convert a bunch of callers from DataLayout::getIndexedOffset() to GEP::accumulateCons...
[oota-llvm.git] / lib / ExecutionEngine / ExecutionEngine.cpp
1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the common interface used by the various execution engine
11 // subclasses.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "llvm/ExecutionEngine/ExecutionEngine.h"
17 #include "llvm/ADT/SmallString.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Constants.h"
20 #include "llvm/DataLayout.h"
21 #include "llvm/DerivedTypes.h"
22 #include "llvm/ExecutionEngine/GenericValue.h"
23 #include "llvm/Module.h"
24 #include "llvm/Operator.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/DynamicLibrary.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/Host.h"
29 #include "llvm/Support/MutexGuard.h"
30 #include "llvm/Support/TargetRegistry.h"
31 #include "llvm/Support/ValueHandle.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include <cmath>
35 #include <cstring>
36 using namespace llvm;
37
38 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized");
39 STATISTIC(NumGlobals  , "Number of global vars initialized");
40
41 ExecutionEngine *(*ExecutionEngine::JITCtor)(
42   Module *M,
43   std::string *ErrorStr,
44   JITMemoryManager *JMM,
45   bool GVsWithCode,
46   TargetMachine *TM) = 0;
47 ExecutionEngine *(*ExecutionEngine::MCJITCtor)(
48   Module *M,
49   std::string *ErrorStr,
50   JITMemoryManager *JMM,
51   bool GVsWithCode,
52   TargetMachine *TM) = 0;
53 ExecutionEngine *(*ExecutionEngine::InterpCtor)(Module *M,
54                                                 std::string *ErrorStr) = 0;
55
56 ExecutionEngine::ExecutionEngine(Module *M)
57   : EEState(*this),
58     LazyFunctionCreator(0),
59     ExceptionTableRegister(0),
60     ExceptionTableDeregister(0) {
61   CompilingLazily         = false;
62   GVCompilationDisabled   = false;
63   SymbolSearchingDisabled = false;
64   Modules.push_back(M);
65   assert(M && "Module is null?");
66 }
67
68 ExecutionEngine::~ExecutionEngine() {
69   clearAllGlobalMappings();
70   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
71     delete Modules[i];
72 }
73
74 void ExecutionEngine::DeregisterAllTables() {
75   if (ExceptionTableDeregister) {
76     DenseMap<const Function*, void*>::iterator it = AllExceptionTables.begin();
77     DenseMap<const Function*, void*>::iterator ite = AllExceptionTables.end();
78     for (; it != ite; ++it)
79       ExceptionTableDeregister(it->second);
80     AllExceptionTables.clear();
81   }
82 }
83
84 namespace {
85 /// \brief Helper class which uses a value handler to automatically deletes the
86 /// memory block when the GlobalVariable is destroyed.
87 class GVMemoryBlock : public CallbackVH {
88   GVMemoryBlock(const GlobalVariable *GV)
89     : CallbackVH(const_cast<GlobalVariable*>(GV)) {}
90
91 public:
92   /// \brief Returns the address the GlobalVariable should be written into.  The
93   /// GVMemoryBlock object prefixes that.
94   static char *Create(const GlobalVariable *GV, const DataLayout& TD) {
95     Type *ElTy = GV->getType()->getElementType();
96     size_t GVSize = (size_t)TD.getTypeAllocSize(ElTy);
97     void *RawMemory = ::operator new(
98       DataLayout::RoundUpAlignment(sizeof(GVMemoryBlock),
99                                    TD.getPreferredAlignment(GV))
100       + GVSize);
101     new(RawMemory) GVMemoryBlock(GV);
102     return static_cast<char*>(RawMemory) + sizeof(GVMemoryBlock);
103   }
104
105   virtual void deleted() {
106     // We allocated with operator new and with some extra memory hanging off the
107     // end, so don't just delete this.  I'm not sure if this is actually
108     // required.
109     this->~GVMemoryBlock();
110     ::operator delete(this);
111   }
112 };
113 }  // anonymous namespace
114
115 char *ExecutionEngine::getMemoryForGV(const GlobalVariable *GV) {
116   return GVMemoryBlock::Create(GV, *getDataLayout());
117 }
118
119 bool ExecutionEngine::removeModule(Module *M) {
120   for(SmallVector<Module *, 1>::iterator I = Modules.begin(),
121         E = Modules.end(); I != E; ++I) {
122     Module *Found = *I;
123     if (Found == M) {
124       Modules.erase(I);
125       clearGlobalMappingsFromModule(M);
126       return true;
127     }
128   }
129   return false;
130 }
131
132 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) {
133   for (unsigned i = 0, e = Modules.size(); i != e; ++i) {
134     if (Function *F = Modules[i]->getFunction(FnName))
135       return F;
136   }
137   return 0;
138 }
139
140
141 void *ExecutionEngineState::RemoveMapping(const MutexGuard &,
142                                           const GlobalValue *ToUnmap) {
143   GlobalAddressMapTy::iterator I = GlobalAddressMap.find(ToUnmap);
144   void *OldVal;
145
146   // FIXME: This is silly, we shouldn't end up with a mapping -> 0 in the
147   // GlobalAddressMap.
148   if (I == GlobalAddressMap.end())
149     OldVal = 0;
150   else {
151     OldVal = I->second;
152     GlobalAddressMap.erase(I);
153   }
154
155   GlobalAddressReverseMap.erase(OldVal);
156   return OldVal;
157 }
158
159 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) {
160   MutexGuard locked(lock);
161
162   DEBUG(dbgs() << "JIT: Map \'" << GV->getName()
163         << "\' to [" << Addr << "]\n";);
164   void *&CurVal = EEState.getGlobalAddressMap(locked)[GV];
165   assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!");
166   CurVal = Addr;
167
168   // If we are using the reverse mapping, add it too.
