ExecutionEngine: honor optimization level
[oota-llvm.git] / lib / ExecutionEngine / ExecutionEngine.cpp
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17
18 #include "llvm/Constants.h"
19 #include "llvm/DerivedTypes.h"
20 #include "llvm/Module.h"
21 #include "llvm/ExecutionEngine/GenericValue.h"
22 #include "llvm/ADT/SmallString.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/ErrorHandling.h"
26 #include "llvm/Support/MutexGuard.h"
27 #include "llvm/Support/ValueHandle.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Support/DynamicLibrary.h"
30 #include "llvm/Support/Host.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include <cmath>
34 #include <cstring>
35 using namespace llvm;
36
37 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
38 STATISTIC(NumGlobals  , "Number of global vars initialized");
39
40 ExecutionEngine *(*ExecutionEngine::JITCtor)(
41   Module *M,
42   std::string *ErrorStr,
43   JITMemoryManager *JMM,
44   CodeGenOpt::Level OptLevel,
45   bool GVsWithCode,
46   TargetMachine *TM) = 0;
47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
48   Module *M,
49   std::string *ErrorStr,
50   JITMemoryManager *JMM,
51   CodeGenOpt::Level OptLevel,
52   bool GVsWithCode,
53   TargetMachine *TM) = 0;
54 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
55                                                 std::string *ErrorStr) = 0;
56
57 ExecutionEngine::ExecutionEngine(Module *M)
58   : EEState(*this),
59     LazyFunctionCreator(0),
60     ExceptionTableRegister(0),
61     ExceptionTableDeregister(0) {
62   CompilingLazily         = false;
63   GVCompilationDisabled   = false;
64   SymbolSearchingDisabled = false;
65   Modules.push_back(M);
66   assert(M && "Module is null?");
67 }
68
69 ExecutionEngine::~ExecutionEngine() {
70   clearAllGlobalMappings();
71   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
72     delete Modules[i];
73 }
74
75 void ExecutionEngine::DeregisterAllTables() {
76   if (ExceptionTableDeregister) {
77     DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
78     DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
79     for (; it != ite; ++it)
80       ExceptionTableDeregister(it->second);
81     AllExceptionTables.clear();
82   }
83 }
84
85 namespace {
86 /// \brief Helper class which uses a value handler to automatically deletes the
87 /// memory block when the GlobalVariable is destroyed.
88 class GVMemoryBlock : public CallbackVH {
89   GVMemoryBlock(const GlobalVariable *GV)
90     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
91
92 public:
93   /// \brief Returns the address the GlobalVariable should be written into.  The
94   /// GVMemoryBlock object prefixes that.
95   static char *Create(const GlobalVariable *GV, const TargetData& TD) {
96     Type *ElTy = GV->getType()->getElementType();
97     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
98     void *RawMemory = ::operator new(
99       TargetData::RoundUpAlignment(sizeof(GVMemoryBlock),
100                                    TD.getPreferredAlignment(GV))
101       + GVSize);
102     new(RawMemory) GVMemoryBlock(GV);
103     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
104   }
105
106   virtual void deleted() {
107     // We allocated with operator new and with some extra memory hanging off the
108     // end, so don't just delete this.  I'm not sure if this is actually
109     // required.
110     this->~GVMemoryBlock();
111     ::operator delete(this);
112   }
113 };
114 }  // anonymous namespace
115
116 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
117   return GVMemoryBlock::Create(GV, *getTargetData());
118 }
119
120 bool ExecutionEngine::removeModule(Module *M) {
121   for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
122         E = Modules.end(); I != E; ++I) {
123     Module *Found = *I;
124     if (Found == M) {
125       Modules.erase(I);
126       clearGlobalMappingsFromModule(M);
127       return true;
128     }
129   }
130   return false;
131 }
132
133 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
134   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
135     if (Function *F = Modules[i]->getFunction(FnName))
136       return F;
137   }
138   return 0;
139 }
140
141
142 void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
143                                           const GlobalValue *ToUnmap) {
144   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
145   void *OldVal;
146
147   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
148   // GlobalAddressMap.
149   if (I == GlobalAddressMap.end())
150     OldVal = 0;
151   else {
152     OldVal = I->second;
153     GlobalAddressMap.erase(I);
154   }
155
156   GlobalAddressReverseMap.erase(OldVal);
157   return OldVal;
158 }
159
160 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
161   MutexGuard locked(lock);
162
163   DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
164         << "\' to [" << Addr << "]\n";);
165   void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
166   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
167   CurVal = Addr;
168
169   // If we are using the reverse mapping, add it too.
