     const GenericValue &AV = ArgValues[i];
511     switch (ArgTy->getTypeID()) {
512     default: llvm_unreachable("Unknown argument type for function call!");
513     case Type::IntegerTyID:
514         C = ConstantInt::get(F->getContext(), AV.IntVal);
515         break;
516     case Type::FloatTyID:
517         C = ConstantFP::get(F->getContext(), APFloat(AV.FloatVal));
518         break;
519     case Type::DoubleTyID:
520         C = ConstantFP::get(F->getContext(), APFloat(AV.DoubleVal));
521         break;
522     case Type::PPC_FP128TyID:
523     case Type::X86_FP80TyID:
524     case Type::FP128TyID:
525         C = ConstantFP::get(F->getContext(), APFloat(AV.IntVal));
526         break;
527     case Type::PointerTyID:
528       void *ArgPtr = GVTOP(AV);
529       if (sizeof(void*) == 4)
530         C = ConstantInt::get(Type::getInt32Ty(F->getContext()),
531                              (int)(intptr_t)ArgPtr);
532       else
533         C = ConstantInt::get(Type::getInt64Ty(F->getContext()),
534                              (intptr_t)ArgPtr);
535       // Cast the integer to pointer
536       C = ConstantExpr::getIntToPtr(C, ArgTy);
537       break;
538     }
539     Args.push_back(C);
540   }
541
542   CallInst *TheCall = CallInst::Create(F, Args, "", StubBB);
543   TheCall->setCallingConv(F->getCallingConv());
544   TheCall->setTailCall();
545   if (!TheCall->getType()->isVoidTy())
546     // Return result of the call.
547     ReturnInst::Create(F->getContext(), TheCall, StubBB);
548   else
549     ReturnInst::Create(F->getContext(), StubBB);           // Just return void.
550
551   // Finally, call our nullary stub function.
552   GenericValue Result = runFunction(Stub, std::vector<GenericValue>());
553   // Erase it, since no other function can have a reference to it.
554   Stub->eraseFromParent();
555   // And return the result.
556   return Result;
557 }
558
559 void JIT::RegisterJITEventListener(JITEventListener *L) {
560   if (L == NULL)
561     return;
562   MutexGuard locked(lock);
563   EventListeners.push_back(L);
564 }
565 void JIT::UnregisterJITEventListener(JITEventListener *L) {
566   if (L == NULL)
567     return;
568   MutexGuard locked(lock);
569   std::vector<JITEventListener*>::reverse_iterator I=
570       std::find(EventListeners.rbegin(), EventListeners.rend(), L);
571   if (I != EventListeners.rend()) {
572     std::swap(*I, EventListeners.back());
573     EventListeners.pop_back();
574   }
575 }
576 void JIT::NotifyFunctionEmitted(
577     const Function &F,
578     void *Code, size_t Size,
579     const JITEvent_EmittedFunctionDetails &Details) {
580   MutexGuard locked(lock);
581   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
582     EventListeners[I]->NotifyFunctionEmitted(F, Code, Size, Details);
583   }
584 }
585
586 void JIT::NotifyFreeingMachineCode(void *OldPtr) {
587   MutexGuard locked(lock);
588   for (unsigned I = 0, S = EventListeners.size(); I < S; ++I) {
589     EventListeners[I]->NotifyFreeingMachineCode(OldPtr);
590   }
591 }
592
593 /// runJITOnFunction - Run the FunctionPassManager full of
594 /// just-in-time compilation passes on F, hopefully filling in
595 /// GlobalAddress[F] with the address of F's machine code.
596 ///
597 void JIT::runJITOnFunction(Function *F, MachineCodeInfo *MCI) {
598   MutexGuard locked(lock);
599
600   class MCIListener : public JITEventListener {
601     MachineCodeInfo *const MCI;
602    public:
603     MCIListener(MachineCodeInfo *mci) : MCI(mci) {}
604     virtual void NotifyFunctionEmitted(const Function &,
605                                        void *Code, size_t Size,
606                                        const EmittedFunctionDetails &) {
607       MCI->setAddress(Code);
608       MCI->setSize(Size);
609     }
610   };
611   MCIListener MCIL(MCI);
612   if (MCI)
613     RegisterJITEventListener(&MCIL);
614
615   runJITOnFunctionUnlocked(F, locked);
616
617   if (MCI)
618     UnregisterJITEventListener(&MCIL);
619 }
620
621 void JIT::runJITOnFunctionUnlocked(Function *F, const MutexGuard &locked) {
622   assert(!isAlreadyCodeGenerating && "Error: Recursive compilation detected!");
623
624   jitTheFunction(F, locked);
625
626   // If the function referred to another function that had not yet been
627   // read from bitcode, and we are jitting non-lazily, emit it now.