169   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
170     AssertingVH<const GlobalValue> &V =
171       EEState.getGlobalAddressReverseMap(locked)[Addr];
172     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
173     V = GV;
174   }
175 }
176
177 void ExecutionEngine::clearAllGlobalMappings() {
178   MutexGuard locked(lock);
179
180   EEState.getGlobalAddressMap(locked).clear();
181   EEState.getGlobalAddressReverseMap(locked).clear();
182 }
183
184 void ExecutionEngine::clearGlobalMappingsFromModule(Module *M) {
185   MutexGuard locked(lock);
186
187   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ++FI)
188     EEState.RemoveMapping(locked, FI);
189   for (Module::global_iterator GI = M->global_begin(), GE = M->global_end();
190        GI != GE; ++GI)
191     EEState.RemoveMapping(locked, GI);
192 }
193
194 void *ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) {
195   MutexGuard locked(lock);
196
197   ExecutionEngineState::GlobalAddressMapTy &Map =
198     EEState.getGlobalAddressMap(locked);
199
200   // Deleting from the mapping?
201   if (Addr == 0)
202     return EEState.RemoveMapping(locked, GV);
203
204   void *&CurVal = Map[GV];
205   void *OldVal = CurVal;
206
207   if (CurVal && !EEState.getGlobalAddressReverseMap(locked).empty())
208     EEState.getGlobalAddressReverseMap(locked).erase(CurVal);
209   CurVal = Addr;
210
211   // If we are using the reverse mapping, add it too.
212   if (!EEState.getGlobalAddressReverseMap(locked).empty()) {
213     AssertingVH<const GlobalValue> &V =
214       EEState.getGlobalAddressReverseMap(locked)[Addr];
215     assert((V == 0 || GV == 0) && "GlobalMapping already established!");
216     V = GV;
217   }
218   return OldVal;
219 }
220
221 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) {
222   MutexGuard locked(lock);
223
224   ExecutionEngineState::GlobalAddressMapTy::iterator I =
225     EEState.getGlobalAddressMap(locked).find(GV);
226   return I != EEState.getGlobalAddressMap(locked).end() ? I->second : 0;
227 }
228
229 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) {
230   MutexGuard locked(lock);
231
232   // If we haven't computed the reverse mapping yet, do so first.
233   if (EEState.getGlobalAddressReverseMap(locked).empty()) {
234     for (ExecutionEngineState::GlobalAddressMapTy::iterator
235          I = EEState.getGlobalAddressMap(locked).begin(),
236          E = EEState.getGlobalAddressMap(locked).end(); I != E; ++I)
237       EEState.getGlobalAddressReverseMap(locked).insert(std::make_pair(
238                                                           I->second, I->first));
239   }
240
241   std::map<void *, AssertingVH<const GlobalValue> >::iterator I =
242     EEState.getGlobalAddressReverseMap(locked).find(Addr);
243   return I != EEState.getGlobalAddressReverseMap(locked).end() ? I->second : 0;
244 }
245
246 namespace {
247 class ArgvArray {
248   char *Array;
249   std::vector<char*> Values;
250 public:
251   ArgvArray() : Array(NULL) {}
252   ~ArgvArray() { clear(); }
253   void clear() {
254     delete[] Array;
255     Array = NULL;
256     for (size_t I = 0, E = Values.size(); I != E; ++I) {
257       delete[] Values[I];
258     }
259     Values.clear();
260   }
261   /// Turn a vector of strings into a nice argv style array of pointers to null
262   /// terminated strings.
263   void *reset(LLVMContext &C, ExecutionEngine *EE,
264               const std::vector<std::string> &InputArgv);
265 };
266 }  // anonymous namespace
267 void *ArgvArray::reset(LLVMContext &C, ExecutionEngine *EE,
268                        const std::vector<std::string> &InputArgv) {
269   clear();  // Free the old contents.
270   unsigned PtrSize = EE->getDataLayout()->getPointerSize();
271   Array = new char[(InputArgv.size()+1)*PtrSize];
272
273   DEBUG(dbgs() << "JIT: ARGV = " << (void*)Array << "\n");
274   Type *SBytePtr = Type::getInt8PtrTy(C);
275
276   for (unsigned i = 0; i != InputArgv.size(); ++i) {
277     unsigned Size = InputArgv[i].size()+1;
278     char *Dest = new char[Size];
279     Values.push_back(Dest);
280     DEBUG(dbgs() << "JIT: ARGV[" << i << "] = " << (void*)Dest << "\n");
281
282     std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest);
283     Dest[Size-1] = 0;
284
285     // Endian safe: Array[i] = (PointerTy)Dest;
286     EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Array+i*PtrSize),
287                            SBytePtr);
288   }
289
290   // Null terminate it
291   EE->StoreValueToMemory(PTOGV(0),
292                          (GenericValue*)(Array+InputArgv.size()*PtrSize),
293                          SBytePtr);
294   return Array;
295 }
296
297 void ExecutionEngine::runStaticConstructorsDestructors(Module *module,
298                                                        bool isDtors) {
299   const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors";
300   GlobalVariable *GV = module->getNamedGlobal(Name);
301
302   // If this global has internal linkage, or if it has a use, then it must be
303   // an old-style (llvmgcc3) static ctor with __main linked in and in use.  If
304   // this is the case, don't execute any of the global ctors, __main will do
305   // it.