170   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
171     AssertingVH<const GlobalValue> &V =
172       EEState.getGlobalAddressReverseMap(locked)[Addr];
173     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
174     V = GV;
175   }
176 }
177
178 void ExecutionEngine::clearAllGlobalMappings() {
179   MutexGuard locked(lock);
180
181   EEState.getGlobalAddressMap(locked).clear();
182   EEState.getGlobalAddressReverseMap(locked).clear();
183 }
184
185 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
186   MutexGuard locked(lock);
187
188   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
189     EEState.RemoveMapping(locked, FI);
190   for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
191        GI != GE; ++GI)
192     EEState.RemoveMapping(locked, GI);
193 }
194
195 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
196   MutexGuard locked(lock);
197
198   ExecutionEngineState::GlobalAddressMapTy &Map =
199     EEState.getGlobalAddressMap(locked);
200
201   // Deleting from the mapping?
202   if (Addr == 0)
203     return EEState.RemoveMapping(locked, GV);
204
205   void *&CurVal = Map[GV];
206   void *OldVal = CurVal;
207
208   if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
209     EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
210   CurVal = Addr;
211
212   // If we are using the reverse mapping, add it too.
213   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
214     AssertingVH<const GlobalValue> &V =
215       EEState.getGlobalAddressReverseMap(locked)[Addr];
216     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
217     V = GV;
218   }
219   return OldVal;
220 }
221
222 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
223   MutexGuard locked(lock);
224
225   ExecutionEngineState::GlobalAddressMapTy::iterator I =
226     EEState.getGlobalAddressMap(locked).find(GV);
227   return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
228 }
229
230 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
231   MutexGuard locked(lock);
232
233   // If we haven't computed the reverse mapping yet, do so first.
234   if (EEState.getGlobalAddressReverseMap(locked).empty()) {
235     for (ExecutionEngineState::GlobalAddressMapTy::iterator
236          I = EEState.getGlobalAddressMap(locked).begin(),
237          E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
238       EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
239                                                           I->second, I->first));
240   }
241
242   std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
243     EEState.getGlobalAddressReverseMap(locked).find(Addr);
244   return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
245 }
246
247 namespace {
248 class ArgvArray {
249   char *Array;
250   std::vector<char*> Values;
251 public:
252   ArgvArray() : Array(NULL) {}
253   ~ArgvArray() { clear(); }
254   void clear() {
255     delete[] Array;
256     Array = NULL;
257     for (size_t I = 0, E = Values.size(); I != E; ++I) {
258       delete[] Values[I];
259     }
260     Values.clear();
261   }
262   /// Turn a vector of strings into a nice argv style array of pointers to null
263   /// terminated strings.
264   void *reset(LLVMContext &C, ExecutionEngine *EE,
265               const std::vector<std::string> &InputArgv);
266 };
267 }  // anonymous namespace
268 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
269                        const std::vector<std::string> &InputArgv) {
270   clear();  // Free the old contents.
271   unsigned PtrSize = EE->getTargetData()->getPointerSize();
272   Array = new char[(InputArgv.size()+1)*PtrSize];
273
274   DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
275   Type *SBytePtr = Type::getInt8PtrTy(C);
276
277   for (unsigned i = 0; i != InputArgv.size(); ++i) {
278     unsigned Size = InputArgv[i].size()+1;
279     char *Dest = new char[Size];
280     Values.push_back(Dest);
281     DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
282
283     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
284     Dest[Size-1] = 0;
285
286     // Endian safe: Array[i] = (PointerTy)Dest;
287     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
288                            SBytePtr);
289   }
290
291   // Null terminate it
292   EE->StoreValueToMemory(PTOGV(0),
293                          (GenericValue*)(Array+InputArgv.size()*PtrSize),
294                          SBytePtr);
295   return Array;
296 }
297
298 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
299                                                        bool isDtors) {
300   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
301   GlobalVariable *GV = module->getNamedGlobal(Name);
302
303   // If this global has internal linkage, or if it has a use, then it must be
304   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
305   // this is the case, don't execute any of the global ctors, __main will do
306   // it.
307   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
308
309   // Should be an array of '{ i32, void ()* }' structs.  The first value is
310   // the init priority, which we ignore.
