Add in the first iteration of support for llvm/clang/lldb to allow variable per addre...
[oota-llvm.git] / lib / ExecutionEngine / Interpreter / Execution.cpp
1 //===-- Execution.cpp - Implement code to simulate the program ------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file contains the actual instruction interpreter.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "interpreter"
15 #include "Interpreter.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Instructions.h"
19 #include "llvm/CodeGen/IntrinsicLowering.h"
20 #include "llvm/Support/GetElementPtrTypeIterator.h"
21 #include "llvm/ADT/APInt.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/Support/CommandLine.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MathExtras.h"
27 #include <algorithm>
28 #include <cmath>
29 using namespace llvm;
30
31 STATISTIC(NumDynamicInsts, "Number of dynamic instructions executed");
32
33 static cl::opt<bool> PrintVolatile("interpreter-print-volatile", cl::Hidden,
34           cl::desc("make the interpreter print every volatile load and store"));
35
36 //===----------------------------------------------------------------------===//
37 //                     Various Helper Functions
38 //===----------------------------------------------------------------------===//
39
40 static void SetValue(Value *V, GenericValue Val, ExecutionContext &SF) {
41   SF.Values[V] = Val;
42 }
43
44 //===----------------------------------------------------------------------===//
45 //                    Binary Instruction Implementations
46 //===----------------------------------------------------------------------===//
47
48 #define IMPLEMENT_BINARY_OPERATOR(OP, TY) \
49    case Type::TY##TyID: \
50      Dest.TY##Val = Src1.TY##Val OP Src2.TY##Val; \
51      break
52
53 static void executeFAddInst(GenericValue &Dest, GenericValue Src1,
54                             GenericValue Src2, Type *Ty) {
55   switch (Ty->getTypeID()) {
56     IMPLEMENT_BINARY_OPERATOR(+, Float);
57     IMPLEMENT_BINARY_OPERATOR(+, Double);
58   default:
59     dbgs() << "Unhandled type for FAdd instruction: " << *Ty << "\n";
60     llvm_unreachable(0);
61   }
62 }
63
64 static void executeFSubInst(GenericValue &Dest, GenericValue Src1,
65                             GenericValue Src2, Type *Ty) {
66   switch (Ty->getTypeID()) {
67     IMPLEMENT_BINARY_OPERATOR(-, Float);
68     IMPLEMENT_BINARY_OPERATOR(-, Double);
69   default:
70     dbgs() << "Unhandled type for FSub instruction: " << *Ty << "\n";
71     llvm_unreachable(0);
72   }
73 }
74
75 static void executeFMulInst(GenericValue &Dest, GenericValue Src1,
76                             GenericValue Src2, Type *Ty) {
77   switch (Ty->getTypeID()) {
78     IMPLEMENT_BINARY_OPERATOR(*, Float);
79     IMPLEMENT_BINARY_OPERATOR(*, Double);
80   default:
81     dbgs() << "Unhandled type for FMul instruction: " << *Ty << "\n";
82     llvm_unreachable(0);
83   }
84 }
85
86 static void executeFDivInst(GenericValue &Dest, GenericValue Src1, 
87                             GenericValue Src2, Type *Ty) {
88   switch (Ty->getTypeID()) {
89     IMPLEMENT_BINARY_OPERATOR(/, Float);
90     IMPLEMENT_BINARY_OPERATOR(/, Double);
91   default:
92     dbgs() << "Unhandled type for FDiv instruction: " << *Ty << "\n";
93     llvm_unreachable(0);
94   }
95 }
96
97 static void executeFRemInst(GenericValue &Dest, GenericValue Src1, 
98                             GenericValue Src2, Type *Ty) {
99   switch (Ty->getTypeID()) {
100   case Type::FloatTyID:
101     Dest.FloatVal = fmod(Src1.FloatVal, Src2.FloatVal);
102     break;
103   case Type::DoubleTyID:
104     Dest.DoubleVal = fmod(Src1.DoubleVal, Src2.DoubleVal);
105     break;
106   default:
107     dbgs() << "Unhandled type for Rem instruction: " << *Ty << "\n";
108     llvm_unreachable(0);
109   }
110 }
111
112 #define IMPLEMENT_INTEGER_ICMP(OP, TY) \
113    case Type::IntegerTyID:  \
114       Dest.IntVal = APInt(1,Src1.IntVal.OP(Src2.IntVal)); \
115       break;
116
117 // Handle pointers specially because they must be compared with only as much
118 // width as the host has.  We _do not_ want to be comparing 64 bit values when
119 // running on a 32-bit target, otherwise the upper 32 bits might mess up
120 // comparisons if they contain garbage.
121 #define IMPLEMENT_POINTER_ICMP(OP) \
122    case Type::PointerTyID: \
123       Dest.IntVal = APInt(1,(void*)(intptr_t)Src1.PointerVal OP \
124                             (void*)(intptr_t)Src2.PointerVal); \
125       break;
126
127 static GenericValue executeICMP_EQ(GenericValue Src1, GenericValue Src2,
128                                    Type *Ty) {
129   GenericValue Dest;
130   switch (Ty->getTypeID()) {
131     IMPLEMENT_INTEGER_ICMP(eq,Ty);
132     IMPLEMENT_POINTER_ICMP(==);
133   default:
134     dbgs() << "Unhandled type for ICMP_EQ predicate: " << *Ty << "\n";
135     llvm_unreachable(0);
136   }
137   return Dest;
138 }
139
140 static GenericValue executeICMP_NE(GenericValue Src1, GenericValue Src2,
141                                    Type *Ty) {
142   GenericValue Dest;
143   switch (Ty->getTypeID()) {
144     IMPLEMENT_INTEGER_ICMP(ne,Ty);
145     IMPLEMENT_POINTER_ICMP(!=);
146   default:
147     dbgs() << "Unhandled type for ICMP_NE predicate: " << *Ty << "\n";
148     llvm_unreachable(0);
149   }
150   return Dest;
151 }
152
153 static GenericValue executeICMP_ULT(GenericValue Src1, GenericValue Src2,
154                                     Type *Ty) {
155   GenericValue Dest;
156   switch (Ty->getTypeID()) {
157     IMPLEMENT_INTEGER_ICMP(ult,Ty);
158     IMPLEMENT_POINTER_ICMP(<);
159   default:
160     dbgs() << "Unhandled type for ICMP_ULT predicate: " << *Ty << "\n";
161     llvm_unreachable(0);
162   }
163   return Dest;
164 }
165
166 static GenericValue executeICMP_SLT(GenericValue Src1, GenericValue Src2,
167                                     Type *Ty) {
168   GenericValue Dest;
169   switch (Ty->getTypeID()) {
170     IMPLEMENT_INTEGER_ICMP(slt,Ty);
171     IMPLEMENT_POINTER_ICMP(<);
172   default:
173     dbgs() << "Unhandled type for ICMP_SLT predicate: " << *Ty << "\n";
174     llvm_unreachable(0);
175   }
176   return Dest;
177 }
178
179 static GenericValue executeICMP_UGT(GenericValue Src1, GenericValue Src2,
180                                     Type *Ty) {
181   GenericValue Dest;
182   switch (Ty->getTypeID()) {
183     IMPLEMENT_INTEGER_ICMP(ugt,Ty);
184     IMPLEMENT_POINTER_ICMP(>);
185   default:
186     dbgs() << "Unhandled type for ICMP_UGT predicate: " << *Ty << "\n";
187     llvm_unreachable(0);
188   }
189   return Dest;
190 }
191
192 static GenericValue executeICMP_SGT(GenericValue Src1, GenericValue Src2,
193                                     Type *Ty) {
194   GenericValue Dest;