306   if (!GV || GV->isDeclaration() || GV->hasLocalLinkage()) return;
307
308   // Should be an array of '{ i32, void ()* }' structs.  The first value is
309   // the init priority, which we ignore.
310   ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer());
311   if (InitList == 0)
312     return;
313   for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
314     ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
315     if (CS == 0) continue;
316
317     Constant *FP = CS->getOperand(1);
318     if (FP->isNullValue())
319       continue;  // Found a sentinal value, ignore.
320
321     // Strip off constant expression casts.
322     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP))
323       if (CE->isCast())
324         FP = CE->getOperand(0);
325
326     // Execute the ctor/dtor function!
327     if (Function *F = dyn_cast<Function>(FP))
328       runFunction(F, std::vector<GenericValue>());
329
330     // FIXME: It is marginally lame that we just do nothing here if we see an
331     // entry we don't recognize. It might not be unreasonable for the verifier
332     // to not even allow this and just assert here.
333   }
334 }
335
336 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) {
337   // Execute global ctors/dtors for each module in the program.
338   for (unsigned i = 0, e = Modules.size(); i != e; ++i)
339     runStaticConstructorsDestructors(Modules[i], isDtors);
340 }
341
342 #ifndef NDEBUG
343 /// isTargetNullPtr - Return whether the target pointer stored at Loc is null.
344 static bool isTargetNullPtr(ExecutionEngine *EE, void *Loc) {
345   unsigned PtrSize = EE->getDataLayout()->getPointerSize();
346   for (unsigned i = 0; i < PtrSize; ++i)
347     if (*(i + (uint8_t*)Loc))
348       return false;
349   return true;
350 }
351 #endif
352
353 int ExecutionEngine::runFunctionAsMain(Function *Fn,
354                                        const std::vector<std::string> &argv,
355                                        const char * const * envp) {
356   std::vector<GenericValue> GVArgs;
357   GenericValue GVArgc;
358   GVArgc.IntVal = APInt(32, argv.size());
359
360   // Check main() type
361   unsigned NumArgs = Fn->getFunctionType()->getNumParams();
362   FunctionType *FTy = Fn->getFunctionType();
363   Type* PPInt8Ty = Type::getInt8PtrTy(Fn->getContext())->getPointerTo();
364
365   // Check the argument types.
366   if (NumArgs > 3)
367     report_fatal_error("Invalid number of arguments of main() supplied");
368   if (NumArgs >= 3 && FTy->getParamType(2) != PPInt8Ty)
369     report_fatal_error("Invalid type for third argument of main() supplied");
370   if (NumArgs >= 2 && FTy->getParamType(1) != PPInt8Ty)
371     report_fatal_error("Invalid type for second argument of main() supplied");
372   if (NumArgs >= 1 && !FTy->getParamType(0)->isIntegerTy(32))
373     report_fatal_error("Invalid type for first argument of main() supplied");
374   if (!FTy->getReturnType()->isIntegerTy() &&
375       !FTy->getReturnType()->isVoidTy())
376     report_fatal_error("Invalid return type of main() supplied");
377
378   ArgvArray CArgv;
379   ArgvArray CEnv;
380   if (NumArgs) {
381     GVArgs.push_back(GVArgc); // Arg #0 = argc.
382     if (NumArgs > 1) {
383       // Arg #1 = argv.
384       GVArgs.push_back(PTOGV(CArgv.reset(Fn->getContext(), this, argv)));
385       assert(!isTargetNullPtr(this, GVTOP(GVArgs[1])) &&
386              "argv[0] was null after CreateArgv");
387       if (NumArgs > 2) {
388         std::vector<std::string> EnvVars;
389         for (unsigned i = 0; envp[i]; ++i)
390           EnvVars.push_back(envp[i]);
391         // Arg #2 = envp.
392         GVArgs.push_back(PTOGV(CEnv.reset(Fn->getContext(), this, EnvVars)));
393       }
394     }
395   }
396
397   return runFunction(Fn, GVArgs).IntVal.getZExtValue();
398 }
399
400 ExecutionEngine *ExecutionEngine::create(Module *M,
401                                          bool ForceInterpreter,
402                                          std::string *ErrorStr,
403                                          CodeGenOpt::Level OptLevel,
404                                          bool GVsWithCode) {
405   EngineBuilder EB =  EngineBuilder(M)
406       .setEngineKind(ForceInterpreter
407                      ? EngineKind::Interpreter
408                      : EngineKind::JIT)
409       .setErrorStr(ErrorStr)
410       .setOptLevel(OptLevel)
411       .setAllocateGVsWithCode(GVsWithCode);
412
413   return EB.create();
414 }
415
416 /// createJIT - This is the factory method for creating a JIT for the current
417 /// machine, it does not fall back to the interpreter.  This takes ownership
418 /// of the module.
419 ExecutionEngine *ExecutionEngine::createJIT(Module *M,
420                                             std::string *ErrorStr,
421                                             JITMemoryManager *JMM,
422                                             CodeGenOpt::Level OL,
423                                             bool GVsWithCode,
424                                             Reloc::Model RM,
425                                             CodeModel::Model CMM) {
426   if (ExecutionEngine::JITCtor == 0) {
427     if (ErrorStr)
428       *ErrorStr = "JIT has not been linked in.";
429     return 0;
430   }
431
432   // Use the defaults for extra parameters.  Users can use EngineBuilder to
433   // set them.