311   if (isa<ConstantAggregateZero>(GV->getInitializer()))
312     return;
313   ConstantArray *InitList = cast<ConstantArray>(GV->getInitializer());
314   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
315     if (isa<ConstantAggregateZero>(InitList->getOperand(i)))
316       continue;
317     ConstantStruct *CS = cast<ConstantStruct>(InitList->getOperand(i));
318
319     Constant *FP = CS->getOperand(1);
320     if (FP->isNullValue())
321       continue;  // Found a sentinal value, ignore.
322
323     // Strip off constant expression casts.
324     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
325       if (CE->isCast())
326         FP = CE->getOperand(0);
327
328     // Execute the ctor/dtor function!
329     if (Function *F = dyn_cast<Function>(FP))
330       runFunction(F, std::vector<GenericValue>());
331
332     // FIXME: It is marginally lame that we just do nothing here if we see an
333     // entry we don't recognize. It might not be unreasonable for the verifier
334     // to not even allow this and just assert here.
335   }
336 }
337
338 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
339   // Execute global ctors/dtors for each module in the program.
340   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
341     runStaticConstructorsDestructors(Modules[i], isDtors);
342 }
343
344 #ifndef NDEBUG
345 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
346 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
347   unsigned PtrSize = EE->getTargetData()->getPointerSize();
348   for (unsigned i = 0; i < PtrSize; ++i)
349     if (*(i + (uint8_t*)Loc))
350       return false;
351   return true;
352 }
353 #endif
354
355 int ExecutionEngine::runFunctionAsMain(Function *Fn,
356                                        const std::vector<std::string> &argv,
357                                        const char * const * envp) {
358   std::vector<GenericValue> GVArgs;
359   GenericValue GVArgc;
360   GVArgc.IntVal = APInt(32, argv.size());
361
362   // Check main() type
363   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
364   FunctionType *FTy = Fn->getFunctionType();
365   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
366
367   // Check the argument types.
368   if (NumArgs > 3)
369     report_fatal_error("Invalid number of arguments of main() supplied");
370   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
371     report_fatal_error("Invalid type for third argument of main() supplied");
372   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
373     report_fatal_error("Invalid type for second argument of main() supplied");
374   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
375     report_fatal_error("Invalid type for first argument of main() supplied");
376   if (!FTy->getReturnType()->isIntegerTy() &&
377       !FTy->getReturnType()->isVoidTy())
378     report_fatal_error("Invalid return type of main() supplied");
379
380   ArgvArray CArgv;
381   ArgvArray CEnv;
382   if (NumArgs) {
383     GVArgs.push_back(GVArgc); // Arg #0 = argc.
384     if (NumArgs > 1) {
385       // Arg #1 = argv.
386       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
387       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
388              "argv[0] was null after CreateArgv");
389       if (NumArgs > 2) {
390         std::vector<std::string> EnvVars;
391         for (unsigned i = 0; envp[i]; ++i)
392           EnvVars.push_back(envp[i]);
393         // Arg #2 = envp.
394         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
395       }
396     }
397   }
398
399   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
400 }
401
402 ExecutionEngine *ExecutionEngine::create(Module *M,
403                                          bool ForceInterpreter,
404                                          std::string *ErrorStr,
405                                          CodeGenOpt::Level OptLevel,
406                                          bool GVsWithCode) {
407   return EngineBuilder(M)
408       .setEngineKind(ForceInterpreter
409                      ? EngineKind::Interpreter
410                      : EngineKind::JIT)
411       .setErrorStr(ErrorStr)
412       .setOptLevel(OptLevel)
413       .setAllocateGVsWithCode(GVsWithCode)
414       .create();
415 }
416
417 /// createJIT - This is the factory method for creating a JIT for the current
418 /// machine, it does not fall back to the interpreter.  This takes ownership
419 /// of the module.
420 ExecutionEngine *ExecutionEngine::createJIT(Module *M,
421                                             std::string *ErrorStr,
422                                             JITMemoryManager *JMM,
423                                             CodeGenOpt::Level OL,
424                                             bool GVsWithCode,
425                                             Reloc::Model RM,
426                                             CodeModel::Model CMM) {
427   if (ExecutionEngine::JITCtor == 0) {
428     if (ErrorStr)
429       *ErrorStr = "JIT has not been linked in.";
430     return 0;
431   }
432
433   // Use the defaults for extra parameters.  Users can use EngineBuilder to
434   // set them.