628   while (!jitstate->getPendingFunctions(locked).empty()) {
629     Function *PF = jitstate->getPendingFunctions(locked).back();
630     jitstate->getPendingFunctions(locked).pop_back();
631
632     assert(!PF->hasAvailableExternallyLinkage() &&
633            "Externally-defined function should not be in pending list.");
634
635     jitTheFunction(PF, locked);
636
637     // Now that the function has been jitted, ask the JITEmitter to rewrite
638     // the stub with real address of the function.
639     updateFunctionStub(PF);
640   }
641 }
642
643 void JIT::jitTheFunction(Function *F, const MutexGuard &locked) {
644   isAlreadyCodeGenerating = true;
645   jitstate->getPM(locked).run(*F);
646   isAlreadyCodeGenerating = false;
647
648   // clear basic block addresses after this function is done
649   getBasicBlockAddressMap(locked).clear();
650 }
651
652 /// getPointerToFunction - This method is used to get the address of the
653 /// specified function, compiling it if necessary.
654 ///
655 void *JIT::getPointerToFunction(Function *F) {
656
657   if (void *Addr = getPointerToGlobalIfAvailable(F))
658     return Addr;   // Check if function already code gen'd
659
660   MutexGuard locked(lock);
661
662   // Now that this thread owns the lock, make sure we read in the function if it
663   // exists in this Module.
664   std::string ErrorMsg;
665   if (F->Materialize(&ErrorMsg)) {
666     report_fatal_error("Error reading function '" + F->getName()+
667                       "' from bitcode file: " + ErrorMsg);
668   }
669
670   // ... and check if another thread has already code gen'd the function.
671   if (void *Addr = getPointerToGlobalIfAvailable(F))
672     return Addr;
673
674   if (F->isDeclaration() || F->hasAvailableExternallyLinkage()) {
675     bool AbortOnFailure = !F->hasExternalWeakLinkage();
676     void *Addr = getPointerToNamedFunction(F->getName(), AbortOnFailure);
677     addGlobalMapping(F, Addr);
678     return Addr;
679   }
680
681   runJITOnFunctionUnlocked(F, locked);
682
683   void *Addr = getPointerToGlobalIfAvailable(F);
684   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
685   return Addr;
686 }
687
688 void JIT::addPointerToBasicBlock(const BasicBlock *BB, void *Addr) {
689   MutexGuard locked(lock);
690
691   BasicBlockAddressMapTy::iterator I =
692     getBasicBlockAddressMap(locked).find(BB);
693   if (I == getBasicBlockAddressMap(locked).end()) {
694     getBasicBlockAddressMap(locked)[BB] = Addr;
695   } else {
696     // ignore repeats: some BBs can be split into few MBBs?
697   }
698 }
699
700 void JIT::clearPointerToBasicBlock(const BasicBlock *BB) {
701   MutexGuard locked(lock);
702   getBasicBlockAddressMap(locked).erase(BB);
703 }
704
705 void *JIT::getPointerToBasicBlock(BasicBlock *BB) {
706   // make sure it's function is compiled by JIT
707   (void)getPointerToFunction(BB->getParent());
708
709   // resolve basic block address
710   MutexGuard locked(lock);
711
712   BasicBlockAddressMapTy::iterator I =
713     getBasicBlockAddressMap(locked).find(BB);
714   if (I != getBasicBlockAddressMap(locked).end()) {
715     return I->second;
716   } else {
717     llvm_unreachable("JIT does not have BB address for address-of-label, was"
718                      " it eliminated by optimizer?");
719   }
720 }
721
722 void *JIT::getPointerToNamedFunction(const std::string &Name,
723                                      bool AbortOnFailure){
724   if (!isSymbolSearchingDisabled()) {
725     void *ptr = JMM->getPointerToNamedFunction(Name, false);
726     if (ptr)
727       return ptr;
728   }
729
730   /// If a LazyFunctionCreator is installed, use it to get/create the function.
731   if (LazyFunctionCreator)
732     if (void *RP = LazyFunctionCreator(Name))
733       return RP;
734
735   if (AbortOnFailure) {
736     report_fatal_error("Program used external function '"+Name+
737                       "' which could not be resolved!");
738   }
739   return 0;
740 }
741
742
743 /// getOrEmitGlobalVariable - Return the address of the specified global
744 /// variable, possibly emitting it to memory if needed.  This is used by the
745 /// Emitter.