195   switch (Ty->getTypeID()) {
196     IMPLEMENT_INTEGER_ICMP(sgt,Ty);
197     IMPLEMENT_POINTER_ICMP(>);
198   default:
199     dbgs() << "Unhandled type for ICMP_SGT predicate: " << *Ty << "\n";
200     llvm_unreachable(0);
201   }
202   return Dest;
203 }
204
205 static GenericValue executeICMP_ULE(GenericValue Src1, GenericValue Src2,
206                                     Type *Ty) {
207   GenericValue Dest;
208   switch (Ty->getTypeID()) {
209     IMPLEMENT_INTEGER_ICMP(ule,Ty);
210     IMPLEMENT_POINTER_ICMP(<=);
211   default:
212     dbgs() << "Unhandled type for ICMP_ULE predicate: " << *Ty << "\n";
213     llvm_unreachable(0);
214   }
215   return Dest;
216 }
217
218 static GenericValue executeICMP_SLE(GenericValue Src1, GenericValue Src2,
219                                     Type *Ty) {
220   GenericValue Dest;
221   switch (Ty->getTypeID()) {
222     IMPLEMENT_INTEGER_ICMP(sle,Ty);
223     IMPLEMENT_POINTER_ICMP(<=);
224   default:
225     dbgs() << "Unhandled type for ICMP_SLE predicate: " << *Ty << "\n";
226     llvm_unreachable(0);
227   }
228   return Dest;
229 }
230
231 static GenericValue executeICMP_UGE(GenericValue Src1, GenericValue Src2,
232                                     Type *Ty) {
233   GenericValue Dest;
234   switch (Ty->getTypeID()) {
235     IMPLEMENT_INTEGER_ICMP(uge,Ty);
236     IMPLEMENT_POINTER_ICMP(>=);
237   default:
238     dbgs() << "Unhandled type for ICMP_UGE predicate: " << *Ty << "\n";
239     llvm_unreachable(0);
240   }
241   return Dest;
242 }
243
244 static GenericValue executeICMP_SGE(GenericValue Src1, GenericValue Src2,
245                                     Type *Ty) {
246   GenericValue Dest;
247   switch (Ty->getTypeID()) {
248     IMPLEMENT_INTEGER_ICMP(sge,Ty);
249     IMPLEMENT_POINTER_ICMP(>=);
250   default:
251     dbgs() << "Unhandled type for ICMP_SGE predicate: " << *Ty << "\n";
252     llvm_unreachable(0);
253   }
254   return Dest;
255 }
256
257 void Interpreter::visitICmpInst(ICmpInst &I) {
258   ExecutionContext &SF = ECStack.back();
259   Type *Ty    = I.getOperand(0)->getType();
260   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
261   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
262   GenericValue R;   // Result
263   
264   switch (I.getPredicate()) {
265   case ICmpInst::ICMP_EQ:  R = executeICMP_EQ(Src1,  Src2, Ty); break;
266   case ICmpInst::ICMP_NE:  R = executeICMP_NE(Src1,  Src2, Ty); break;
267   case ICmpInst::ICMP_ULT: R = executeICMP_ULT(Src1, Src2, Ty); break;
268   case ICmpInst::ICMP_SLT: R = executeICMP_SLT(Src1, Src2, Ty); break;
269   case ICmpInst::ICMP_UGT: R = executeICMP_UGT(Src1, Src2, Ty); break;
270   case ICmpInst::ICMP_SGT: R = executeICMP_SGT(Src1, Src2, Ty); break;
271   case ICmpInst::ICMP_ULE: R = executeICMP_ULE(Src1, Src2, Ty); break;
272   case ICmpInst::ICMP_SLE: R = executeICMP_SLE(Src1, Src2, Ty); break;
273   case ICmpInst::ICMP_UGE: R = executeICMP_UGE(Src1, Src2, Ty); break;
274   case ICmpInst::ICMP_SGE: R = executeICMP_SGE(Src1, Src2, Ty); break;
275   default:
276     dbgs() << "Don't know how to handle this ICmp predicate!\n-->" << I;
277     llvm_unreachable(0);
278   }
279  
280   SetValue(&I, R, SF);
281 }
282
283 #define IMPLEMENT_FCMP(OP, TY) \
284    case Type::TY##TyID: \
285      Dest.IntVal = APInt(1,Src1.TY##Val OP Src2.TY##Val); \
286      break
287
288 static GenericValue executeFCMP_OEQ(GenericValue Src1, GenericValue Src2,
289                                    Type *Ty) {
290   GenericValue Dest;
291   switch (Ty->getTypeID()) {
292     IMPLEMENT_FCMP(==, Float);
293     IMPLEMENT_FCMP(==, Double);
294   default:
295     dbgs() << "Unhandled type for FCmp EQ instruction: " << *Ty << "\n";
296     llvm_unreachable(0);
297   }
298   return Dest;
299 }
300
301 static GenericValue executeFCMP_ONE(GenericValue Src1, GenericValue Src2,
302                                    Type *Ty) {
303   GenericValue Dest;
304   switch (Ty->getTypeID()) {
305     IMPLEMENT_FCMP(!=, Float);
306     IMPLEMENT_FCMP(!=, Double);
307
308   default:
309     dbgs() << "Unhandled type for FCmp NE instruction: " << *Ty << "\n";
310     llvm_unreachable(0);
311   }
312   return Dest;
313 }
314
315 static GenericValue executeFCMP_OLE(GenericValue Src1, GenericValue Src2,
316                                    Type *Ty) {
317   GenericValue Dest;
318   switch (Ty->getTypeID()) {
319     IMPLEMENT_FCMP(<=, Float);
320     IMPLEMENT_FCMP(<=, Double);
321   default:
322     dbgs() << "Unhandled type for FCmp LE instruction: " << *Ty << "\n";
323     llvm_unreachable(0);
324   }
325   return Dest;
326 }
327
328 static GenericValue executeFCMP_OGE(GenericValue Src1, GenericValue Src2,
329                                    Type *Ty) {
330   GenericValue Dest;
331   switch (Ty->getTypeID()) {
332     IMPLEMENT_FCMP(>=, Float);
333     IMPLEMENT_FCMP(>=, Double);
334   default:
335     dbgs() << "Unhandled type for FCmp GE instruction: " << *Ty << "\n";
336     llvm_unreachable(0);
337   }
338   return Dest;
339 }
340
341 static GenericValue executeFCMP_OLT(GenericValue Src1, GenericValue Src2,
342                                    Type *Ty) {
343   GenericValue Dest;
344   switch (Ty->getTypeID()) {
345     IMPLEMENT_FCMP(<, Float);
346     IMPLEMENT_FCMP(<, Double);
347   default:
348     dbgs() << "Unhandled type for FCmp LT instruction: " << *Ty << "\n";
349     llvm_unreachable(0);
350   }
351   return Dest;
352 }
353
354 static GenericValue executeFCMP_OGT(GenericValue Src1, GenericValue Src2,
355                                      Type *Ty) {
356   GenericValue Dest;
357   switch (Ty->getTypeID()) {
358     IMPLEMENT_FCMP(>, Float);
359     IMPLEMENT_FCMP(>, Double);
360   default:
361     dbgs() << "Unhandled type for FCmp GT instruction: " << *Ty << "\n";
362     llvm_unreachable(0);
363   }
364   return Dest;
365 }
366
367 #define IMPLEMENT_UNORDERED(TY, X,Y)                                     \
368   if (TY->isFloatTy()) {                                                 \
369     if (X.FloatVal != X.FloatVal || Y.FloatVal != Y.FloatVal) {          \
370       Dest.IntVal = APInt(1,true);                                       \
371       return Dest;                                                       \
372     }                                                                    \
373   } else if (X.DoubleVal != X.DoubleVal || Y.DoubleVal != Y.DoubleVal) { \
374     Dest.IntVal = APInt(1,true);                                         \
375     return Dest;                                                         \
376   }
377
378
379 static GenericValue executeFCMP_UEQ(GenericValue Src1, GenericValue Src2,
380                                    Type *Ty) {
381   GenericValue Dest;
382   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