435   StringRef MArch = "";
436   StringRef MCPU = "";
437   SmallVector<std::string, 1> MAttrs;
438
439   TargetMachine *TM =
440     EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs, RM, CMM, OL, ErrorStr);
441   if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
442
443   return ExecutionEngine::JITCtor(M, ErrorStr, JMM, OL, GVsWithCode, TM);
444 }
445
446 ExecutionEngine *EngineBuilder::create() {
447   // Make sure we can resolve symbols in the program as well. The zero arg
448   // to the function tells DynamicLibrary to load the program, not a library.
449   if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
450     return 0;
451
452   // If the user specified a memory manager but didn't specify which engine to
453   // create, we assume they only want the JIT, and we fail if they only want
454   // the interpreter.
455   if (JMM) {
456     if (WhichEngine & EngineKind::JIT)
457       WhichEngine = EngineKind::JIT;
458     else {
459       if (ErrorStr)
460         *ErrorStr = "Cannot create an interpreter with a memory manager.";
461       return 0;
462     }
463   }
464
465   // Unless the interpreter was explicitly selected or the JIT is not linked,
466   // try making a JIT.
467   if (WhichEngine & EngineKind::JIT) {
468     if (TargetMachine *TM = EngineBuilder::selectTarget(M, MArch, MCPU, MAttrs,
469                                                         RelocModel, CMModel,
470                                                         OptLevel, ErrorStr)) {
471       if (UseMCJIT && ExecutionEngine::MCJITCtor) {
472         ExecutionEngine *EE =
473           ExecutionEngine::MCJITCtor(M, ErrorStr, JMM, OptLevel,
474                                      AllocateGVsWithCode, TM);
475         if (EE) return EE;
476       } else if (ExecutionEngine::JITCtor) {
477         ExecutionEngine *EE =
478           ExecutionEngine::JITCtor(M, ErrorStr, JMM, OptLevel,
479                                    AllocateGVsWithCode, TM);
480         if (EE) return EE;
481       }
482     }
483   }
484
485   // If we can't make a JIT and we didn't request one specifically, try making
486   // an interpreter instead.
487   if (WhichEngine & EngineKind::Interpreter) {
488     if (ExecutionEngine::InterpCtor)
489       return ExecutionEngine::InterpCtor(M, ErrorStr);
490     if (ErrorStr)
491       *ErrorStr = "Interpreter has not been linked in.";
492     return 0;
493   }
494
495   if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0) {
496     if (ErrorStr)
497       *ErrorStr = "JIT has not been linked in.";
498   }
499
500   return 0;
501 }
502
503 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
504   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
505     return getPointerToFunction(F);
506
507   MutexGuard locked(lock);
508   if (void *P = EEState.getGlobalAddressMap(locked)[GV])
509     return P;
510
511   // Global variable might have been added since interpreter started.
512   if (GlobalVariable *GVar =
513           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
514     EmitGlobalVariable(GVar);
515   else
516     llvm_unreachable("Global hasn't had an address allocated yet!");
517
518   return EEState.getGlobalAddressMap(locked)[GV];
519 }
520
521 /// \brief Converts a Constant* into a GenericValue, including handling of
522 /// ConstantExpr values.
523 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
524   // If its undefined, return the garbage.
525   if (isa<UndefValue>(C)) {
526     GenericValue Result;
527     switch (C->getType()->getTypeID()) {
528     case Type::IntegerTyID:
529     case Type::X86_FP80TyID:
530     case Type::FP128TyID:
531     case Type::PPC_FP128TyID:
532       // Although the value is undefined, we still have to construct an APInt
533       // with the correct bit width.
534       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
535       break;
536     default:
537       break;
538     }
539     return Result;
540   }
541
542   // Otherwise, if the value is a ConstantExpr...
