SelectionDAG: Cleanup integer bin op promotion functions.
[oota-llvm.git] / lib / CodeGen / WinEHPrepare.cpp
1 //===-- WinEHPrepare - Prepare exception handling for code generation ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass lowers LLVM IR exception handling into something closer to what the
11 // backend wants for functions using a personality function from a runtime
12 // provided by MSVC. Functions with other personality functions are left alone
13 // and may be prepared by other passes. In particular, all supported MSVC
14 // personality functions require cleanup code to be outlined, and the C++
15 // personality requires catch handler code to be outlined.
16 //
17 //===----------------------------------------------------------------------===//
18
19 #include "llvm/CodeGen/Passes.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/Analysis/CFG.h"
22 #include "llvm/Analysis/EHPersonalities.h"
23 #include "llvm/CodeGen/WinEHFuncInfo.h"
24 #include "llvm/Pass.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
28 #include "llvm/Transforms/Utils/Cloning.h"
29 #include "llvm/Transforms/Utils/Local.h"
30 #include "llvm/Transforms/Utils/SSAUpdater.h"
31
32 using namespace llvm;
33
34 #define DEBUG_TYPE "winehprepare"
35
36 static cl::opt<bool> DisableDemotion(
37     "disable-demotion", cl::Hidden,
38     cl::desc(
39         "Clone multicolor basic blocks but do not demote cross funclet values"),
40     cl::init(false));
41
42 static cl::opt<bool> DisableCleanups(
43     "disable-cleanups", cl::Hidden,
44     cl::desc("Do not remove implausible terminators or other similar cleanups"),
45     cl::init(false));
46
47 namespace {
48   
49 class WinEHPrepare : public FunctionPass {
50 public:
51   static char ID; // Pass identification, replacement for typeid.
52   WinEHPrepare(const TargetMachine *TM = nullptr) : FunctionPass(ID) {}
53
54   bool runOnFunction(Function &Fn) override;
55
56   bool doFinalization(Module &M) override;
57
58   void getAnalysisUsage(AnalysisUsage &AU) const override;
59
60   const char *getPassName() const override {
61     return "Windows exception handling preparation";
62   }
63
64 private:
65   void insertPHIStores(PHINode *OriginalPHI, AllocaInst *SpillSlot);
66   void
67   insertPHIStore(BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
68                  SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist);
69   AllocaInst *insertPHILoads(PHINode *PN, Function &F);
70   void replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
71                           DenseMap<BasicBlock *, Value *> &Loads, Function &F);
72   bool prepareExplicitEH(Function &F);
73   void colorFunclets(Function &F);
74
75   void demotePHIsOnFunclets(Function &F);
76   void cloneCommonBlocks(Function &F);
77   void removeImplausibleInstructions(Function &F);
78   void cleanupPreparedFunclets(Function &F);
79   void verifyPreparedFunclets(Function &F);
80
81   // All fields are reset by runOnFunction.
82   EHPersonality Personality = EHPersonality::Unknown;
83
84   DenseMap<BasicBlock *, ColorVector> BlockColors;
85   MapVector<BasicBlock *, std::vector<BasicBlock *>> FuncletBlocks;
86 };
87
88 } // end anonymous namespace
89
90 char WinEHPrepare::ID = 0;
91 INITIALIZE_TM_PASS(WinEHPrepare, "winehprepare", "Prepare Windows exceptions",
92                    false, false)
93
94 FunctionPass *llvm::createWinEHPass(const TargetMachine *TM) {
95   return new WinEHPrepare(TM);
96 }
97
98 bool WinEHPrepare::runOnFunction(Function &Fn) {
99   if (!Fn.hasPersonalityFn())
100     return false;
101
102   // Classify the personality to see what kind of preparation we need.
103   Personality = classifyEHPersonality(Fn.getPersonalityFn());
104
105   // Do nothing if this is not a funclet-based personality.