383   return executeFCMP_OEQ(Src1, Src2, Ty);
384 }
385
386 static GenericValue executeFCMP_UNE(GenericValue Src1, GenericValue Src2,
387                                    Type *Ty) {
388   GenericValue Dest;
389   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
390   return executeFCMP_ONE(Src1, Src2, Ty);
391 }
392
393 static GenericValue executeFCMP_ULE(GenericValue Src1, GenericValue Src2,
394                                    Type *Ty) {
395   GenericValue Dest;
396   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
397   return executeFCMP_OLE(Src1, Src2, Ty);
398 }
399
400 static GenericValue executeFCMP_UGE(GenericValue Src1, GenericValue Src2,
401                                    Type *Ty) {
402   GenericValue Dest;
403   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
404   return executeFCMP_OGE(Src1, Src2, Ty);
405 }
406
407 static GenericValue executeFCMP_ULT(GenericValue Src1, GenericValue Src2,
408                                    Type *Ty) {
409   GenericValue Dest;
410   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
411   return executeFCMP_OLT(Src1, Src2, Ty);
412 }
413
414 static GenericValue executeFCMP_UGT(GenericValue Src1, GenericValue Src2,
415                                      Type *Ty) {
416   GenericValue Dest;
417   IMPLEMENT_UNORDERED(Ty, Src1, Src2)
418   return executeFCMP_OGT(Src1, Src2, Ty);
419 }
420
421 static GenericValue executeFCMP_ORD(GenericValue Src1, GenericValue Src2,
422                                      Type *Ty) {
423   GenericValue Dest;
424   if (Ty->isFloatTy())
425     Dest.IntVal = APInt(1,(Src1.FloatVal == Src1.FloatVal && 
426                            Src2.FloatVal == Src2.FloatVal));
427   else
428     Dest.IntVal = APInt(1,(Src1.DoubleVal == Src1.DoubleVal && 
429                            Src2.DoubleVal == Src2.DoubleVal));
430   return Dest;
431 }
432
433 static GenericValue executeFCMP_UNO(GenericValue Src1, GenericValue Src2,
434                                      Type *Ty) {
435   GenericValue Dest;
436   if (Ty->isFloatTy())
437     Dest.IntVal = APInt(1,(Src1.FloatVal != Src1.FloatVal || 
438                            Src2.FloatVal != Src2.FloatVal));
439   else
440     Dest.IntVal = APInt(1,(Src1.DoubleVal != Src1.DoubleVal || 
441                            Src2.DoubleVal != Src2.DoubleVal));
442   return Dest;
443 }
444
445 void Interpreter::visitFCmpInst(FCmpInst &I) {
446   ExecutionContext &SF = ECStack.back();
447   Type *Ty    = I.getOperand(0)->getType();
448   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
449   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
450   GenericValue R;   // Result
451   
452   switch (I.getPredicate()) {
453   case FCmpInst::FCMP_FALSE: R.IntVal = APInt(1,false); break;
454   case FCmpInst::FCMP_TRUE:  R.IntVal = APInt(1,true); break;
455   case FCmpInst::FCMP_ORD:   R = executeFCMP_ORD(Src1, Src2, Ty); break;
456   case FCmpInst::FCMP_UNO:   R = executeFCMP_UNO(Src1, Src2, Ty); break;
457   case FCmpInst::FCMP_UEQ:   R = executeFCMP_UEQ(Src1, Src2, Ty); break;
458   case FCmpInst::FCMP_OEQ:   R = executeFCMP_OEQ(Src1, Src2, Ty); break;
459   case FCmpInst::FCMP_UNE:   R = executeFCMP_UNE(Src1, Src2, Ty); break;
460   case FCmpInst::FCMP_ONE:   R = executeFCMP_ONE(Src1, Src2, Ty); break;
461   case FCmpInst::FCMP_ULT:   R = executeFCMP_ULT(Src1, Src2, Ty); break;
462   case FCmpInst::FCMP_OLT:   R = executeFCMP_OLT(Src1, Src2, Ty); break;
463   case FCmpInst::FCMP_UGT:   R = executeFCMP_UGT(Src1, Src2, Ty); break;
464   case FCmpInst::FCMP_OGT:   R = executeFCMP_OGT(Src1, Src2, Ty); break;
465   case FCmpInst::FCMP_ULE:   R = executeFCMP_ULE(Src1, Src2, Ty); break;
466   case FCmpInst::FCMP_OLE:   R = executeFCMP_OLE(Src1, Src2, Ty); break;
467   case FCmpInst::FCMP_UGE:   R = executeFCMP_UGE(Src1, Src2, Ty); break;
468   case FCmpInst::FCMP_OGE:   R = executeFCMP_OGE(Src1, Src2, Ty); break;
469   default:
470     dbgs() << "Don't know how to handle this FCmp predicate!\n-->" << I;
471     llvm_unreachable(0);
472   }
473  
474   SetValue(&I, R, SF);
475 }
476
477 static GenericValue executeCmpInst(unsigned predicate, GenericValue Src1, 
478                                    GenericValue Src2, Type *Ty) {
479   GenericValue Result;
480   switch (predicate) {
481   case ICmpInst::ICMP_EQ:    return executeICMP_EQ(Src1, Src2, Ty);
482   case ICmpInst::ICMP_NE:    return executeICMP_NE(Src1, Src2, Ty);
483   case ICmpInst::ICMP_UGT:   return executeICMP_UGT(Src1, Src2, Ty);
484   case ICmpInst::ICMP_SGT:   return executeICMP_SGT(Src1, Src2, Ty);
485   case ICmpInst::ICMP_ULT:   return executeICMP_ULT(Src1, Src2, Ty);
486   case ICmpInst::ICMP_SLT:   return executeICMP_SLT(Src1, Src2, Ty);
487   case ICmpInst::ICMP_UGE:   return executeICMP_UGE(Src1, Src2, Ty);
488   case ICmpInst::ICMP_SGE:   return executeICMP_SGE(Src1, Src2, Ty);
489   case ICmpInst::ICMP_ULE:   return executeICMP_ULE(Src1, Src2, Ty);
490   case ICmpInst::ICMP_SLE:   return executeICMP_SLE(Src1, Src2, Ty);
491   case FCmpInst::FCMP_ORD:   return executeFCMP_ORD(Src1, Src2, Ty);
492   case FCmpInst::FCMP_UNO:   return executeFCMP_UNO(Src1, Src2, Ty);
493   case FCmpInst::FCMP_OEQ:   return executeFCMP_OEQ(Src1, Src2, Ty);
494   case FCmpInst::FCMP_UEQ:   return executeFCMP_UEQ(Src1, Src2, Ty);
495   case FCmpInst::FCMP_ONE:   return executeFCMP_ONE(Src1, Src2, Ty);
496   case FCmpInst::FCMP_UNE:   return executeFCMP_UNE(Src1, Src2, Ty);
497   case FCmpInst::FCMP_OLT:   return executeFCMP_OLT(Src1, Src2, Ty);
498   case FCmpInst::FCMP_ULT:   return executeFCMP_ULT(Src1, Src2, Ty);
499   case FCmpInst::FCMP_OGT:   return executeFCMP_OGT(Src1, Src2, Ty);
500   case FCmpInst::FCMP_UGT:   return executeFCMP_UGT(Src1, Src2, Ty);
501   case FCmpInst::FCMP_OLE:   return executeFCMP_OLE(Src1, Src2, Ty);
502   case FCmpInst::FCMP_ULE:   return executeFCMP_ULE(Src1, Src2, Ty);
503   case FCmpInst::FCMP_OGE:   return executeFCMP_OGE(Src1, Src2, Ty);
504   case FCmpInst::FCMP_UGE:   return executeFCMP_UGE(Src1, Src2, Ty);
505   case FCmpInst::FCMP_FALSE: { 
506     GenericValue Result;
507     Result.IntVal = APInt(1, false);
508     return Result;
509   }
510   case FCmpInst::FCMP_TRUE: {
511     GenericValue Result;
512     Result.IntVal = APInt(1, true);
513     return Result;
514   }
515   default:
516     dbgs() << "Unhandled Cmp predicate\n";
517     llvm_unreachable(0);
518   }
519 }
520
521 void Interpreter::visitBinaryOperator(BinaryOperator &I) {
522   ExecutionContext &SF = ECStack.back();
523   Type *Ty    = I.getOperand(0)->getType();
524   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
525   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
526   GenericValue R;   // Result
527
528   switch (I.getOpcode()) {