543   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
544     Constant *Op0 = CE->getOperand(0);
545     switch (CE->getOpcode()) {
546     case Instruction::GetElementPtr: {
547       // Compute the index
548       GenericValue Result = getConstantValue(Op0);
549       SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end());
550       uint64_t Offset = TD->getIndexedOffset(Op0->getType(), Indices);
551
552       char* tmp = (char*) Result.PointerVal;
553       Result = PTOGV(tmp + Offset);
554       return Result;
555     }
556     case Instruction::Trunc: {
557       GenericValue GV = getConstantValue(Op0);
558       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
559       GV.IntVal = GV.IntVal.trunc(BitWidth);
560       return GV;
561     }
562     case Instruction::ZExt: {
563       GenericValue GV = getConstantValue(Op0);
564       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
565       GV.IntVal = GV.IntVal.zext(BitWidth);
566       return GV;
567     }
568     case Instruction::SExt: {
569       GenericValue GV = getConstantValue(Op0);
570       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
571       GV.IntVal = GV.IntVal.sext(BitWidth);
572       return GV;
573     }
574     case Instruction::FPTrunc: {
575       // FIXME long double
576       GenericValue GV = getConstantValue(Op0);
577       GV.FloatVal = float(GV.DoubleVal);
578       return GV;
579     }
580     case Instruction::FPExt:{
581       // FIXME long double
582       GenericValue GV = getConstantValue(Op0);
583       GV.DoubleVal = double(GV.FloatVal);
584       return GV;
585     }
586     case Instruction::UIToFP: {
587       GenericValue GV = getConstantValue(Op0);
588       if (CE->getType()->isFloatTy())
589         GV.FloatVal = float(GV.IntVal.roundToDouble());
590       else if (CE->getType()->isDoubleTy())
591         GV.DoubleVal = GV.IntVal.roundToDouble();
592       else if (CE->getType()->isX86_FP80Ty()) {
593         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
594         (void)apf.convertFromAPInt(GV.IntVal,
595                                    false,
596                                    APFloat::rmNearestTiesToEven);
597         GV.IntVal = apf.bitcastToAPInt();
598       }
599       return GV;
600     }
601     case Instruction::SIToFP: {
602       GenericValue GV = getConstantValue(Op0);
603       if (CE->getType()->isFloatTy())
604         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
605       else if (CE->getType()->isDoubleTy())
606         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
607       else if (CE->getType()->isX86_FP80Ty()) {
608         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
609         (void)apf.convertFromAPInt(GV.IntVal,
610                                    true,
611                                    APFloat::rmNearestTiesToEven);
612         GV.IntVal = apf.bitcastToAPInt();
613       }
614       return GV;
615     }
616     case Instruction::FPToUI: // double->APInt conversion handles sign
617     case Instruction::FPToSI: {
618       GenericValue GV = getConstantValue(Op0);
619       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
620       if (Op0->getType()->isFloatTy())
621         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
622       else if (Op0->getType()->isDoubleTy())
623         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
624       else if (Op0->getType()->isX86_FP80Ty()) {
625         APFloat apf = APFloat(GV.IntVal);
626         uint64_t v;
627         bool ignored;
628         (void)apf.convertToInteger(&v, BitWidth,
629                                    CE->getOpcode()==Instruction::FPToSI,
630                                    APFloat::rmTowardZero, &ignored);
631         GV.IntVal = v; // endian?
632       }
633       return GV;
634     }
635     case Instruction::PtrToInt: {
636       GenericValue GV = getConstantValue(Op0);
637       uint32_t PtrWidth = TD->getPointerSizeInBits();
638       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
639       return GV;
640     }
641     case Instruction::IntToPtr: {
642       GenericValue GV = getConstantValue(Op0);
643       uint32_t PtrWidth = TD->getPointerSizeInBits();
644       if (PtrWidth != GV.IntVal.getBitWidth())
645         GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
646       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
647       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
648       return GV;
649     }
650     case Instruction::BitCast: {
651       GenericValue GV = getConstantValue(Op0);
652       Type* DestTy = CE->getType();
653       switch (Op0->getType()->getTypeID()) {
654         default: llvm_unreachable("Invalid bitcast operand");
655         case Type::IntegerTyID:
656           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
657           if (DestTy->isFloatTy())
658             GV.FloatVal = GV.IntVal.bitsToFloat();
659           else if (DestTy->isDoubleTy())
660             GV.DoubleVal = GV.IntVal.bitsToDouble();
661           break;
662         case Type::FloatTyID:
663           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
664           GV.IntVal = APInt::floatToBits(GV.FloatVal);
665           break;
666         case Type::DoubleTyID:
667           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
668           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
669           break;
670         case Type::PointerTyID:
671           assert(DestTy->isPointerTy() && "Invalid bitcast");
672           break; // getConstantValue(Op0)  above already converted it
673       }
674       return GV;
675     }
676     case Instruction::Add:
677     case Instruction::FAdd:
678     case Instruction::Sub:
679     case Instruction::FSub:
680     case Instruction::Mul:
681     case Instruction::FMul:
682     case Instruction::UDiv:
683     case Instruction::SDiv:
684     case Instruction::URem:
685     case Instruction::SRem:
686     case Instruction::And:
687     case Instruction::Or:
688     case Instruction::Xor: {
689       GenericValue LHS = getConstantValue(Op0);
690       GenericValue RHS = getConstantValue(CE->getOperand(1));
691       GenericValue GV;