106   if (!isFuncletEHPersonality(Personality))
107     return false;
108
109   return prepareExplicitEH(Fn);
110 }
111
112 bool WinEHPrepare::doFinalization(Module &M) { return false; }
113
114 void WinEHPrepare::getAnalysisUsage(AnalysisUsage &AU) const {}
115
116 static int addUnwindMapEntry(WinEHFuncInfo &FuncInfo, int ToState,
117                              const BasicBlock *BB) {
118   CxxUnwindMapEntry UME;
119   UME.ToState = ToState;
120   UME.Cleanup = BB;
121   FuncInfo.CxxUnwindMap.push_back(UME);
122   return FuncInfo.getLastStateNumber();
123 }
124
125 static void addTryBlockMapEntry(WinEHFuncInfo &FuncInfo, int TryLow,
126                                 int TryHigh, int CatchHigh,
127                                 ArrayRef<const CatchPadInst *> Handlers) {
128   WinEHTryBlockMapEntry TBME;
129   TBME.TryLow = TryLow;
130   TBME.TryHigh = TryHigh;
131   TBME.CatchHigh = CatchHigh;
132   assert(TBME.TryLow <= TBME.TryHigh);
133   for (const CatchPadInst *CPI : Handlers) {
134     WinEHHandlerType HT;
135     Constant *TypeInfo = cast<Constant>(CPI->getArgOperand(0));
136     if (TypeInfo->isNullValue())
137       HT.TypeDescriptor = nullptr;
138     else
139       HT.TypeDescriptor = cast<GlobalVariable>(TypeInfo->stripPointerCasts());
140     HT.Adjectives = cast<ConstantInt>(CPI->getArgOperand(1))->getZExtValue();
141     HT.Handler = CPI->getParent();
142     if (isa<ConstantPointerNull>(CPI->getArgOperand(2)))
143       HT.CatchObj.Alloca = nullptr;
144     else
145       HT.CatchObj.Alloca = cast<AllocaInst>(CPI->getArgOperand(2));
146     TBME.HandlerArray.push_back(HT);
147   }
148   FuncInfo.TryBlockMap.push_back(TBME);
149 }
150
151 static BasicBlock *getCleanupRetUnwindDest(const CleanupPadInst *CleanupPad) {
152   for (const User *U : CleanupPad->users())
153     if (const auto *CRI = dyn_cast<CleanupReturnInst>(U))
154       return CRI->getUnwindDest();
155   return nullptr;
156 }
157
158 static void calculateStateNumbersForInvokes(const Function *Fn,
159                                             WinEHFuncInfo &FuncInfo) {
160   auto *F = const_cast<Function *>(Fn);
161   DenseMap<BasicBlock *, ColorVector> BlockColors = colorEHFunclets(*F);
162   for (BasicBlock &BB : *F) {
163     auto *II = dyn_cast<InvokeInst>(BB.getTerminator());
164     if (!II)
165       continue;
166
167     auto &BBColors = BlockColors[&BB];
168     assert(BBColors.size() == 1 &&
169            "multi-color BB not removed by preparation");
170     BasicBlock *FuncletEntryBB = BBColors.front();
171
172     BasicBlock *FuncletUnwindDest;
173     auto *FuncletPad =
174         dyn_cast<FuncletPadInst>(FuncletEntryBB->getFirstNonPHI());
175     assert(FuncletPad || FuncletEntryBB == &Fn->getEntryBlock());
176     if (!FuncletPad)
177       FuncletUnwindDest = nullptr;
178     else if (auto *CatchPad = dyn_cast<CatchPadInst>(FuncletPad))
179       FuncletUnwindDest = CatchPad->getCatchSwitch()->getUnwindDest();
180     else if (auto *CleanupPad = dyn_cast<CleanupPadInst>(FuncletPad))
181       FuncletUnwindDest = getCleanupRetUnwindDest(CleanupPad);
182     else
183       llvm_unreachable("unexpected funclet pad!");
184
185     BasicBlock *InvokeUnwindDest = II->getUnwindDest();
186     int BaseState = -1;
187     if (FuncletUnwindDest == InvokeUnwindDest) {
188       auto BaseStateI = FuncInfo.FuncletBaseStateMap.find(FuncletPad);
189       if (BaseStateI != FuncInfo.FuncletBaseStateMap.end())
190         BaseState = BaseStateI->second;
191     }
192
193     if (BaseState != -1) {
194       FuncInfo.InvokeStateMap[II] = BaseState;
195     } else {
196       Instruction *PadInst = InvokeUnwindDest->getFirstNonPHI();
197       assert(FuncInfo.EHPadStateMap.count(PadInst) && "EH Pad has no state!");
198       FuncInfo.InvokeStateMap[II] = FuncInfo.EHPadStateMap[PadInst];
199     }
200   }
201 }
202
203 // Given BB which ends in an unwind edge, return the EHPad that this BB belongs
204 // to. If the unwind edge came from an invoke, return null.
205 static const BasicBlock *getEHPadFromPredecessor(const BasicBlock *BB,
206                                                  Value *ParentPad) {
207   const TerminatorInst *TI = BB->getTerminator();
208   if (isa<InvokeInst>(TI))
209     return nullptr;
210   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(TI)) {
211     if (CatchSwitch->getParentPad() != ParentPad)
212       return nullptr;
213     return BB;
214   }
215   assert(!TI->isEHPad() && "unexpected EHPad!");
216   auto *CleanupPad = cast<CleanupReturnInst>(TI)->getCleanupPad();
217   if (CleanupPad->getParentPad() != ParentPad)
218     return nullptr;
219   return CleanupPad->getParent();
220 }
221
222 static void calculateCXXStateNumbers(WinEHFuncInfo &FuncInfo,
223                                      const Instruction *FirstNonPHI,
224                                      int ParentState) {
225   const BasicBlock *BB = FirstNonPHI->getParent();
226   assert(BB->isEHPad() && "not a funclet!");
227
228   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
229     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
230            "shouldn't revist catch funclets!");
231
232     SmallVector<const CatchPadInst *, 2> Handlers;
233     for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
234       auto *CatchPad = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
235       Handlers.push_back(CatchPad);
236     }
237     int TryLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
238     FuncInfo.EHPadStateMap[CatchSwitch] = TryLow;
239     for (const BasicBlock *PredBlock : predecessors(BB))
240       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
241                                                CatchSwitch->getParentPad())))
242         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
243                                  TryLow);
244     int CatchLow = addUnwindMapEntry(FuncInfo, ParentState, nullptr);
245
246     // catchpads are separate funclets in C++ EH due to the way rethrow works.