434   EngineBuilder EB(M);
435   EB.setEngineKind(EngineKind::JIT);
436   EB.setErrorStr(ErrorStr);
437   EB.setRelocationModel(RM);
438   EB.setCodeModel(CMM);
439   EB.setAllocateGVsWithCode(GVsWithCode);
440   EB.setOptLevel(OL);
441   EB.setJITMemoryManager(JMM);
442
443   // TODO: permit custom TargetOptions here
444   TargetMachine *TM = EB.selectTarget();
445   if (!TM || (ErrorStr && ErrorStr->length() > 0)) return 0;
446
447   return ExecutionEngine::JITCtor(M, ErrorStr, JMM, GVsWithCode, TM);
448 }
449
450 ExecutionEngine *EngineBuilder::create(TargetMachine *TM) {
451   OwningPtr<TargetMachine> TheTM(TM); // Take ownership.
452
453   // Make sure we can resolve symbols in the program as well. The zero arg
454   // to the function tells DynamicLibrary to load the program, not a library.
455   if (sys::DynamicLibrary::LoadLibraryPermanently(0, ErrorStr))
456     return 0;
457
458   // If the user specified a memory manager but didn't specify which engine to
459   // create, we assume they only want the JIT, and we fail if they only want
460   // the interpreter.
461   if (JMM) {
462     if (WhichEngine & EngineKind::JIT)
463       WhichEngine = EngineKind::JIT;
464     else {
465       if (ErrorStr)
466         *ErrorStr = "Cannot create an interpreter with a memory manager.";
467       return 0;
468     }
469   }
470
471   // Unless the interpreter was explicitly selected or the JIT is not linked,
472   // try making a JIT.
473   if ((WhichEngine & EngineKind::JIT) && TheTM) {
474     Triple TT(M->getTargetTriple());
475     if (!TM->getTarget().hasJIT()) {
476       errs() << "WARNING: This target JIT is not designed for the host"
477              << " you are running.  If bad things happen, please choose"
478              << " a different -march switch.\n";
479     }
480
481     if (UseMCJIT && ExecutionEngine::MCJITCtor) {
482       ExecutionEngine *EE =
483         ExecutionEngine::MCJITCtor(M, ErrorStr, JMM,
484                                    AllocateGVsWithCode, TheTM.take());
485       if (EE) return EE;
486     } else if (ExecutionEngine::JITCtor) {
487       ExecutionEngine *EE =
488         ExecutionEngine::JITCtor(M, ErrorStr, JMM,
489                                  AllocateGVsWithCode, TheTM.take());
490       if (EE) return EE;
491     }
492   }
493
494   // If we can't make a JIT and we didn't request one specifically, try making
495   // an interpreter instead.
496   if (WhichEngine & EngineKind::Interpreter) {
497     if (ExecutionEngine::InterpCtor)
498       return ExecutionEngine::InterpCtor(M, ErrorStr);
499     if (ErrorStr)
500       *ErrorStr = "Interpreter has not been linked in.";
501     return 0;
502   }
503
504   if ((WhichEngine & EngineKind::JIT) && ExecutionEngine::JITCtor == 0 &&
505       ExecutionEngine::MCJITCtor == 0) {
506     if (ErrorStr)
507       *ErrorStr = "JIT has not been linked in.";
508   }
509
510   return 0;
511 }
512
513 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) {
514   if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV)))
515     return getPointerToFunction(F);
516
517   MutexGuard locked(lock);
518   if (void *P = EEState.getGlobalAddressMap(locked)[GV])
519     return P;
520
521   // Global variable might have been added since interpreter started.
522   if (GlobalVariable *GVar =
523           const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV)))
524     EmitGlobalVariable(GVar);
525   else
526     llvm_unreachable("Global hasn't had an address allocated yet!");
527
528   return EEState.getGlobalAddressMap(locked)[GV];
529 }
530
531 /// \brief Converts a Constant* into a GenericValue, including handling of
532 /// ConstantExpr values.
533 GenericValue ExecutionEngine::getConstantValue(const Constant *C) {
534   // If its undefined, return the garbage.
535   if (isa<UndefValue>(C)) {
536     GenericValue Result;
537     switch (C->getType()->getTypeID()) {
538     case Type::IntegerTyID:
539     case Type::X86_FP80TyID:
540     case Type::FP128TyID:
541     case Type::PPC_FP128TyID:
542       // Although the value is undefined, we still have to construct an APInt
543       // with the correct bit width.
544       Result.IntVal = APInt(C->getType()->getPrimitiveSizeInBits(), 0);
545       break;
546     default:
547       break;
548     }
549     return Result;
550   }
551
552   // Otherwise, if the value is a ConstantExpr...