529   case Instruction::Add:   R.IntVal = Src1.IntVal + Src2.IntVal; break;
530   case Instruction::Sub:   R.IntVal = Src1.IntVal - Src2.IntVal; break;
531   case Instruction::Mul:   R.IntVal = Src1.IntVal * Src2.IntVal; break;
532   case Instruction::FAdd:  executeFAddInst(R, Src1, Src2, Ty); break;
533   case Instruction::FSub:  executeFSubInst(R, Src1, Src2, Ty); break;
534   case Instruction::FMul:  executeFMulInst(R, Src1, Src2, Ty); break;
535   case Instruction::FDiv:  executeFDivInst(R, Src1, Src2, Ty); break;
536   case Instruction::FRem:  executeFRemInst(R, Src1, Src2, Ty); break;
537   case Instruction::UDiv:  R.IntVal = Src1.IntVal.udiv(Src2.IntVal); break;
538   case Instruction::SDiv:  R.IntVal = Src1.IntVal.sdiv(Src2.IntVal); break;
539   case Instruction::URem:  R.IntVal = Src1.IntVal.urem(Src2.IntVal); break;
540   case Instruction::SRem:  R.IntVal = Src1.IntVal.srem(Src2.IntVal); break;
541   case Instruction::And:   R.IntVal = Src1.IntVal & Src2.IntVal; break;
542   case Instruction::Or:    R.IntVal = Src1.IntVal | Src2.IntVal; break;
543   case Instruction::Xor:   R.IntVal = Src1.IntVal ^ Src2.IntVal; break;
544   default:
545     dbgs() << "Don't know how to handle this binary operator!\n-->" << I;
546     llvm_unreachable(0);
547   }
548
549   SetValue(&I, R, SF);
550 }
551
552 static GenericValue executeSelectInst(GenericValue Src1, GenericValue Src2,
553                                       GenericValue Src3) {
554   return Src1.IntVal == 0 ? Src3 : Src2;
555 }
556
557 void Interpreter::visitSelectInst(SelectInst &I) {
558   ExecutionContext &SF = ECStack.back();
559   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
560   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
561   GenericValue Src3 = getOperandValue(I.getOperand(2), SF);
562   GenericValue R = executeSelectInst(Src1, Src2, Src3);
563   SetValue(&I, R, SF);
564 }
565
566
567 //===----------------------------------------------------------------------===//
568 //                     Terminator Instruction Implementations
569 //===----------------------------------------------------------------------===//
570
571 void Interpreter::exitCalled(GenericValue GV) {
572   // runAtExitHandlers() assumes there are no stack frames, but
573   // if exit() was called, then it had a stack frame. Blow away
574   // the stack before interpreting atexit handlers.
575   ECStack.clear();
576   runAtExitHandlers();
577   exit(GV.IntVal.zextOrTrunc(32).getZExtValue());
578 }
579
580 /// Pop the last stack frame off of ECStack and then copy the result
581 /// back into the result variable if we are not returning void. The
582 /// result variable may be the ExitValue, or the Value of the calling
583 /// CallInst if there was a previous stack frame. This method may
584 /// invalidate any ECStack iterators you have. This method also takes
585 /// care of switching to the normal destination BB, if we are returning
586 /// from an invoke.
587 ///
588 void Interpreter::popStackAndReturnValueToCaller(Type *RetTy,
589                                                  GenericValue Result) {
590   // Pop the current stack frame.
591   ECStack.pop_back();
592
593   if (ECStack.empty()) {  // Finished main.  Put result into exit code...
594     if (RetTy && !RetTy->isVoidTy()) {          // Nonvoid return type?
595       ExitValue = Result;   // Capture the exit value of the program
596     } else {
597       memset(&ExitValue.Untyped, 0, sizeof(ExitValue.Untyped));
598     }
599   } else {
600     // If we have a previous stack frame, and we have a previous call,
601     // fill in the return value...
602     ExecutionContext &CallingSF = ECStack.back();
603     if (Instruction *I = CallingSF.Caller.getInstruction()) {
604       // Save result...
605       if (!CallingSF.Caller.getType()->isVoidTy())
606         SetValue(I, Result, CallingSF);
607       if (InvokeInst *II = dyn_cast<InvokeInst> (I))
608         SwitchToNewBasicBlock (II->getNormalDest (), CallingSF);
609       CallingSF.Caller = CallSite();          // We returned from the call...
610     }
611   }
612 }
613
614 void Interpreter::visitReturnInst(ReturnInst &I) {
615   ExecutionContext &SF = ECStack.back();
616   Type *RetTy = Type::getVoidTy(I.getContext());
617   GenericValue Result;
618
619   // Save away the return value... (if we are not 'ret void')
620   if (I.getNumOperands()) {
621     RetTy  = I.getReturnValue()->getType();
622     Result = getOperandValue(I.getReturnValue(), SF);
623   }
624
625   popStackAndReturnValueToCaller(RetTy, Result);
626 }
627
628 void Interpreter::visitUnreachableInst(UnreachableInst &I) {
629   report_fatal_error("Program executed an 'unreachable' instruction!");
630 }
631
632 void Interpreter::visitBranchInst(BranchInst &I) {
633   ExecutionContext &SF = ECStack.back();
634   BasicBlock *Dest;
635
636   Dest = I.getSuccessor(0);          // Uncond branches have a fixed dest...
637   if (!I.isUnconditional()) {
638     Value *Cond = I.getCondition();
639     if (getOperandValue(Cond, SF).IntVal == 0) // If false cond...
640       Dest = I.getSuccessor(1);
641   }
642   SwitchToNewBasicBlock(Dest, SF);
643 }
644
645 void Interpreter::visitSwitchInst(SwitchInst &I) {
646   ExecutionContext &SF = ECStack.back();
647   Value* Cond = I.getCondition();
648   Type *ElTy = Cond->getType();
649   GenericValue CondVal = getOperandValue(Cond, SF);
650
651   // Check to see if any of the cases match...
652   BasicBlock *Dest = 0;
653   for (SwitchInst::CaseIt i = I.case_begin(), e = I.case_end(); i != e; ++i) {
654     IntegersSubset& Case = i.getCaseValueEx();
655     if (Case.isSingleNumber()) {
656       // FIXME: Currently work with ConstantInt based numbers.
657       const ConstantInt *CI = Case.getSingleNumber(0).toConstantInt();
658       GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
659       if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
660         Dest = cast<BasicBlock>(i.getCaseSuccessor());
661         break;        
662       }
663     }
664     if (Case.isSingleNumbersOnly()) {
665       for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
666         // FIXME: Currently work with ConstantInt based numbers.
667         const ConstantInt *CI = Case.getSingleNumber(n).toConstantInt();
668         GenericValue Val = getOperandValue(const_cast<ConstantInt*>(CI), SF);
669         if (executeICMP_EQ(Val, CondVal, ElTy).IntVal != 0) {
670           Dest = cast<BasicBlock>(i.getCaseSuccessor());
671           break;        
672         }
673       }      
674     } else
675       for (unsigned n = 0, en = Case.getNumItems(); n != en; ++n) {
676         IntegersSubset::Range r = Case.getItem(n);
677         // FIXME: Currently work with ConstantInt based numbers.