692       switch (CE->getOperand(0)->getType()->getTypeID()) {
693       default: llvm_unreachable("Bad add type!");
694       case Type::IntegerTyID:
695         switch (CE->getOpcode()) {
696           default: llvm_unreachable("Invalid integer opcode");
697           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
698           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
699           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
700           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
701           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
702           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
703           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
704           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
705           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
706           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
707         }
708         break;
709       case Type::FloatTyID:
710         switch (CE->getOpcode()) {
711           default: llvm_unreachable("Invalid float opcode");
712           case Instruction::FAdd:
713             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
714           case Instruction::FSub:
715             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
716           case Instruction::FMul:
717             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
718           case Instruction::FDiv:
719             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
720           case Instruction::FRem:
721             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
722         }
723         break;
724       case Type::DoubleTyID:
725         switch (CE->getOpcode()) {
726           default: llvm_unreachable("Invalid double opcode");
727           case Instruction::FAdd:
728             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
729           case Instruction::FSub:
730             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
731           case Instruction::FMul:
732             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
733           case Instruction::FDiv:
734             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
735           case Instruction::FRem:
736             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
737         }
738         break;
739       case Type::X86_FP80TyID:
740       case Type::PPC_FP128TyID:
741       case Type::FP128TyID: {
742         APFloat apfLHS = APFloat(LHS.IntVal);
743         switch (CE->getOpcode()) {
744           default: llvm_unreachable("Invalid long double opcode");
745           case Instruction::FAdd:
746             apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
747             GV.IntVal = apfLHS.bitcastToAPInt();
748             break;
749           case Instruction::FSub:
750             apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
751             GV.IntVal = apfLHS.bitcastToAPInt();
752             break;
753           case Instruction::FMul:
754             apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
755             GV.IntVal = apfLHS.bitcastToAPInt();
756             break;
757           case Instruction::FDiv:
758             apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
759             GV.IntVal = apfLHS.bitcastToAPInt();
760             break;
761           case Instruction::FRem:
762             apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
763             GV.IntVal = apfLHS.bitcastToAPInt();
764             break;
765           }
766         }
767         break;
768       }
769       return GV;
770     }
771     default:
772       break;
773     }
774
775     SmallString<256> Msg;
776     raw_svector_ostream OS(Msg);
777     OS << "ConstantExpr not handled: " << *CE;
778     report_fatal_error(OS.str());
779   }
780
781   // Otherwise, we have a simple constant.
782   GenericValue Result;
783   switch (C->getType()->getTypeID()) {
784   case Type::FloatTyID:
785     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
786     break;
787   case Type::DoubleTyID:
788     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
789     break;
790   case Type::X86_FP80TyID:
791   case Type::FP128TyID:
792   case Type::PPC_FP128TyID:
793     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
794     break;
795   case Type::IntegerTyID:
796     Result.IntVal = cast<ConstantInt>(C)->getValue();
797     break;
798   case Type::PointerTyID:
799     if (isa<ConstantPointerNull>(C))
800       Result.PointerVal = 0;
801     else if (const Function *F = dyn_cast<Function>(C))
802       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
803     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
804       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
805     else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
806       Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
807                                                         BA->getBasicBlock())));
808     else
809       llvm_unreachable("Unknown constant pointer type!");
810     break;
811   default:
812     SmallString<256> Msg;
813     raw_svector_ostream OS(Msg);
814     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
815     report_fatal_error(OS.str());
816   }
817
818   return Result;
819 }
820
821 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
822 /// with the integer held in IntVal.
823 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
824                              unsigned StoreBytes) {
825   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
826   uint8_t *Src = (uint8_t *)IntVal.getRawData();
827
828   if (sys::isLittleEndianHost()) {
829     // Little-endian host - the source is ordered from LSB to MSB.  Order the
830     // destination from LSB to MSB: Do a straight copy.
831     memcpy(Dst, Src, StoreBytes);
832   } else {
833     // Big-endian host - the source is an array of 64 bit words ordered from
834     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
835     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
836     while (StoreBytes > sizeof(uint64_t)) {
837       StoreBytes -= sizeof(uint64_t);
838       // May not be aligned so use memcpy.