247     int TryHigh = CatchLow - 1;
248     for (const auto *CatchPad : Handlers) {
249       FuncInfo.FuncletBaseStateMap[CatchPad] = CatchLow;
250       for (const User *U : CatchPad->users()) {
251         const auto *UserI = cast<Instruction>(U);
252         if (UserI->isEHPad())
253           calculateCXXStateNumbers(FuncInfo, UserI, CatchLow);
254       }
255     }
256     int CatchHigh = FuncInfo.getLastStateNumber();
257     addTryBlockMapEntry(FuncInfo, TryLow, TryHigh, CatchHigh, Handlers);
258     DEBUG(dbgs() << "TryLow[" << BB->getName() << "]: " << TryLow << '\n');
259     DEBUG(dbgs() << "TryHigh[" << BB->getName() << "]: " << TryHigh << '\n');
260     DEBUG(dbgs() << "CatchHigh[" << BB->getName() << "]: " << CatchHigh
261                  << '\n');
262   } else {
263     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
264
265     // It's possible for a cleanup to be visited twice: it might have multiple
266     // cleanupret instructions.
267     if (FuncInfo.EHPadStateMap.count(CleanupPad))
268       return;
269
270     int CleanupState = addUnwindMapEntry(FuncInfo, ParentState, BB);
271     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
272     DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
273                  << BB->getName() << '\n');
274     for (const BasicBlock *PredBlock : predecessors(BB)) {
275       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
276                                                CleanupPad->getParentPad()))) {
277         calculateCXXStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
278                                  CleanupState);
279       }
280     }
281     for (const User *U : CleanupPad->users()) {
282       const auto *UserI = cast<Instruction>(U);
283       if (UserI->isEHPad())
284         report_fatal_error("Cleanup funclets for the MSVC++ personality cannot "
285                            "contain exceptional actions");
286     }
287   }
288 }
289
290 static int addSEHExcept(WinEHFuncInfo &FuncInfo, int ParentState,
291                         const Function *Filter, const BasicBlock *Handler) {
292   SEHUnwindMapEntry Entry;
293   Entry.ToState = ParentState;
294   Entry.IsFinally = false;
295   Entry.Filter = Filter;
296   Entry.Handler = Handler;
297   FuncInfo.SEHUnwindMap.push_back(Entry);
298   return FuncInfo.SEHUnwindMap.size() - 1;
299 }
300
301 static int addSEHFinally(WinEHFuncInfo &FuncInfo, int ParentState,
302                          const BasicBlock *Handler) {
303   SEHUnwindMapEntry Entry;
304   Entry.ToState = ParentState;
305   Entry.IsFinally = true;
306   Entry.Filter = nullptr;
307   Entry.Handler = Handler;
308   FuncInfo.SEHUnwindMap.push_back(Entry);
309   return FuncInfo.SEHUnwindMap.size() - 1;
310 }
311
312 static void calculateSEHStateNumbers(WinEHFuncInfo &FuncInfo,
313                                      const Instruction *FirstNonPHI,
314                                      int ParentState) {
315   const BasicBlock *BB = FirstNonPHI->getParent();
316   assert(BB->isEHPad() && "no a funclet!");
317
318   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(FirstNonPHI)) {
319     assert(FuncInfo.EHPadStateMap.count(CatchSwitch) == 0 &&
320            "shouldn't revist catch funclets!");
321
322     // Extract the filter function and the __except basic block and create a
323     // state for them.
324     assert(CatchSwitch->getNumHandlers() == 1 &&
325            "SEH doesn't have multiple handlers per __try");
326     const auto *CatchPad =
327         cast<CatchPadInst>((*CatchSwitch->handler_begin())->getFirstNonPHI());
328     const BasicBlock *CatchPadBB = CatchPad->getParent();
329     const Constant *FilterOrNull =
330         cast<Constant>(CatchPad->getArgOperand(0)->stripPointerCasts());
331     const Function *Filter = dyn_cast<Function>(FilterOrNull);
332     assert((Filter || FilterOrNull->isNullValue()) &&
333            "unexpected filter value");
334     int TryState = addSEHExcept(FuncInfo, ParentState, Filter, CatchPadBB);
335
336     // Everything in the __try block uses TryState as its parent state.