553   if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
554     Constant *Op0 = CE->getOperand(0);
555     switch (CE->getOpcode()) {
556     case Instruction::GetElementPtr: {
557       // Compute the index
558       GenericValue Result = getConstantValue(Op0);
559       APInt Offset(TD->getPointerSizeInBits(), 0);
560       cast<GEPOperator>(CE)->accumulateConstantOffset(*TD, Offset);
561
562       char* tmp = (char*) Result.PointerVal;
563       Result = PTOGV(tmp + Offset.getSExtValue());
564       return Result;
565     }
566     case Instruction::Trunc: {
567       GenericValue GV = getConstantValue(Op0);
568       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
569       GV.IntVal = GV.IntVal.trunc(BitWidth);
570       return GV;
571     }
572     case Instruction::ZExt: {
573       GenericValue GV = getConstantValue(Op0);
574       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
575       GV.IntVal = GV.IntVal.zext(BitWidth);
576       return GV;
577     }
578     case Instruction::SExt: {
579       GenericValue GV = getConstantValue(Op0);
580       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
581       GV.IntVal = GV.IntVal.sext(BitWidth);
582       return GV;
583     }
584     case Instruction::FPTrunc: {
585       // FIXME long double
586       GenericValue GV = getConstantValue(Op0);
587       GV.FloatVal = float(GV.DoubleVal);
588       return GV;
589     }
590     case Instruction::FPExt:{
591       // FIXME long double
592       GenericValue GV = getConstantValue(Op0);
593       GV.DoubleVal = double(GV.FloatVal);
594       return GV;
595     }
596     case Instruction::UIToFP: {
597       GenericValue GV = getConstantValue(Op0);
598       if (CE->getType()->isFloatTy())
599         GV.FloatVal = float(GV.IntVal.roundToDouble());
600       else if (CE->getType()->isDoubleTy())
601         GV.DoubleVal = GV.IntVal.roundToDouble();
602       else if (CE->getType()->isX86_FP80Ty()) {
603         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
604         (void)apf.convertFromAPInt(GV.IntVal,
605                                    false,
606                                    APFloat::rmNearestTiesToEven);
607         GV.IntVal = apf.bitcastToAPInt();
608       }
609       return GV;
610     }
611     case Instruction::SIToFP: {
612       GenericValue GV = getConstantValue(Op0);
613       if (CE->getType()->isFloatTy())
614         GV.FloatVal = float(GV.IntVal.signedRoundToDouble());
615       else if (CE->getType()->isDoubleTy())
616         GV.DoubleVal = GV.IntVal.signedRoundToDouble();
617       else if (CE->getType()->isX86_FP80Ty()) {
618         APFloat apf = APFloat::getZero(APFloat::x87DoubleExtended);
619         (void)apf.convertFromAPInt(GV.IntVal,
620                                    true,
621                                    APFloat::rmNearestTiesToEven);
622         GV.IntVal = apf.bitcastToAPInt();
623       }
624       return GV;
625     }
626     case Instruction::FPToUI: // double->APInt conversion handles sign
627     case Instruction::FPToSI: {
628       GenericValue GV = getConstantValue(Op0);
629       uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth();
630       if (Op0->getType()->isFloatTy())
631         GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth);
632       else if (Op0->getType()->isDoubleTy())
633         GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth);
634       else if (Op0->getType()->isX86_FP80Ty()) {
635         APFloat apf = APFloat(GV.IntVal);
636         uint64_t v;
637         bool ignored;
638         (void)apf.convertToInteger(&v, BitWidth,
639                                    CE->getOpcode()==Instruction::FPToSI,
640                                    APFloat::rmTowardZero, &ignored);
641         GV.IntVal = v; // endian?
642       }
643       return GV;
644     }
645     case Instruction::PtrToInt: {
646       GenericValue GV = getConstantValue(Op0);
647       uint32_t PtrWidth = TD->getTypeSizeInBits(Op0->getType());
648       assert(PtrWidth <= 64 && "Bad pointer width");
649       GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal));
650       uint32_t IntWidth = TD->getTypeSizeInBits(CE->getType());
651       GV.IntVal = GV.IntVal.zextOrTrunc(IntWidth);
652       return GV;
653     }
654     case Instruction::IntToPtr: {
655       GenericValue GV = getConstantValue(Op0);
656       uint32_t PtrWidth = TD->getTypeSizeInBits(CE->getType());
657       GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth);
658       assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width");
659       GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue()));
660       return GV;
661     }
662     case Instruction::BitCast: {
663       GenericValue GV = getConstantValue(Op0);
664       Type* DestTy = CE->getType();
665       switch (Op0->getType()->getTypeID()) {
666         default: llvm_unreachable("Invalid bitcast operand");
667         case Type::IntegerTyID:
668           assert(DestTy->isFloatingPointTy() && "invalid bitcast");
669           if (DestTy->isFloatTy())
670             GV.FloatVal = GV.IntVal.bitsToFloat();
671           else if (DestTy->isDoubleTy())
672             GV.DoubleVal = GV.IntVal.bitsToDouble();
673           break;
674         case Type::FloatTyID:
675           assert(DestTy->isIntegerTy(32) && "Invalid bitcast");
676           GV.IntVal = APInt::floatToBits(GV.FloatVal);
677           break;
678         case Type::DoubleTyID:
679           assert(DestTy->isIntegerTy(64) && "Invalid bitcast");
680           GV.IntVal = APInt::doubleToBits(GV.DoubleVal);
681           break;
682         case Type::PointerTyID:
683           assert(DestTy->isPointerTy() && "Invalid bitcast");
684           break; // getConstantValue(Op0)  above already converted it
685       }
686       return GV;
687     }
688     case Instruction::Add:
689     case Instruction::FAdd:
690     case Instruction::Sub:
691     case Instruction::FSub:
692     case Instruction::Mul:
693     case Instruction::FMul:
694     case Instruction::UDiv:
695     case Instruction::SDiv:
696     case Instruction::URem:
697     case Instruction::SRem:
698     case Instruction::And:
699     case Instruction::Or:
700     case Instruction::Xor: {
701       GenericValue LHS = getConstantValue(Op0);
702       GenericValue RHS = getConstantValue(CE->getOperand(1));
703       GenericValue GV;
704       switch (CE->getOperand(0)->getType()->getTypeID()) {
705       default: llvm_unreachable("Bad add type!");
706       case Type::IntegerTyID:
707         switch (CE->getOpcode()) {
708           default: llvm_unreachable("Invalid integer opcode");
709           case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break;
710           case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break;
711           case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break;
712           case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break;
713           case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break;