839       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
840       Src += sizeof(uint64_t);
841     }
842
843     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
844   }
845 }
846
847 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
848                                          GenericValue *Ptr, Type *Ty) {
849   const unsigned StoreBytes = getTargetData()->getTypeStoreSize(Ty);
850
851   switch (Ty->getTypeID()) {
852   case Type::IntegerTyID:
853     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
854     break;
855   case Type::FloatTyID:
856     *((float*)Ptr) = Val.FloatVal;
857     break;
858   case Type::DoubleTyID:
859     *((double*)Ptr) = Val.DoubleVal;
860     break;
861   case Type::X86_FP80TyID:
862     memcpy(Ptr, Val.IntVal.getRawData(), 10);
863     break;
864   case Type::PointerTyID:
865     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
866     if (StoreBytes != sizeof(PointerTy))
867       memset(&(Ptr->PointerVal), 0, StoreBytes);
868
869     *((PointerTy*)Ptr) = Val.PointerVal;
870     break;
871   default:
872     dbgs() << "Cannot store value of type " << *Ty << "!\n";
873   }
874
875   if (sys::isLittleEndianHost() != getTargetData()->isLittleEndian())
876     // Host and target are different endian - reverse the stored bytes.
877     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
878 }
879
880 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
881 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
882 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
883   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
884   uint8_t *Dst = (uint8_t *)IntVal.getRawData();
885
886   if (sys::isLittleEndianHost())
887     // Little-endian host - the destination must be ordered from LSB to MSB.
888     // The source is ordered from LSB to MSB: Do a straight copy.
889     memcpy(Dst, Src, LoadBytes);
890   else {
891     // Big-endian - the destination is an array of 64 bit words ordered from
892     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
893     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
894     // a word.
895     while (LoadBytes > sizeof(uint64_t)) {
896       LoadBytes -= sizeof(uint64_t);
897       // May not be aligned so use memcpy.
898       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
899       Dst += sizeof(uint64_t);
900     }
901
902     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
903   }
904 }
905
906 /// FIXME: document
907 ///
908 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
909                                           GenericValue *Ptr,
910                                           Type *Ty) {
911   const unsigned LoadBytes = getTargetData()->getTypeStoreSize(Ty);
912
913   switch (Ty->getTypeID()) {
914   case Type::IntegerTyID:
915     // An APInt with all words initially zero.
916     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
917     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
918     break;
919   case Type::FloatTyID:
920     Result.FloatVal = *((float*)Ptr);
921     break;
922   case Type::DoubleTyID:
923     Result.DoubleVal = *((double*)Ptr);
924     break;
925   case Type::PointerTyID:
926     Result.PointerVal = *((PointerTy*)Ptr);
927     break;
928   case Type::X86_FP80TyID: {
929     // This is endian dependent, but it will only work on x86 anyway.
930     // FIXME: Will not trap if loading a signaling NaN.
931     uint64_t y[2];
932     memcpy(y, Ptr, 10);
933     Result.IntVal = APInt(80, y);
934     break;
935   }
936   default:
937     SmallString<256> Msg;
938     raw_svector_ostream OS(Msg);
939     OS << "Cannot load value of type " << *Ty << "!";
940     report_fatal_error(OS.str());
941   }
942 }
943
944 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
945   DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
946   DEBUG(Init->dump());
947   if (isa<UndefValue>(Init)) {
948     return;
949   } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
950     unsigned ElementSize =
951       getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
952     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
953       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
954     return;
955   } else if (isa<ConstantAggregateZero>(Init)) {
956     memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
957     return;
958   } else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
959     unsigned ElementSize =
960       getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
961     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
962       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
963     return;
964   } else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
965     const StructLayout *SL =
966       getTargetData()->getStructLayout(cast<StructType>(CPS->getType()));
967     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
968       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
969     return;
970   } else if (Init->getType()->isFirstClassType()) {
971     GenericValue Val = getConstantValue(Init);
972     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
973     return;
974   }
975
976   DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
977   llvm_unreachable("Unknown constant type to initialize memory with!");
978 }
979
980 /// EmitGlobals - Emit all of the global variables to memory, storing their
981 /// addresses into GlobalAddress.  This must make sure to copy the contents of
982 /// their initializers into the memory.
983 void ExecutionEngine::emitGlobals() {
984   // Loop over all of the global variables in the program, allocating the memory
985   // to hold them.  If there is more than one module, do a prepass over globals
986   // to figure out how the different modules should link together.