678         const ConstantInt *LowCI = r.getLow().toConstantInt();
679         const ConstantInt *HighCI = r.getHigh().toConstantInt();
680         GenericValue Low = getOperandValue(const_cast<ConstantInt*>(LowCI), SF);
681         GenericValue High = getOperandValue(const_cast<ConstantInt*>(HighCI), SF);
682         if (executeICMP_ULE(Low, CondVal, ElTy).IntVal != 0 &&
683             executeICMP_ULE(CondVal, High, ElTy).IntVal != 0) {
684           Dest = cast<BasicBlock>(i.getCaseSuccessor());
685           break;        
686         }
687       }
688   }
689   if (!Dest) Dest = I.getDefaultDest();   // No cases matched: use default
690   SwitchToNewBasicBlock(Dest, SF);
691 }
692
693 void Interpreter::visitIndirectBrInst(IndirectBrInst &I) {
694   ExecutionContext &SF = ECStack.back();
695   void *Dest = GVTOP(getOperandValue(I.getAddress(), SF));
696   SwitchToNewBasicBlock((BasicBlock*)Dest, SF);
697 }
698
699
700 // SwitchToNewBasicBlock - This method is used to jump to a new basic block.
701 // This function handles the actual updating of block and instruction iterators
702 // as well as execution of all of the PHI nodes in the destination block.
703 //
704 // This method does this because all of the PHI nodes must be executed
705 // atomically, reading their inputs before any of the results are updated.  Not
706 // doing this can cause problems if the PHI nodes depend on other PHI nodes for
707 // their inputs.  If the input PHI node is updated before it is read, incorrect
708 // results can happen.  Thus we use a two phase approach.
709 //
710 void Interpreter::SwitchToNewBasicBlock(BasicBlock *Dest, ExecutionContext &SF){
711   BasicBlock *PrevBB = SF.CurBB;      // Remember where we came from...
712   SF.CurBB   = Dest;                  // Update CurBB to branch destination
713   SF.CurInst = SF.CurBB->begin();     // Update new instruction ptr...
714
715   if (!isa<PHINode>(SF.CurInst)) return;  // Nothing fancy to do
716
717   // Loop over all of the PHI nodes in the current block, reading their inputs.
718   std::vector<GenericValue> ResultValues;
719
720   for (; PHINode *PN = dyn_cast<PHINode>(SF.CurInst); ++SF.CurInst) {
721     // Search for the value corresponding to this previous bb...
722     int i = PN->getBasicBlockIndex(PrevBB);
723     assert(i != -1 && "PHINode doesn't contain entry for predecessor??");
724     Value *IncomingValue = PN->getIncomingValue(i);
725
726     // Save the incoming value for this PHI node...
727     ResultValues.push_back(getOperandValue(IncomingValue, SF));
728   }
729
730   // Now loop over all of the PHI nodes setting their values...
731   SF.CurInst = SF.CurBB->begin();
732   for (unsigned i = 0; isa<PHINode>(SF.CurInst); ++SF.CurInst, ++i) {
733     PHINode *PN = cast<PHINode>(SF.CurInst);
734     SetValue(PN, ResultValues[i], SF);
735   }
736 }
737
738 //===----------------------------------------------------------------------===//
739 //                     Memory Instruction Implementations
740 //===----------------------------------------------------------------------===//
741
742 void Interpreter::visitAllocaInst(AllocaInst &I) {
743   ExecutionContext &SF = ECStack.back();
744
745   Type *Ty = I.getType()->getElementType();  // Type to be allocated
746
747   // Get the number of elements being allocated by the array...
748   unsigned NumElements = 
749     getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
750
751   unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
752
753   // Avoid malloc-ing zero bytes, use max()...
754   unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
755
756   // Allocate enough memory to hold the type...
757   void *Memory = malloc(MemToAlloc);
758
759   DEBUG(dbgs() << "Allocated Type: " << *Ty << " (" << TypeSize << " bytes) x " 
760                << NumElements << " (Total: " << MemToAlloc << ") at "
761                << uintptr_t(Memory) << '\n');
762
763   GenericValue Result = PTOGV(Memory);
764   assert(Result.PointerVal != 0 && "Null pointer returned by malloc!");
765   SetValue(&I, Result, SF);
766
767   if (I.getOpcode() == Instruction::Alloca)
768     ECStack.back().Allocas.add(Memory);
769 }
770
771 // getElementOffset - The workhorse for getelementptr.
772 //
773 GenericValue Interpreter::executeGEPOperation(Value *Ptr, gep_type_iterator I,
774                                               gep_type_iterator E,
775                                               ExecutionContext &SF) {
776   assert(Ptr->getType()->isPointerTy() &&
777          "Cannot getElementOffset of a nonpointer type!");
778
779   uint64_t Total = 0;
780
781   for (; I != E; ++I) {
782     if (StructType *STy = dyn_cast<StructType>(*I)) {
783       const StructLayout *SLO = TD.getStructLayout(STy);
784
785       const ConstantInt *CPU = cast<ConstantInt>(I.getOperand());
786       unsigned Index = unsigned(CPU->getZExtValue());
787
788       Total += SLO->getElementOffset(Index);
789     } else {
790       SequentialType *ST = cast<SequentialType>(*I);
791       // Get the index number for the array... which must be long type...
792       GenericValue IdxGV = getOperandValue(I.getOperand(), SF);
793
794       int64_t Idx;
795       unsigned BitWidth = 
796         cast<IntegerType>(I.getOperand()->getType())->getBitWidth();
797       if (BitWidth == 32)
798         Idx = (int64_t)(int32_t)IdxGV.IntVal.getZExtValue();
799       else {
800         assert(BitWidth == 64 && "Invalid index type for getelementptr");
801         Idx = (int64_t)IdxGV.IntVal.getZExtValue();
802       }
803       Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
804     }
805   }
806
807   GenericValue Result;
808   Result.PointerVal = ((char*)getOperandValue(Ptr, SF).PointerVal) + Total;
809   DEBUG(dbgs() << "GEP Index " << Total << " bytes.\n");
810   return Result;
811 }
812
813 void Interpreter::visitGetElementPtrInst(GetElementPtrInst &I) {
814   ExecutionContext &SF = ECStack.back();
815   SetValue(&I, executeGEPOperation(I.getPointerOperand(),
816                                    gep_type_begin(I), gep_type_end(I), SF), SF);
817 }
818
819 void Interpreter::visitLoadInst(LoadInst &I) {
820   ExecutionContext &SF = ECStack.back();
821   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
822   GenericValue *Ptr = (GenericValue*)GVTOP(SRC);
823   GenericValue Result;
824   LoadValueFromMemory(Result, Ptr, I.getType());
825   SetValue(&I, Result, SF);
826   if (I.isVolatile() && PrintVolatile)
827     dbgs() << "Volatile load " << I;
828 }
829
830 void Interpreter::visitStoreInst(StoreInst &I) {
831   ExecutionContext &SF = ECStack.back();
832   GenericValue Val = getOperandValue(I.getOperand(0), SF);
833   GenericValue SRC = getOperandValue(I.getPointerOperand(), SF);
834   StoreValueToMemory(Val, (GenericValue *)GVTOP(SRC),
835                      I.getOperand(0)->getType());
836   if (I.isVolatile() && PrintVolatile)
837     dbgs() << "Volatile store: " << I;
838 }
839
840 //===----------------------------------------------------------------------===//
841 //                 Miscellaneous Instruction Implementations
842 //===----------------------------------------------------------------------===//
843
844 void Interpreter::visitCallSite(CallSite CS) {
845   ExecutionContext &SF = ECStack.back();
846
847   // Check to see if this is an intrinsic function call...
848   Function *F = CS.getCalledFunction();
849   if (F && F->isDeclaration())
850     switch (F->getIntrinsicID()) {
851     case Intrinsic::not_intrinsic:
852       break;
853     case Intrinsic::vastart: { // va_start
854       GenericValue ArgIndex;
855       ArgIndex.UIntPairVal.first = ECStack.size() - 1;
856       ArgIndex.UIntPairVal.second = 0;
857       SetValue(CS.getInstruction(), ArgIndex, SF);
858       return;
859     }
860     case Intrinsic::vaend:    // va_end is a noop for the interpreter
861       return;
862     case Intrinsic::vacopy:   // va_copy: dest = src
863       SetValue(CS.getInstruction(), getOperandValue(*CS.arg_begin(), SF), SF);
864       return;
865     default:
866       // If it is an unknown intrinsic function, use the intrinsic lowering
867       // class to transform it into hopefully tasty LLVM code.