714           case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break;
715           case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break;
716           case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break;
717           case Instruction::Or:  GV.IntVal = LHS.IntVal | RHS.IntVal; break;
718           case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break;
719         }
720         break;
721       case Type::FloatTyID:
722         switch (CE->getOpcode()) {
723           default: llvm_unreachable("Invalid float opcode");
724           case Instruction::FAdd:
725             GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break;
726           case Instruction::FSub:
727             GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break;
728           case Instruction::FMul:
729             GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break;
730           case Instruction::FDiv:
731             GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break;
732           case Instruction::FRem:
733             GV.FloatVal = std::fmod(LHS.FloatVal,RHS.FloatVal); break;
734         }
735         break;
736       case Type::DoubleTyID:
737         switch (CE->getOpcode()) {
738           default: llvm_unreachable("Invalid double opcode");
739           case Instruction::FAdd:
740             GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break;
741           case Instruction::FSub:
742             GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break;
743           case Instruction::FMul:
744             GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break;
745           case Instruction::FDiv:
746             GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break;
747           case Instruction::FRem:
748             GV.DoubleVal = std::fmod(LHS.DoubleVal,RHS.DoubleVal); break;
749         }
750         break;
751       case Type::X86_FP80TyID:
752       case Type::PPC_FP128TyID:
753       case Type::FP128TyID: {
754         APFloat apfLHS = APFloat(LHS.IntVal);
755         switch (CE->getOpcode()) {
756           default: llvm_unreachable("Invalid long double opcode");
757           case Instruction::FAdd:
758             apfLHS.add(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
759             GV.IntVal = apfLHS.bitcastToAPInt();
760             break;
761           case Instruction::FSub:
762             apfLHS.subtract(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
763             GV.IntVal = apfLHS.bitcastToAPInt();
764             break;
765           case Instruction::FMul:
766             apfLHS.multiply(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
767             GV.IntVal = apfLHS.bitcastToAPInt();
768             break;
769           case Instruction::FDiv:
770             apfLHS.divide(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
771             GV.IntVal = apfLHS.bitcastToAPInt();
772             break;
773           case Instruction::FRem:
774             apfLHS.mod(APFloat(RHS.IntVal), APFloat::rmNearestTiesToEven);
775             GV.IntVal = apfLHS.bitcastToAPInt();
776             break;
777           }
778         }
779         break;
780       }
781       return GV;
782     }
783     default:
784       break;
785     }
786
787     SmallString<256> Msg;
788     raw_svector_ostream OS(Msg);
789     OS << "ConstantExpr not handled: " << *CE;
790     report_fatal_error(OS.str());
791   }
792
793   // Otherwise, we have a simple constant.
794   GenericValue Result;
795   switch (C->getType()->getTypeID()) {
796   case Type::FloatTyID:
797     Result.FloatVal = cast<ConstantFP>(C)->getValueAPF().convertToFloat();
798     break;
799   case Type::DoubleTyID:
800     Result.DoubleVal = cast<ConstantFP>(C)->getValueAPF().convertToDouble();
801     break;
802   case Type::X86_FP80TyID:
803   case Type::FP128TyID:
804   case Type::PPC_FP128TyID:
805     Result.IntVal = cast <ConstantFP>(C)->getValueAPF().bitcastToAPInt();
806     break;
807   case Type::IntegerTyID:
808     Result.IntVal = cast<ConstantInt>(C)->getValue();
809     break;
810   case Type::PointerTyID:
811     if (isa<ConstantPointerNull>(C))
812       Result.PointerVal = 0;
813     else if (const Function *F = dyn_cast<Function>(C))
814       Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F)));
815     else if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(C))
816       Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV)));
817     else if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
818       Result = PTOGV(getPointerToBasicBlock(const_cast<BasicBlock*>(
819                                                         BA->getBasicBlock())));
820     else
821       llvm_unreachable("Unknown constant pointer type!");
822     break;
823   default:
824     SmallString<256> Msg;
825     raw_svector_ostream OS(Msg);
826     OS << "ERROR: Constant unimplemented for type: " << *C->getType();
827     report_fatal_error(OS.str());
828   }
829
830   return Result;
831 }
832
833 /// StoreIntToMemory - Fills the StoreBytes bytes of memory starting from Dst
834 /// with the integer held in IntVal.
835 static void StoreIntToMemory(const APInt &IntVal, uint8_t *Dst,
836                              unsigned StoreBytes) {
837   assert((IntVal.getBitWidth()+7)/8 >= StoreBytes && "Integer too small!");
838   const uint8_t *Src = (const uint8_t *)IntVal.getRawData();
839
840   if (sys::isLittleEndianHost()) {
841     // Little-endian host - the source is ordered from LSB to MSB.  Order the
842     // destination from LSB to MSB: Do a straight copy.
843     memcpy(Dst, Src, StoreBytes);
844   } else {
845     // Big-endian host - the source is an array of 64 bit words ordered from
846     // LSW to MSW.  Each word is ordered from MSB to LSB.  Order the destination
847     // from MSB to LSB: Reverse the word order, but not the bytes in a word.
848     while (StoreBytes > sizeof(uint64_t)) {
849       StoreBytes -= sizeof(uint64_t);
850       // May not be aligned so use memcpy.
851       memcpy(Dst + StoreBytes, Src, sizeof(uint64_t));
852       Src += sizeof(uint64_t);
853     }
854
855     memcpy(Dst, Src + sizeof(uint64_t) - StoreBytes, StoreBytes);
856   }
857 }
858
859 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val,
860                                          GenericValue *Ptr, Type *Ty) {
861   const unsigned StoreBytes = getDataLayout()->getTypeStoreSize(Ty);
862
863   switch (Ty->getTypeID()) {
864   case Type::IntegerTyID:
865     StoreIntToMemory(Val.IntVal, (uint8_t*)Ptr, StoreBytes);
866     break;
867   case Type::FloatTyID:
868     *((float*)Ptr) = Val.FloatVal;
869     break;
870   case Type::DoubleTyID:
871     *((double*)Ptr) = Val.DoubleVal;
872     break;
873   case Type::X86_FP80TyID:
874     memcpy(Ptr, Val.IntVal.getRawData(), 10);
875     break;
876   case Type::PointerTyID:
877     // Ensure 64 bit target pointers are fully initialized on 32 bit hosts.