987   std::map<std::pair<std::string, Type*>,
988            const GlobalValue*> LinkedGlobalsMap;
989
990   if (Modules.size() != 1) {
991     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
992       Module &M = *Modules[m];
993       for (Module::const_global_iterator I = M.global_begin(),
994            E = M.global_end(); I != E; ++I) {
995         const GlobalValue *GV = I;
996         if (GV->hasLocalLinkage() || GV->isDeclaration() ||
997             GV->hasAppendingLinkage() || !GV->hasName())
998           continue;// Ignore external globals and globals with internal linkage.
999
1000         const GlobalValue *&GVEntry =
1001           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1002
1003         // If this is the first time we've seen this global, it is the canonical
1004         // version.
1005         if (!GVEntry) {
1006           GVEntry = GV;
1007           continue;
1008         }
1009
1010         // If the existing global is strong, never replace it.
1011         if (GVEntry->hasExternalLinkage() ||
1012             GVEntry->hasDLLImportLinkage() ||
1013             GVEntry->hasDLLExportLinkage())
1014           continue;
1015
1016         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1017         // symbol.  FIXME is this right for common?
1018         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1019           GVEntry = GV;
1020       }
1021     }
1022   }
1023
1024   std::vector<const GlobalValue*> NonCanonicalGlobals;
1025   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1026     Module &M = *Modules[m];
1027     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1028          I != E; ++I) {
1029       // In the multi-module case, see what this global maps to.
1030       if (!LinkedGlobalsMap.empty()) {
1031         if (const GlobalValue *GVEntry =
1032               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1033           // If something else is the canonical global, ignore this one.
1034           if (GVEntry != &*I) {
1035             NonCanonicalGlobals.push_back(I);
1036             continue;
1037           }
1038         }
1039       }
1040
1041       if (!I->isDeclaration()) {
1042         addGlobalMapping(I, getMemoryForGV(I));
1043       } else {
1044         // External variable reference. Try to use the dynamic loader to
1045         // get a pointer to it.
1046         if (void *SymAddr =
1047             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1048           addGlobalMapping(I, SymAddr);
1049         else {
1050           report_fatal_error("Could not resolve external global address: "
1051                             +I->getName());
1052         }
1053       }
1054     }
1055
1056     // If there are multiple modules, map the non-canonical globals to their
1057     // canonical location.
1058     if (!NonCanonicalGlobals.empty()) {
1059       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1060         const GlobalValue *GV = NonCanonicalGlobals[i];
1061         const GlobalValue *CGV =
1062           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1063         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1064         assert(Ptr && "Canonical global wasn't codegen'd!");
1065         addGlobalMapping(GV, Ptr);
1066       }
1067     }
1068
1069     // Now that all of the globals are set up in memory, loop through them all
1070     // and initialize their contents.
1071     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1072          I != E; ++I) {
1073       if (!I->isDeclaration()) {
1074         if (!LinkedGlobalsMap.empty()) {
1075           if (const GlobalValue *GVEntry =
1076                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1077             if (GVEntry != &*I)  // Not the canonical variable.
1078               continue;
1079         }
1080         EmitGlobalVariable(I);
1081       }
1082     }
1083   }
1084 }
1085
1086 // EmitGlobalVariable - This method emits the specified global variable to the
1087 // address specified in GlobalAddresses, or allocates new memory if it's not
1088 // already in the map.
1089 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1090   void *GA = getPointerToGlobalIfAvailable(GV);
1091
1092   if (GA == 0) {
1093     // If it's not already specified, allocate memory for the global.
1094     GA = getMemoryForGV(GV);
1095     addGlobalMapping(GV, GA);
1096   }
1097
1098   // Don't initialize if it's thread local, let the client do it.
1099   if (!GV->isThreadLocal())
1100     InitializeMemory(GV->getInitializer(), GA);
1101
1102   Type *ElTy = GV->getType()->getElementType();
1103   size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
1104   NumInitBytes += (unsigned)GVSize;
1105   ++NumGlobals;
1106 }
1107
1108 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1109   : EE(EE), GlobalAddressMap(this) {
1110 }
1111
1112 sys::Mutex *
1113 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1114   return &EES->EE.lock;
1115 }
1116
1117 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1118                                                       const GlobalValue *Old) {
1119   void *OldVal = EES->GlobalAddressMap.lookup(Old);
1120   EES->GlobalAddressReverseMap.erase(OldVal);
1121 }
1122
1123 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1124                                                     const GlobalValue *,
1125                                                     const GlobalValue *) {
1126   assert(false && "The ExecutionEngine doesn't know how to handle a"
1127          " RAUW on a value it has a global mapping for.");
1128 }