337     FuncInfo.EHPadStateMap[CatchSwitch] = TryState;
338     DEBUG(dbgs() << "Assigning state #" << TryState << " to BB "
339                  << CatchPadBB->getName() << '\n');
340     for (const BasicBlock *PredBlock : predecessors(BB))
341       if ((PredBlock = getEHPadFromPredecessor(PredBlock,
342                                                CatchSwitch->getParentPad())))
343         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
344                                  TryState);
345
346     // Everything in the __except block unwinds to ParentState, just like code
347     // outside the __try.
348     for (const User *U : CatchPad->users()) {
349       const auto *UserI = cast<Instruction>(U);
350       if (UserI->isEHPad()) {
351         calculateSEHStateNumbers(FuncInfo, UserI, ParentState);
352       }
353     }
354   } else {
355     auto *CleanupPad = cast<CleanupPadInst>(FirstNonPHI);
356
357     // It's possible for a cleanup to be visited twice: it might have multiple
358     // cleanupret instructions.
359     if (FuncInfo.EHPadStateMap.count(CleanupPad))
360       return;
361
362     int CleanupState = addSEHFinally(FuncInfo, ParentState, BB);
363     FuncInfo.EHPadStateMap[CleanupPad] = CleanupState;
364     DEBUG(dbgs() << "Assigning state #" << CleanupState << " to BB "
365                  << BB->getName() << '\n');
366     for (const BasicBlock *PredBlock : predecessors(BB))
367       if ((PredBlock =
368                getEHPadFromPredecessor(PredBlock, CleanupPad->getParentPad())))
369         calculateSEHStateNumbers(FuncInfo, PredBlock->getFirstNonPHI(),
370                                  CleanupState);
371     for (const User *U : CleanupPad->users()) {
372       const auto *UserI = cast<Instruction>(U);
373       if (UserI->isEHPad())
374         report_fatal_error("Cleanup funclets for the SEH personality cannot "
375                            "contain exceptional actions");
376     }
377   }
378 }
379
380 static bool isTopLevelPadForMSVC(const Instruction *EHPad) {
381   if (auto *CatchSwitch = dyn_cast<CatchSwitchInst>(EHPad))
382     return isa<ConstantTokenNone>(CatchSwitch->getParentPad()) &&
383            CatchSwitch->unwindsToCaller();
384   if (auto *CleanupPad = dyn_cast<CleanupPadInst>(EHPad))
385     return isa<ConstantTokenNone>(CleanupPad->getParentPad()) &&
386            getCleanupRetUnwindDest(CleanupPad) == nullptr;
387   if (isa<CatchPadInst>(EHPad))
388     return false;
389   llvm_unreachable("unexpected EHPad!");
390 }
391
392 void llvm::calculateSEHStateNumbers(const Function *Fn,
393                                     WinEHFuncInfo &FuncInfo) {
394   // Don't compute state numbers twice.
395   if (!FuncInfo.SEHUnwindMap.empty())
396     return;
397
398   for (const BasicBlock &BB : *Fn) {
399     if (!BB.isEHPad())
400       continue;
401     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
402     if (!isTopLevelPadForMSVC(FirstNonPHI))
403       continue;
404     ::calculateSEHStateNumbers(FuncInfo, FirstNonPHI, -1);
405   }
406
407   calculateStateNumbersForInvokes(Fn, FuncInfo);
408 }
409
410 void llvm::calculateWinCXXEHStateNumbers(const Function *Fn,
411                                          WinEHFuncInfo &FuncInfo) {
412   // Return if it's already been done.
413   if (!FuncInfo.EHPadStateMap.empty())
414     return;
415
416   for (const BasicBlock &BB : *Fn) {
417     if (!BB.isEHPad())
418       continue;
419     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
420     if (!isTopLevelPadForMSVC(FirstNonPHI))
421       continue;
422     calculateCXXStateNumbers(FuncInfo, FirstNonPHI, -1);
423   }
424
425   calculateStateNumbersForInvokes(Fn, FuncInfo);
426 }
427
428 static int addClrEHHandler(WinEHFuncInfo &FuncInfo, int ParentState,
429                            ClrHandlerType HandlerType, uint32_t TypeToken,
430                            const BasicBlock *Handler) {
431   ClrEHUnwindMapEntry Entry;
432   Entry.Parent = ParentState;
433   Entry.Handler = Handler;
434   Entry.HandlerType = HandlerType;
435   Entry.TypeToken = TypeToken;
436   FuncInfo.ClrEHUnwindMap.push_back(Entry);
437   return FuncInfo.ClrEHUnwindMap.size() - 1;
438 }
439
440 void llvm::calculateClrEHStateNumbers(const Function *Fn,
441                                       WinEHFuncInfo &FuncInfo) {
442   // Return if it's already been done.