878     if (StoreBytes != sizeof(PointerTy))
879       memset(&(Ptr->PointerVal), 0, StoreBytes);
880
881     *((PointerTy*)Ptr) = Val.PointerVal;
882     break;
883   default:
884     dbgs() << "Cannot store value of type " << *Ty << "!\n";
885   }
886
887   if (sys::isLittleEndianHost() != getDataLayout()->isLittleEndian())
888     // Host and target are different endian - reverse the stored bytes.
889     std::reverse((uint8_t*)Ptr, StoreBytes + (uint8_t*)Ptr);
890 }
891
892 /// LoadIntFromMemory - Loads the integer stored in the LoadBytes bytes starting
893 /// from Src into IntVal, which is assumed to be wide enough and to hold zero.
894 static void LoadIntFromMemory(APInt &IntVal, uint8_t *Src, unsigned LoadBytes) {
895   assert((IntVal.getBitWidth()+7)/8 >= LoadBytes && "Integer too small!");
896   uint8_t *Dst = (uint8_t *)IntVal.getRawData();
897
898   if (sys::isLittleEndianHost())
899     // Little-endian host - the destination must be ordered from LSB to MSB.
900     // The source is ordered from LSB to MSB: Do a straight copy.
901     memcpy(Dst, Src, LoadBytes);
902   else {
903     // Big-endian - the destination is an array of 64 bit words ordered from
904     // LSW to MSW.  Each word must be ordered from MSB to LSB.  The source is
905     // ordered from MSB to LSB: Reverse the word order, but not the bytes in
906     // a word.
907     while (LoadBytes > sizeof(uint64_t)) {
908       LoadBytes -= sizeof(uint64_t);
909       // May not be aligned so use memcpy.
910       memcpy(Dst, Src + LoadBytes, sizeof(uint64_t));
911       Dst += sizeof(uint64_t);
912     }
913
914     memcpy(Dst + sizeof(uint64_t) - LoadBytes, Src, LoadBytes);
915   }
916 }
917
918 /// FIXME: document
919 ///
920 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result,
921                                           GenericValue *Ptr,
922                                           Type *Ty) {
923   const unsigned LoadBytes = getDataLayout()->getTypeStoreSize(Ty);
924
925   switch (Ty->getTypeID()) {
926   case Type::IntegerTyID:
927     // An APInt with all words initially zero.
928     Result.IntVal = APInt(cast<IntegerType>(Ty)->getBitWidth(), 0);
929     LoadIntFromMemory(Result.IntVal, (uint8_t*)Ptr, LoadBytes);
930     break;
931   case Type::FloatTyID:
932     Result.FloatVal = *((float*)Ptr);
933     break;
934   case Type::DoubleTyID:
935     Result.DoubleVal = *((double*)Ptr);
936     break;
937   case Type::PointerTyID:
938     Result.PointerVal = *((PointerTy*)Ptr);
939     break;
940   case Type::X86_FP80TyID: {
941     // This is endian dependent, but it will only work on x86 anyway.
942     // FIXME: Will not trap if loading a signaling NaN.
943     uint64_t y[2];
944     memcpy(y, Ptr, 10);
945     Result.IntVal = APInt(80, y);
946     break;
947   }
948   default:
949     SmallString<256> Msg;
950     raw_svector_ostream OS(Msg);
951     OS << "Cannot load value of type " << *Ty << "!";
952     report_fatal_error(OS.str());
953   }
954 }
955
956 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) {
957   DEBUG(dbgs() << "JIT: Initializing " << Addr << " ");
958   DEBUG(Init->dump());
959   if (isa<UndefValue>(Init))
960     return;
961   
962   if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
963     unsigned ElementSize =
964       getDataLayout()->getTypeAllocSize(CP->getType()->getElementType());
965     for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
966       InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
967     return;
968   }
969   
970   if (isa<ConstantAggregateZero>(Init)) {
971     memset(Addr, 0, (size_t)getDataLayout()->getTypeAllocSize(Init->getType()));
972     return;
973   }
974   
975   if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
976     unsigned ElementSize =
977       getDataLayout()->getTypeAllocSize(CPA->getType()->getElementType());
978     for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
979       InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
980     return;
981   }
982   
983   if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(Init)) {
984     const StructLayout *SL =
985       getDataLayout()->getStructLayout(cast<StructType>(CPS->getType()));
986     for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i)
987       InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i));
988     return;
989   }
990
991   if (const ConstantDataSequential *CDS =
992                dyn_cast<ConstantDataSequential>(Init)) {
993     // CDS is already laid out in host memory order.
994     StringRef Data = CDS->getRawDataValues();
995     memcpy(Addr, Data.data(), Data.size());
996     return;
997   }
998
999   if (Init->getType()->isFirstClassType()) {
1000     GenericValue Val = getConstantValue(Init);
1001     StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType());
1002     return;
1003   }
1004
1005   DEBUG(dbgs() << "Bad Type: " << *Init->getType() << "\n");
1006   llvm_unreachable("Unknown constant type to initialize memory with!");
1007 }
1008
1009 /// EmitGlobals - Emit all of the global variables to memory, storing their
1010 /// addresses into GlobalAddress.  This must make sure to copy the contents of
1011 /// their initializers into the memory.