868       //
869       BasicBlock::iterator me(CS.getInstruction());
870       BasicBlock *Parent = CS.getInstruction()->getParent();
871       bool atBegin(Parent->begin() == me);
872       if (!atBegin)
873         --me;
874       IL->LowerIntrinsicCall(cast<CallInst>(CS.getInstruction()));
875
876       // Restore the CurInst pointer to the first instruction newly inserted, if
877       // any.
878       if (atBegin) {
879         SF.CurInst = Parent->begin();
880       } else {
881         SF.CurInst = me;
882         ++SF.CurInst;
883       }
884       return;
885     }
886
887
888   SF.Caller = CS;
889   std::vector<GenericValue> ArgVals;
890   const unsigned NumArgs = SF.Caller.arg_size();
891   ArgVals.reserve(NumArgs);
892   uint16_t pNum = 1;
893   for (CallSite::arg_iterator i = SF.Caller.arg_begin(),
894          e = SF.Caller.arg_end(); i != e; ++i, ++pNum) {
895     Value *V = *i;
896     ArgVals.push_back(getOperandValue(V, SF));
897   }
898
899   // To handle indirect calls, we must get the pointer value from the argument
900   // and treat it as a function pointer.
901   GenericValue SRC = getOperandValue(SF.Caller.getCalledValue(), SF);
902   callFunction((Function*)GVTOP(SRC), ArgVals);
903 }
904
905 void Interpreter::visitShl(BinaryOperator &I) {
906   ExecutionContext &SF = ECStack.back();
907   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
908   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
909   GenericValue Dest;
910   if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
911     Dest.IntVal = Src1.IntVal.shl(Src2.IntVal.getZExtValue());
912   else
913     Dest.IntVal = Src1.IntVal;
914   
915   SetValue(&I, Dest, SF);
916 }
917
918 void Interpreter::visitLShr(BinaryOperator &I) {
919   ExecutionContext &SF = ECStack.back();
920   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
921   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
922   GenericValue Dest;
923   if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
924     Dest.IntVal = Src1.IntVal.lshr(Src2.IntVal.getZExtValue());
925   else
926     Dest.IntVal = Src1.IntVal;
927   
928   SetValue(&I, Dest, SF);
929 }
930
931 void Interpreter::visitAShr(BinaryOperator &I) {
932   ExecutionContext &SF = ECStack.back();
933   GenericValue Src1 = getOperandValue(I.getOperand(0), SF);
934   GenericValue Src2 = getOperandValue(I.getOperand(1), SF);
935   GenericValue Dest;
936   if (Src2.IntVal.getZExtValue() < Src1.IntVal.getBitWidth())
937     Dest.IntVal = Src1.IntVal.ashr(Src2.IntVal.getZExtValue());
938   else
939     Dest.IntVal = Src1.IntVal;
940   
941   SetValue(&I, Dest, SF);
942 }
943
944 GenericValue Interpreter::executeTruncInst(Value *SrcVal, Type *DstTy,
945                                            ExecutionContext &SF) {
946   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
947   IntegerType *DITy = cast<IntegerType>(DstTy);
948   unsigned DBitWidth = DITy->getBitWidth();
949   Dest.IntVal = Src.IntVal.trunc(DBitWidth);
950   return Dest;
951 }
952
953 GenericValue Interpreter::executeSExtInst(Value *SrcVal, Type *DstTy,
954                                           ExecutionContext &SF) {
955   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
956   IntegerType *DITy = cast<IntegerType>(DstTy);
957   unsigned DBitWidth = DITy->getBitWidth();
958   Dest.IntVal = Src.IntVal.sext(DBitWidth);
959   return Dest;
960 }
961
962 GenericValue Interpreter::executeZExtInst(Value *SrcVal, Type *DstTy,
963                                           ExecutionContext &SF) {
964   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
965   IntegerType *DITy = cast<IntegerType>(DstTy);
966   unsigned DBitWidth = DITy->getBitWidth();
967   Dest.IntVal = Src.IntVal.zext(DBitWidth);
968   return Dest;
969 }
970
971 GenericValue Interpreter::executeFPTruncInst(Value *SrcVal, Type *DstTy,
972                                              ExecutionContext &SF) {
973   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
974   assert(SrcVal->getType()->isDoubleTy() && DstTy->isFloatTy() &&
975          "Invalid FPTrunc instruction");
976   Dest.FloatVal = (float) Src.DoubleVal;
977   return Dest;
978 }
979
980 GenericValue Interpreter::executeFPExtInst(Value *SrcVal, Type *DstTy,
981                                            ExecutionContext &SF) {
982   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
983   assert(SrcVal->getType()->isFloatTy() && DstTy->isDoubleTy() &&
984          "Invalid FPTrunc instruction");
985   Dest.DoubleVal = (double) Src.FloatVal;
986   return Dest;
987 }
988
989 GenericValue Interpreter::executeFPToUIInst(Value *SrcVal, Type *DstTy,
990                                             ExecutionContext &SF) {
991   Type *SrcTy = SrcVal->getType();
992   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
993   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
994   assert(SrcTy->isFloatingPointTy() && "Invalid FPToUI instruction");
995
996   if (SrcTy->getTypeID() == Type::FloatTyID)
997     Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
998   else
999     Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1000   return Dest;
1001 }
1002
1003 GenericValue Interpreter::executeFPToSIInst(Value *SrcVal, Type *DstTy,
1004                                             ExecutionContext &SF) {
1005   Type *SrcTy = SrcVal->getType();
1006   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1007   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1008   assert(SrcTy->isFloatingPointTy() && "Invalid FPToSI instruction");
1009
1010   if (SrcTy->getTypeID() == Type::FloatTyID)
1011     Dest.IntVal = APIntOps::RoundFloatToAPInt(Src.FloatVal, DBitWidth);
1012   else
1013     Dest.IntVal = APIntOps::RoundDoubleToAPInt(Src.DoubleVal, DBitWidth);
1014   return Dest;
1015 }
1016
1017 GenericValue Interpreter::executeUIToFPInst(Value *SrcVal, Type *DstTy,
1018                                             ExecutionContext &SF) {
1019   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1020   assert(DstTy->isFloatingPointTy() && "Invalid UIToFP instruction");
1021
1022   if (DstTy->getTypeID() == Type::FloatTyID)
1023     Dest.FloatVal = APIntOps::RoundAPIntToFloat(Src.IntVal);
1024   else
1025     Dest.DoubleVal = APIntOps::RoundAPIntToDouble(Src.IntVal);
1026   return Dest;
1027 }
1028
1029 GenericValue Interpreter::executeSIToFPInst(Value *SrcVal, Type *DstTy,
1030                                             ExecutionContext &SF) {
1031   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1032   assert(DstTy->isFloatingPointTy() && "Invalid SIToFP instruction");
1033
1034   if (DstTy->getTypeID() == Type::FloatTyID)
1035     Dest.FloatVal = APIntOps::RoundSignedAPIntToFloat(Src.IntVal);
1036   else
1037     Dest.DoubleVal = APIntOps::RoundSignedAPIntToDouble(Src.IntVal);
1038   return Dest;
1039
1040 }
1041
1042 GenericValue Interpreter::executePtrToIntInst(Value *SrcVal, Type *DstTy,
1043                                               ExecutionContext &SF) {
1044   uint32_t DBitWidth = cast<IntegerType>(DstTy)->getBitWidth();
1045   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1046   assert(SrcVal->getType()->isPointerTy() && "Invalid PtrToInt instruction");
1047
1048   Dest.IntVal = APInt(DBitWidth, (intptr_t) Src.PointerVal);
1049   return Dest;
1050 }
1051
1052 GenericValue Interpreter::executeIntToPtrInst(Value *SrcVal, Type *DstTy,
1053                                               ExecutionContext &SF) {