443   if (!FuncInfo.EHPadStateMap.empty())
444     return;
445
446   SmallVector<std::pair<const Instruction *, int>, 8> Worklist;
447
448   // Each pad needs to be able to refer to its parent, so scan the function
449   // looking for top-level handlers and seed the worklist with them.
450   for (const BasicBlock &BB : *Fn) {
451     if (!BB.isEHPad())
452       continue;
453     if (BB.isLandingPad())
454       report_fatal_error("CoreCLR EH cannot use landingpads");
455     const Instruction *FirstNonPHI = BB.getFirstNonPHI();
456     if (!isTopLevelPadForMSVC(FirstNonPHI))
457       continue;
458     // queue this with sentinel parent state -1 to mean unwind to caller.
459     Worklist.emplace_back(FirstNonPHI, -1);
460   }
461
462   while (!Worklist.empty()) {
463     const Instruction *Pad;
464     int ParentState;
465     std::tie(Pad, ParentState) = Worklist.pop_back_val();
466
467     Value *ParentPad;
468     int PredState;
469     if (const CleanupPadInst *Cleanup = dyn_cast<CleanupPadInst>(Pad)) {
470       // A cleanup can have multiple exits; don't re-process after the first.
471       if (FuncInfo.EHPadStateMap.count(Cleanup))
472         continue;
473       // CoreCLR personality uses arity to distinguish faults from finallies.
474       const BasicBlock *PadBlock = Cleanup->getParent();
475       ClrHandlerType HandlerType =
476           (Cleanup->getNumOperands() ? ClrHandlerType::Fault
477                                      : ClrHandlerType::Finally);
478       int NewState =
479           addClrEHHandler(FuncInfo, ParentState, HandlerType, 0, PadBlock);
480       FuncInfo.EHPadStateMap[Cleanup] = NewState;
481       // Propagate the new state to all preds of the cleanup
482       ParentPad = Cleanup->getParentPad();
483       PredState = NewState;
484     } else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(Pad)) {
485       SmallVector<const CatchPadInst *, 1> Handlers;
486       for (const BasicBlock *CatchPadBB : CatchSwitch->handlers()) {
487         const auto *Catch = cast<CatchPadInst>(CatchPadBB->getFirstNonPHI());
488         Handlers.push_back(Catch);
489       }
490       FuncInfo.EHPadStateMap[CatchSwitch] = ParentState;
491       int NewState = ParentState;
492       for (auto HandlerI = Handlers.rbegin(), HandlerE = Handlers.rend();
493            HandlerI != HandlerE; ++HandlerI) {
494         const CatchPadInst *Catch = *HandlerI;
495         const BasicBlock *PadBlock = Catch->getParent();
496         uint32_t TypeToken = static_cast<uint32_t>(
497             cast<ConstantInt>(Catch->getArgOperand(0))->getZExtValue());
498         NewState = addClrEHHandler(FuncInfo, NewState, ClrHandlerType::Catch,
499                                    TypeToken, PadBlock);
500         FuncInfo.EHPadStateMap[Catch] = NewState;
501       }
502       for (const auto *CatchPad : Handlers) {
503         for (const User *U : CatchPad->users()) {
504           const auto *UserI = cast<Instruction>(U);
505           if (UserI->isEHPad())
506             Worklist.emplace_back(UserI, ParentState);
507         }
508       }
509       PredState = NewState;
510       ParentPad = CatchSwitch->getParentPad();
511     } else {
512       llvm_unreachable("Unexpected EH pad");
513     }
514
515     // Queue all predecessors with the given state
516     for (const BasicBlock *Pred : predecessors(Pad->getParent())) {
517       if ((Pred = getEHPadFromPredecessor(Pred, ParentPad)))
518         Worklist.emplace_back(Pred->getFirstNonPHI(), PredState);
519     }
520   }
521
522   calculateStateNumbersForInvokes(Fn, FuncInfo);
523 }
524
525 void WinEHPrepare::colorFunclets(Function &F) {
526   BlockColors = colorEHFunclets(F);
527
528   // Invert the map from BB to colors to color to BBs.
529   for (BasicBlock &BB : F) {
530     ColorVector &Colors = BlockColors[&BB];
531     for (BasicBlock *Color : Colors)
532       FuncletBlocks[Color].push_back(&BB);
533   }
534 }
535
536 void llvm::calculateCatchReturnSuccessorColors(const Function *Fn,
537                                                WinEHFuncInfo &FuncInfo) {
538   for (const BasicBlock &BB : *Fn) {
539     const auto *CatchRet = dyn_cast<CatchReturnInst>(BB.getTerminator());
540     if (!CatchRet)
541       continue;
542     // A 'catchret' returns to the outer scope's color.
543     Value *ParentPad = CatchRet->getParentPad();
544     const BasicBlock *Color;
545     if (isa<ConstantTokenNone>(ParentPad))
546       Color = &Fn->getEntryBlock();
547     else
548       Color = cast<Instruction>(ParentPad)->getParent();
549     // Record the catchret successor's funclet membership.