1012 void ExecutionEngine::emitGlobals() {
1013   // Loop over all of the global variables in the program, allocating the memory
1014   // to hold them.  If there is more than one module, do a prepass over globals
1015   // to figure out how the different modules should link together.
1016   std::map<std::pair<std::string, Type*>,
1017            const GlobalValue*> LinkedGlobalsMap;
1018
1019   if (Modules.size() != 1) {
1020     for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1021       Module &M = *Modules[m];
1022       for (Module::const_global_iterator I = M.global_begin(),
1023            E = M.global_end(); I != E; ++I) {
1024         const GlobalValue *GV = I;
1025         if (GV->hasLocalLinkage() || GV->isDeclaration() ||
1026             GV->hasAppendingLinkage() || !GV->hasName())
1027           continue;// Ignore external globals and globals with internal linkage.
1028
1029         const GlobalValue *&GVEntry =
1030           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1031
1032         // If this is the first time we've seen this global, it is the canonical
1033         // version.
1034         if (!GVEntry) {
1035           GVEntry = GV;
1036           continue;
1037         }
1038
1039         // If the existing global is strong, never replace it.
1040         if (GVEntry->hasExternalLinkage() ||
1041             GVEntry->hasDLLImportLinkage() ||
1042             GVEntry->hasDLLExportLinkage())
1043           continue;
1044
1045         // Otherwise, we know it's linkonce/weak, replace it if this is a strong
1046         // symbol.  FIXME is this right for common?
1047         if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage())
1048           GVEntry = GV;
1049       }
1050     }
1051   }
1052
1053   std::vector<const GlobalValue*> NonCanonicalGlobals;
1054   for (unsigned m = 0, e = Modules.size(); m != e; ++m) {
1055     Module &M = *Modules[m];
1056     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1057          I != E; ++I) {
1058       // In the multi-module case, see what this global maps to.
1059       if (!LinkedGlobalsMap.empty()) {
1060         if (const GlobalValue *GVEntry =
1061               LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) {
1062           // If something else is the canonical global, ignore this one.
1063           if (GVEntry != &*I) {
1064             NonCanonicalGlobals.push_back(I);
1065             continue;
1066           }
1067         }
1068       }
1069
1070       if (!I->isDeclaration()) {
1071         addGlobalMapping(I, getMemoryForGV(I));
1072       } else {
1073         // External variable reference. Try to use the dynamic loader to
1074         // get a pointer to it.
1075         if (void *SymAddr =
1076             sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName()))
1077           addGlobalMapping(I, SymAddr);
1078         else {
1079           report_fatal_error("Could not resolve external global address: "
1080                             +I->getName());
1081         }
1082       }
1083     }
1084
1085     // If there are multiple modules, map the non-canonical globals to their
1086     // canonical location.
1087     if (!NonCanonicalGlobals.empty()) {
1088       for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) {
1089         const GlobalValue *GV = NonCanonicalGlobals[i];
1090         const GlobalValue *CGV =
1091           LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())];
1092         void *Ptr = getPointerToGlobalIfAvailable(CGV);
1093         assert(Ptr && "Canonical global wasn't codegen'd!");
1094         addGlobalMapping(GV, Ptr);
1095       }
1096     }
1097
1098     // Now that all of the globals are set up in memory, loop through them all
1099     // and initialize their contents.
1100     for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
1101          I != E; ++I) {
1102       if (!I->isDeclaration()) {
1103         if (!LinkedGlobalsMap.empty()) {
1104           if (const GlobalValue *GVEntry =
1105                 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())])
1106             if (GVEntry != &*I)  // Not the canonical variable.
1107               continue;
1108         }
1109         EmitGlobalVariable(I);
1110       }
1111     }
1112   }
1113 }
1114
1115 // EmitGlobalVariable - This method emits the specified global variable to the
1116 // address specified in GlobalAddresses, or allocates new memory if it's not
1117 // already in the map.
1118 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) {
1119   void *GA = getPointerToGlobalIfAvailable(GV);
1120
1121   if (GA == 0) {
1122     // If it's not already specified, allocate memory for the global.
1123     GA = getMemoryForGV(GV);
1124     addGlobalMapping(GV, GA);
1125   }
1126
1127   // Don't initialize if it's thread local, let the client do it.
1128   if (!GV->isThreadLocal())
1129     InitializeMemory(GV->getInitializer(), GA);
1130
1131   Type *ElTy = GV->getType()->getElementType();
1132   size_t GVSize = (size_t)getDataLayout()->getTypeAllocSize(ElTy);
1133   NumInitBytes += (unsigned)GVSize;
1134   ++NumGlobals;
1135 }
1136
1137 ExecutionEngineState::ExecutionEngineState(ExecutionEngine &EE)
1138   : EE(EE), GlobalAddressMap(this) {
1139 }
1140
1141 sys::Mutex *
1142 ExecutionEngineState::AddressMapConfig::getMutex(ExecutionEngineState *EES) {
1143   return &EES->EE.lock;
1144 }
1145
1146 void ExecutionEngineState::AddressMapConfig::onDelete(ExecutionEngineState *EES,
1147                                                       const GlobalValue *Old) {
1148   void *OldVal = EES->GlobalAddressMap.lookup(Old);
1149   EES->GlobalAddressReverseMap.erase(OldVal);
1150 }
1151
1152 void ExecutionEngineState::AddressMapConfig::onRAUW(ExecutionEngineState *,
1153                                                     const GlobalValue *,
1154                                                     const GlobalValue *) {
1155   llvm_unreachable("The ExecutionEngine doesn't know how to handle a"
1156                    " RAUW on a value it has a global mapping for.");
1157 }