746 void *JIT::getOrEmitGlobalVariable(const GlobalVariable *GV) {
747   MutexGuard locked(lock);
748
749   void *Ptr = getPointerToGlobalIfAvailable(GV);
750   if (Ptr) return Ptr;
751
752   // If the global is external, just remember the address.
753   if (GV->isDeclaration() || GV->hasAvailableExternallyLinkage()) {
754 #if HAVE___DSO_HANDLE
755     if (GV->getName() == "__dso_handle")
756       return (void*)&__dso_handle;
757 #endif
758     Ptr = sys::DynamicLibrary::SearchForAddressOfSymbol(GV->getName());
759     if (Ptr == 0) {
760       report_fatal_error("Could not resolve external global address: "
761                         +GV->getName());
762     }
763     addGlobalMapping(GV, Ptr);
764   } else {
765     // If the global hasn't been emitted to memory yet, allocate space and
766     // emit it into memory.
767     Ptr = getMemoryForGV(GV);
768     addGlobalMapping(GV, Ptr);
769     EmitGlobalVariable(GV);  // Initialize the variable.
770   }
771   return Ptr;
772 }
773
774 /// recompileAndRelinkFunction - This method is used to force a function
775 /// which has already been compiled, to be compiled again, possibly
776 /// after it has been modified. Then the entry to the old copy is overwritten
777 /// with a branch to the new copy. If there was no old copy, this acts
778 /// just like JIT::getPointerToFunction().
779 ///
780 void *JIT::recompileAndRelinkFunction(Function *F) {
781   void *OldAddr = getPointerToGlobalIfAvailable(F);
782
783   // If it's not already compiled there is no reason to patch it up.
784   if (OldAddr == 0) { return getPointerToFunction(F); }
785
786   // Delete the old function mapping.
787   addGlobalMapping(F, 0);
788
789   // Recodegen the function
790   runJITOnFunction(F);
791
792   // Update state, forward the old function to the new function.
793   void *Addr = getPointerToGlobalIfAvailable(F);
794   assert(Addr && "Code generation didn't add function to GlobalAddress table!");
795   TJI.replaceMachineCodeForFunction(OldAddr, Addr);
796   return Addr;
797 }
798
799 /// getMemoryForGV - This method abstracts memory allocation of global
800 /// variable so that the JIT can allocate thread local variables depending
801 /// on the target.
802 ///
803 char* JIT::getMemoryForGV(const GlobalVariable* GV) {
804   char *Ptr;
805
806   // GlobalVariable's which are not "constant" will cause trouble in a server
807   // situation. It's returned in the same block of memory as code which may
808   // not be writable.
809   if (isGVCompilationDisabled() && !GV->isConstant()) {
810     report_fatal_error("Compilation of non-internal GlobalValue is disabled!");
811   }
812
813   // Some applications require globals and code to live together, so they may
814   // be allocated into the same buffer, but in general globals are allocated
815   // through the memory manager which puts them near the code but not in the
816   // same buffer.
817   Type *GlobalType = GV->getType()->getElementType();
818   size_t S = getDataLayout()->getTypeAllocSize(GlobalType);
819   size_t A = getDataLayout()->getPreferredAlignment(GV);
820   if (GV->isThreadLocal()) {
821     MutexGuard locked(lock);
822     Ptr = TJI.allocateThreadLocalMemory(S);
823   } else if (TJI.allocateSeparateGVMemory()) {
824     if (A <= 8) {
825       Ptr = (char*)malloc(S);
826     } else {
827       // Allocate S+A bytes of memory, then use an aligned pointer within that
828       // space.
829       Ptr = (char*)malloc(S+A);
830       unsigned MisAligned = ((intptr_t)Ptr & (A-1));
831       Ptr = Ptr + (MisAligned ? (A-MisAligned) : 0);
832     }
833   } else if (AllocateGVsWithCode) {
834     Ptr = (char*)JCE->allocateSpace(S, A);
835   } else {
836     Ptr = (char*)JCE->allocateGlobal(S, A);
837   }
838   return Ptr;
839 }
840
841 void JIT::addPendingFunction(Function *F) {
842   MutexGuard locked(lock);
843   jitstate->getPendingFunctions(locked).push_back(F);
844 }
845
846
847 JITEventListener::~JITEventListener() {}