550     FuncInfo.CatchRetSuccessorColorMap[CatchRet] = Color;
551   }
552 }
553
554 void WinEHPrepare::demotePHIsOnFunclets(Function &F) {
555   // Strip PHI nodes off of EH pads.
556   SmallVector<PHINode *, 16> PHINodes;
557   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
558     BasicBlock *BB = &*FI++;
559     if (!BB->isEHPad())
560       continue;
561     for (BasicBlock::iterator BI = BB->begin(), BE = BB->end(); BI != BE;) {
562       Instruction *I = &*BI++;
563       auto *PN = dyn_cast<PHINode>(I);
564       // Stop at the first non-PHI.
565       if (!PN)
566         break;
567
568       AllocaInst *SpillSlot = insertPHILoads(PN, F);
569       if (SpillSlot)
570         insertPHIStores(PN, SpillSlot);
571
572       PHINodes.push_back(PN);
573     }
574   }
575
576   for (auto *PN : PHINodes) {
577     // There may be lingering uses on other EH PHIs being removed
578     PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
579     PN->eraseFromParent();
580   }
581 }
582
583 void WinEHPrepare::cloneCommonBlocks(Function &F) {
584   // We need to clone all blocks which belong to multiple funclets.  Values are
585   // remapped throughout the funclet to propogate both the new instructions
586   // *and* the new basic blocks themselves.
587   for (auto &Funclets : FuncletBlocks) {
588     BasicBlock *FuncletPadBB = Funclets.first;
589     std::vector<BasicBlock *> &BlocksInFunclet = Funclets.second;
590
591     std::vector<std::pair<BasicBlock *, BasicBlock *>> Orig2Clone;
592     ValueToValueMapTy VMap;
593     for (BasicBlock *BB : BlocksInFunclet) {
594       ColorVector &ColorsForBB = BlockColors[BB];
595       // We don't need to do anything if the block is monochromatic.
596       size_t NumColorsForBB = ColorsForBB.size();
597       if (NumColorsForBB == 1)
598         continue;
599
600       DEBUG_WITH_TYPE("winehprepare-coloring",
601                       dbgs() << "  Cloning block \'" << BB->getName()
602                               << "\' for funclet \'" << FuncletPadBB->getName()
603                               << "\'.\n");
604
605       // Create a new basic block and copy instructions into it!
606       BasicBlock *CBB =
607           CloneBasicBlock(BB, VMap, Twine(".for.", FuncletPadBB->getName()));
608       // Insert the clone immediately after the original to ensure determinism
609       // and to keep the same relative ordering of any funclet's blocks.
610       CBB->insertInto(&F, BB->getNextNode());
611
612       // Add basic block mapping.
613       VMap[BB] = CBB;
614
615       // Record delta operations that we need to perform to our color mappings.
616       Orig2Clone.emplace_back(BB, CBB);
617     }
618
619     // If nothing was cloned, we're done cloning in this funclet.
620     if (Orig2Clone.empty())
621       continue;
622
623     // Update our color mappings to reflect that one block has lost a color and
624     // another has gained a color.
625     for (auto &BBMapping : Orig2Clone) {
626       BasicBlock *OldBlock = BBMapping.first;
627       BasicBlock *NewBlock = BBMapping.second;
628
629       BlocksInFunclet.push_back(NewBlock);
630       ColorVector &NewColors = BlockColors[NewBlock];
631       assert(NewColors.empty() && "A new block should only have one color!");
632       NewColors.push_back(FuncletPadBB);
633
634       DEBUG_WITH_TYPE("winehprepare-coloring",
635                       dbgs() << "  Assigned color \'" << FuncletPadBB->getName()
636                               << "\' to block \'" << NewBlock->getName()
637                               << "\'.\n");
638
639       BlocksInFunclet.erase(
640           std::remove(BlocksInFunclet.begin(), BlocksInFunclet.end(), OldBlock),
641           BlocksInFunclet.end());
642       ColorVector &OldColors = BlockColors[OldBlock];
643       OldColors.erase(
644           std::remove(OldColors.begin(), OldColors.end(), FuncletPadBB),
645           OldColors.end());
646
647       DEBUG_WITH_TYPE("winehprepare-coloring",
648                       dbgs() << "  Removed color \'" << FuncletPadBB->getName()
649                               << "\' from block \'" << OldBlock->getName()
650                               << "\'.\n");
651     }
652
653     // Loop over all of the instructions in this funclet, fixing up operand
654     // references as we go.  This uses VMap to do all the hard work.
655     for (BasicBlock *BB : BlocksInFunclet)
656       // Loop over all instructions, fixing each one as we find it...