1054   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1055   assert(DstTy->isPointerTy() && "Invalid PtrToInt instruction");
1056
1057   unsigned AS = cast<PointerType>(DstTy)->getAddressSpace();
1058   uint32_t PtrSize = TD.getPointerSizeInBits(AS);
1059   if (PtrSize != Src.IntVal.getBitWidth())
1060     Src.IntVal = Src.IntVal.zextOrTrunc(PtrSize);
1061
1062   Dest.PointerVal = PointerTy(intptr_t(Src.IntVal.getZExtValue()));
1063   return Dest;
1064 }
1065
1066 GenericValue Interpreter::executeBitCastInst(Value *SrcVal, Type *DstTy,
1067                                              ExecutionContext &SF) {
1068   
1069   Type *SrcTy = SrcVal->getType();
1070   GenericValue Dest, Src = getOperandValue(SrcVal, SF);
1071   if (DstTy->isPointerTy()) {
1072     assert(SrcTy->isPointerTy() && "Invalid BitCast");
1073     Dest.PointerVal = Src.PointerVal;
1074   } else if (DstTy->isIntegerTy()) {
1075     if (SrcTy->isFloatTy()) {
1076       Dest.IntVal = APInt::floatToBits(Src.FloatVal);
1077     } else if (SrcTy->isDoubleTy()) {
1078       Dest.IntVal = APInt::doubleToBits(Src.DoubleVal);
1079     } else if (SrcTy->isIntegerTy()) {
1080       Dest.IntVal = Src.IntVal;
1081     } else 
1082       llvm_unreachable("Invalid BitCast");
1083   } else if (DstTy->isFloatTy()) {
1084     if (SrcTy->isIntegerTy())
1085       Dest.FloatVal = Src.IntVal.bitsToFloat();
1086     else
1087       Dest.FloatVal = Src.FloatVal;
1088   } else if (DstTy->isDoubleTy()) {
1089     if (SrcTy->isIntegerTy())
1090       Dest.DoubleVal = Src.IntVal.bitsToDouble();
1091     else
1092       Dest.DoubleVal = Src.DoubleVal;
1093   } else
1094     llvm_unreachable("Invalid Bitcast");
1095
1096   return Dest;
1097 }
1098
1099 void Interpreter::visitTruncInst(TruncInst &I) {
1100   ExecutionContext &SF = ECStack.back();
1101   SetValue(&I, executeTruncInst(I.getOperand(0), I.getType(), SF), SF);
1102 }
1103
1104 void Interpreter::visitSExtInst(SExtInst &I) {
1105   ExecutionContext &SF = ECStack.back();
1106   SetValue(&I, executeSExtInst(I.getOperand(0), I.getType(), SF), SF);
1107 }
1108
1109 void Interpreter::visitZExtInst(ZExtInst &I) {
1110   ExecutionContext &SF = ECStack.back();
1111   SetValue(&I, executeZExtInst(I.getOperand(0), I.getType(), SF), SF);
1112 }
1113
1114 void Interpreter::visitFPTruncInst(FPTruncInst &I) {
1115   ExecutionContext &SF = ECStack.back();
1116   SetValue(&I, executeFPTruncInst(I.getOperand(0), I.getType(), SF), SF);
1117 }
1118
1119 void Interpreter::visitFPExtInst(FPExtInst &I) {
1120   ExecutionContext &SF = ECStack.back();
1121   SetValue(&I, executeFPExtInst(I.getOperand(0), I.getType(), SF), SF);
1122 }
1123
1124 void Interpreter::visitUIToFPInst(UIToFPInst &I) {
1125   ExecutionContext &SF = ECStack.back();
1126   SetValue(&I, executeUIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1127 }
1128
1129 void Interpreter::visitSIToFPInst(SIToFPInst &I) {
1130   ExecutionContext &SF = ECStack.back();
1131   SetValue(&I, executeSIToFPInst(I.getOperand(0), I.getType(), SF), SF);
1132 }
1133
1134 void Interpreter::visitFPToUIInst(FPToUIInst &I) {
1135   ExecutionContext &SF = ECStack.back();
1136   SetValue(&I, executeFPToUIInst(I.getOperand(0), I.getType(), SF), SF);
1137 }
1138
1139 void Interpreter::visitFPToSIInst(FPToSIInst &I) {
1140   ExecutionContext &SF = ECStack.back();
1141   SetValue(&I, executeFPToSIInst(I.getOperand(0), I.getType(), SF), SF);
1142 }
1143
1144 void Interpreter::visitPtrToIntInst(PtrToIntInst &I) {
1145   ExecutionContext &SF = ECStack.back();
1146   SetValue(&I, executePtrToIntInst(I.getOperand(0), I.getType(), SF), SF);
1147 }
1148
1149 void Interpreter::visitIntToPtrInst(IntToPtrInst &I) {
1150   ExecutionContext &SF = ECStack.back();
1151   SetValue(&I, executeIntToPtrInst(I.getOperand(0), I.getType(), SF), SF);
1152 }
1153
1154 void Interpreter::visitBitCastInst(BitCastInst &I) {
1155   ExecutionContext &SF = ECStack.back();
1156   SetValue(&I, executeBitCastInst(I.getOperand(0), I.getType(), SF), SF);
1157 }
1158
1159 #define IMPLEMENT_VAARG(TY) \
1160    case Type::TY##TyID: Dest.TY##Val = Src.TY##Val; break
1161
1162 void Interpreter::visitVAArgInst(VAArgInst &I) {
1163   ExecutionContext &SF = ECStack.back();
1164
1165   // Get the incoming valist parameter.  LLI treats the valist as a
1166   // (ec-stack-depth var-arg-index) pair.
1167   GenericValue VAList = getOperandValue(I.getOperand(0), SF);
1168   GenericValue Dest;
1169   GenericValue Src = ECStack[VAList.UIntPairVal.first]
1170                       .VarArgs[VAList.UIntPairVal.second];
1171   Type *Ty = I.getType();
1172   switch (Ty->getTypeID()) {
1173     case Type::IntegerTyID: Dest.IntVal = Src.IntVal;
1174     IMPLEMENT_VAARG(Pointer);
1175     IMPLEMENT_VAARG(Float);
1176     IMPLEMENT_VAARG(Double);
1177   default:
1178     dbgs() << "Unhandled dest type for vaarg instruction: " << *Ty << "\n";
1179     llvm_unreachable(0);
1180   }
1181
1182   // Set the Value of this Instruction.
1183   SetValue(&I, Dest, SF);
1184
1185   // Move the pointer to the next vararg.
1186   ++VAList.UIntPairVal.second;
1187 }
1188
1189 GenericValue Interpreter::getConstantExprValue (ConstantExpr *CE,
1190                                                 ExecutionContext &SF) {
1191   switch (CE->getOpcode()) {
1192   case Instruction::Trunc:   
1193       return executeTruncInst(CE->getOperand(0), CE->getType(), SF);
1194   case Instruction::ZExt:
1195       return executeZExtInst(CE->getOperand(0), CE->getType(), SF);
1196   case Instruction::SExt:
1197       return executeSExtInst(CE->getOperand(0), CE->getType(), SF);
1198   case Instruction::FPTrunc:
1199       return executeFPTruncInst(CE->getOperand(0), CE->getType(), SF);
1200   case Instruction::FPExt:
1201       return executeFPExtInst(CE->getOperand(0), CE->getType(), SF);
1202   case Instruction::UIToFP:
1203       return executeUIToFPInst(CE->getOperand(0), CE->getType(), SF);
1204   case Instruction::SIToFP:
1205       return executeSIToFPInst(CE->getOperand(0), CE->getType(), SF);
1206   case Instruction::FPToUI:
1207       return executeFPToUIInst(CE->getOperand(0), CE->getType(), SF);
1208   case Instruction::FPToSI:
1209       return executeFPToSIInst(CE->getOperand(0), CE->getType(), SF);
1210   case Instruction::PtrToInt:
1211       return executePtrToIntInst(CE->getOperand(0), CE->getType(), SF);
1212   case Instruction::IntToPtr:
1213       return executeIntToPtrInst(CE->getOperand(0), CE->getType(), SF);
1214   case Instruction::BitCast:
1215       return executeBitCastInst(CE->getOperand(0), CE->getType(), SF);
1216   case Instruction::GetElementPtr:
1217     return executeGEPOperation(CE->getOperand(0), gep_type_begin(CE),
1218                                gep_type_end(CE), SF);
1219   case Instruction::FCmp:
1220   case Instruction::ICmp:
1221     return executeCmpInst(CE->getPredicate(),
1222                           getOperandValue(CE->getOperand(0), SF),
1223                           getOperandValue(CE->getOperand(1), SF),
1224                           CE->getOperand(0)->getType());
1225   case Instruction::Select:
1226     return executeSelectInst(getOperandValue(CE->getOperand(0), SF),
1227                              getOperandValue(CE->getOperand(1), SF),
1228                              getOperandValue(CE->getOperand(2), SF));
1229   default :
1230     break;
1231   }
1232
1233   // The cases below here require a GenericValue parameter for the result
1234   // so we initialize one, compute it and then return it.
1235   GenericValue Op0 = getOperandValue(CE->getOperand(0), SF);
1236   GenericValue Op1 = getOperandValue(CE->getOperand(1), SF);
1237   GenericValue Dest;
1238   Type * Ty = CE->getOperand(0)->getType();
1239   switch (CE->getOpcode()) {
1240   case Instruction::Add:  Dest.IntVal = Op0.IntVal + Op1.IntVal; break;
1241   case Instruction::Sub:  Dest.IntVal = Op0.IntVal - Op1.IntVal; break;
1242   case Instruction::Mul:  Dest.IntVal = Op0.IntVal * Op1.IntVal; break;
1243   case Instruction::FAdd: executeFAddInst(Dest, Op0, Op1, Ty); break;
1244   case Instruction::FSub: executeFSubInst(Dest, Op0, Op1, Ty); break;
1245   case Instruction::FMul: executeFMulInst(Dest, Op0, Op1, Ty); break;
1246   case Instruction::FDiv: executeFDivInst(Dest, Op0, Op1, Ty); break;
1247   case Instruction::FRem: executeFRemInst(Dest, Op0, Op1, Ty); break;
1248   case Instruction::SDiv: Dest.IntVal = Op0.IntVal.sdiv(Op1.IntVal); break;
1249   case Instruction::UDiv: Dest.IntVal = Op0.IntVal.udiv(Op1.IntVal); break;
1250   case Instruction::URem: Dest.IntVal = Op0.IntVal.urem(Op1.IntVal); break;
1251   case Instruction::SRem: Dest.IntVal = Op0.IntVal.srem(Op1.IntVal); break;
1252   case Instruction::And:  Dest.IntVal = Op0.IntVal & Op1.IntVal; break;
1253   case Instruction::Or:   Dest.IntVal = Op0.IntVal | Op1.IntVal; break;
1254   case Instruction::Xor:  Dest.IntVal = Op0.IntVal ^ Op1.IntVal; break;
1255   case Instruction::Shl:  
1256     Dest.IntVal = Op0.IntVal.shl(Op1.IntVal.getZExtValue());
1257     break;
1258   case Instruction::LShr: 
1259     Dest.IntVal = Op0.IntVal.lshr(Op1.IntVal.getZExtValue());
1260     break;
1261   case Instruction::AShr: 
1262     Dest.IntVal = Op0.IntVal.ashr(Op1.IntVal.getZExtValue());
1263     break;
1264   default:
1265     dbgs() << "Unhandled ConstantExpr: " << *CE << "\n";
1266     llvm_unreachable("Unhandled ConstantExpr");
1267   }
1268   return Dest;
1269 }
1270
1271 GenericValue Interpreter::getOperandValue(Value *V, ExecutionContext &SF) {
1272   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
1273     return getConstantExprValue(CE, SF);
1274   } else if (Constant *CPV = dyn_cast<Constant>(V)) {
1275     return getConstantValue(CPV);
1276   } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
1277     return PTOGV(getPointerToGlobal(GV));
1278   } else {
1279     return SF.Values[V];
1280   }
1281 }
1282
1283 //===----------------------------------------------------------------------===//
1284 //                        Dispatch and Execution Code
1285 //===----------------------------------------------------------------------===//
1286
1287 //===----------------------------------------------------------------------===//
1288 // callFunction - Execute the specified function...
1289 //
1290 void Interpreter::callFunction(Function *F,
1291                                const std::vector<GenericValue> &ArgVals) {
1292   assert((ECStack.empty() || ECStack.back().Caller.getInstruction() == 0 ||
1293           ECStack.back().Caller.arg_size() == ArgVals.size()) &&
1294          "Incorrect number of arguments passed into function call!");
1295   // Make a new stack frame... and fill it in.
1296   ECStack.push_back(ExecutionContext());
1297   ExecutionContext &StackFrame = ECStack.back();
1298   StackFrame.CurFunction = F;
1299
1300   // Special handling for external functions.
1301   if (F->isDeclaration()) {
1302     GenericValue Result = callExternalFunction (F, ArgVals);
1303     // Simulate a 'ret' instruction of the appropriate type.
1304     popStackAndReturnValueToCaller (F->getReturnType (), Result);
1305     return;
1306   }
1307
1308   // Get pointers to first LLVM BB & Instruction in function.
1309   StackFrame.CurBB     = F->begin();
1310   StackFrame.CurInst   = StackFrame.CurBB->begin();
1311
1312   // Run through the function arguments and initialize their values...
1313   assert((ArgVals.size() == F->arg_size() ||
1314          (ArgVals.size() > F->arg_size() && F->getFunctionType()->isVarArg()))&&
1315          "Invalid number of values passed to function invocation!");
1316
1317   // Handle non-varargs arguments...
1318   unsigned i = 0;
1319   for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); 
1320        AI != E; ++AI, ++i)
1321     SetValue(AI, ArgVals[i], StackFrame);
1322
1323   // Handle varargs arguments...
1324   StackFrame.VarArgs.assign(ArgVals.begin()+i, ArgVals.end());
1325 }
1326
1327
1328 void Interpreter::run() {
1329   while (!ECStack.empty()) {
1330     // Interpret a single instruction & increment the "PC".
1331     ExecutionContext &SF = ECStack.back();  // Current stack frame
1332     Instruction &I = *SF.CurInst++;         // Increment before execute
1333
1334     // Track the number of dynamic instructions executed.
1335     ++NumDynamicInsts;
1336
1337     DEBUG(dbgs() << "About to interpret: " << I);
1338     visit(I);   // Dispatch to one of the visit* methods...
1339 #if 0
1340     // This is not safe, as visiting the instruction could lower it and free I.
1341 DEBUG(
1342     if (!isa<CallInst>(I) && !isa<InvokeInst>(I) && 
1343         I.getType() != Type::VoidTy) {
1344       dbgs() << "  --> ";
1345       const GenericValue &Val = SF.Values[&I];
1346       switch (I.getType()->getTypeID()) {
1347       default: llvm_unreachable("Invalid GenericValue Type");
1348       case Type::VoidTyID:    dbgs() << "void"; break;
1349       case Type::FloatTyID:   dbgs() << "float " << Val.FloatVal; break;
1350       case Type::DoubleTyID:  dbgs() << "double " << Val.DoubleVal; break;
1351       case Type::PointerTyID: dbgs() << "void* " << intptr_t(Val.PointerVal);
1352         break;
1353       case Type::IntegerTyID: 
1354         dbgs() << "i" << Val.IntVal.getBitWidth() << " "
1355                << Val.IntVal.toStringUnsigned(10)
1356                << " (0x" << Val.IntVal.toStringUnsigned(16) << ")\n";
1357         break;
1358       }
1359     });
1360 #endif
1361   }
1362 }