657       for (Instruction &I : *BB)
658         RemapInstruction(&I, VMap,
659                          RF_IgnoreMissingEntries | RF_NoModuleLevelChanges);
660
661     auto UpdatePHIOnClonedBlock = [&](PHINode *PN, bool IsForOldBlock) {
662       unsigned NumPreds = PN->getNumIncomingValues();
663       for (unsigned PredIdx = 0, PredEnd = NumPreds; PredIdx != PredEnd;
664            ++PredIdx) {
665         BasicBlock *IncomingBlock = PN->getIncomingBlock(PredIdx);
666         ColorVector &IncomingColors = BlockColors[IncomingBlock];
667         bool BlockInFunclet = IncomingColors.size() == 1 &&
668                               IncomingColors.front() == FuncletPadBB;
669         if (IsForOldBlock != BlockInFunclet)
670           continue;
671         PN->removeIncomingValue(IncomingBlock, /*DeletePHIIfEmpty=*/false);
672         // Revisit the next entry.
673         --PredIdx;
674         --PredEnd;
675       }
676     };
677
678     for (auto &BBMapping : Orig2Clone) {
679       BasicBlock *OldBlock = BBMapping.first;
680       BasicBlock *NewBlock = BBMapping.second;
681       for (Instruction &OldI : *OldBlock) {
682         auto *OldPN = dyn_cast<PHINode>(&OldI);
683         if (!OldPN)
684           break;
685         UpdatePHIOnClonedBlock(OldPN, /*IsForOldBlock=*/true);
686       }
687       for (Instruction &NewI : *NewBlock) {
688         auto *NewPN = dyn_cast<PHINode>(&NewI);
689         if (!NewPN)
690           break;
691         UpdatePHIOnClonedBlock(NewPN, /*IsForOldBlock=*/false);
692       }
693     }
694
695     // Check to see if SuccBB has PHI nodes. If so, we need to add entries to
696     // the PHI nodes for NewBB now.
697     for (auto &BBMapping : Orig2Clone) {
698       BasicBlock *OldBlock = BBMapping.first;
699       BasicBlock *NewBlock = BBMapping.second;
700       for (BasicBlock *SuccBB : successors(NewBlock)) {
701         for (Instruction &SuccI : *SuccBB) {
702           auto *SuccPN = dyn_cast<PHINode>(&SuccI);
703           if (!SuccPN)
704             break;
705
706           // Ok, we have a PHI node.  Figure out what the incoming value was for
707           // the OldBlock.
708           int OldBlockIdx = SuccPN->getBasicBlockIndex(OldBlock);
709           if (OldBlockIdx == -1)
710             break;
711           Value *IV = SuccPN->getIncomingValue(OldBlockIdx);
712
713           // Remap the value if necessary.
714           if (auto *Inst = dyn_cast<Instruction>(IV)) {
715             ValueToValueMapTy::iterator I = VMap.find(Inst);
716             if (I != VMap.end())
717               IV = I->second;
718           }
719
720           SuccPN->addIncoming(IV, NewBlock);
721         }
722       }
723     }
724
725     for (ValueToValueMapTy::value_type VT : VMap) {
726       // If there were values defined in BB that are used outside the funclet,
727       // then we now have to update all uses of the value to use either the
728       // original value, the cloned value, or some PHI derived value.  This can
729       // require arbitrary PHI insertion, of which we are prepared to do, clean
730       // these up now.
731       SmallVector<Use *, 16> UsesToRename;
732
733       auto *OldI = dyn_cast<Instruction>(const_cast<Value *>(VT.first));
734       if (!OldI)
735         continue;
736       auto *NewI = cast<Instruction>(VT.second);
737       // Scan all uses of this instruction to see if it is used outside of its
738       // funclet, and if so, record them in UsesToRename.
739       for (Use &U : OldI->uses()) {
740         Instruction *UserI = cast<Instruction>(U.getUser());
741         BasicBlock *UserBB = UserI->getParent();
742         ColorVector &ColorsForUserBB = BlockColors[UserBB];
743         assert(!ColorsForUserBB.empty());
744         if (ColorsForUserBB.size() > 1 ||
745             *ColorsForUserBB.begin() != FuncletPadBB)
746           UsesToRename.push_back(&U);
747       }
748
749       // If there are no uses outside the block, we're done with this
750       // instruction.
751       if (UsesToRename.empty())
752         continue;
753
754       // We found a use of OldI outside of the funclet.  Rename all uses of OldI
755       // that are outside its funclet to be uses of the appropriate PHI node
756       // etc.
757       SSAUpdater SSAUpdate;
758       SSAUpdate.Initialize(OldI->getType(), OldI->getName());
759       SSAUpdate.AddAvailableValue(OldI->getParent(), OldI);
760       SSAUpdate.AddAvailableValue(NewI->getParent(), NewI);
761
762       while (!UsesToRename.empty())
763         SSAUpdate.RewriteUseAfterInsertions(*UsesToRename.pop_back_val());
764     }
765   }
766 }
767
768 void WinEHPrepare::removeImplausibleInstructions(Function &F) {
769   // Remove implausible terminators and replace them with UnreachableInst.
770   for (auto &Funclet : FuncletBlocks) {
771     BasicBlock *FuncletPadBB = Funclet.first;
772     std::vector<BasicBlock *> &BlocksInFunclet = Funclet.second;
773     Instruction *FirstNonPHI = FuncletPadBB->getFirstNonPHI();
774     auto *FuncletPad = dyn_cast<FuncletPadInst>(FirstNonPHI);
775     auto *CatchPad = dyn_cast_or_null<CatchPadInst>(FuncletPad);
776     auto *CleanupPad = dyn_cast_or_null<CleanupPadInst>(FuncletPad);
777
778     for (BasicBlock *BB : BlocksInFunclet) {
779       for (Instruction &I : *BB) {
780         CallSite CS(&I);
781         if (!CS)
782           continue;
783
784         Value *FuncletBundleOperand = nullptr;
785         if (auto BU = CS.getOperandBundle(LLVMContext::OB_funclet))
786           FuncletBundleOperand = BU->Inputs.front();
787
788         if (FuncletBundleOperand == FuncletPad)
789           continue;
790
791         // Skip call sites which are nounwind intrinsics.
792         auto *CalledFn =
793             dyn_cast<Function>(CS.getCalledValue()->stripPointerCasts());
794         if (CalledFn && CalledFn->isIntrinsic() && CS.doesNotThrow())
795           continue;
796
797         // This call site was not part of this funclet, remove it.
798         if (CS.isInvoke()) {
799           // Remove the unwind edge if it was an invoke.
800           removeUnwindEdge(BB);
801           // Get a pointer to the new call.
802           BasicBlock::iterator CallI =
803               std::prev(BB->getTerminator()->getIterator());
804           auto *CI = cast<CallInst>(&*CallI);
805           changeToUnreachable(CI, /*UseLLVMTrap=*/false);
806         } else {
807           changeToUnreachable(&I, /*UseLLVMTrap=*/false);
808         }
809
810         // There are no more instructions in the block (except for unreachable),
811         // we are done.
812         break;
813       }
814
815       TerminatorInst *TI = BB->getTerminator();
816       // CatchPadInst and CleanupPadInst can't transfer control to a ReturnInst.
817       bool IsUnreachableRet = isa<ReturnInst>(TI) && FuncletPad;
818       // The token consumed by a CatchReturnInst must match the funclet token.
819       bool IsUnreachableCatchret = false;
820       if (auto *CRI = dyn_cast<CatchReturnInst>(TI))
821         IsUnreachableCatchret = CRI->getCatchPad() != CatchPad;
822       // The token consumed by a CleanupReturnInst must match the funclet token.
823       bool IsUnreachableCleanupret = false;
824       if (auto *CRI = dyn_cast<CleanupReturnInst>(TI))
825         IsUnreachableCleanupret = CRI->getCleanupPad() != CleanupPad;
826       if (IsUnreachableRet || IsUnreachableCatchret ||
827           IsUnreachableCleanupret) {
828         changeToUnreachable(TI, /*UseLLVMTrap=*/false);
829       } else if (isa<InvokeInst>(TI)) {
830         if (Personality == EHPersonality::MSVC_CXX && CleanupPad) {
831           // Invokes within a cleanuppad for the MSVC++ personality never
832           // transfer control to their unwind edge: the personality will
833           // terminate the program.
834           removeUnwindEdge(BB);
835         }
836       }
837     }
838   }
839 }
840
841 void WinEHPrepare::cleanupPreparedFunclets(Function &F) {
842   // Clean-up some of the mess we made by removing useles PHI nodes, trivial
843   // branches, etc.
844   for (Function::iterator FI = F.begin(), FE = F.end(); FI != FE;) {
845     BasicBlock *BB = &*FI++;
846     SimplifyInstructionsInBlock(BB);
847     ConstantFoldTerminator(BB, /*DeleteDeadConditions=*/true);
848     MergeBlockIntoPredecessor(BB);
849   }
850
851   // We might have some unreachable blocks after cleaning up some impossible
852   // control flow.
853   removeUnreachableBlocks(F);
854 }
855
856 void WinEHPrepare::verifyPreparedFunclets(Function &F) {
857   // Recolor the CFG to verify that all is well.
858   for (BasicBlock &BB : F) {
859     size_t NumColors = BlockColors[&BB].size();
860     assert(NumColors == 1 && "Expected monochromatic BB!");
861     if (NumColors == 0)
862       report_fatal_error("Uncolored BB!");
863     if (NumColors > 1)
864       report_fatal_error("Multicolor BB!");
865     if (!DisableDemotion) {
866       bool EHPadHasPHI = BB.isEHPad() && isa<PHINode>(BB.begin());
867       assert(!EHPadHasPHI && "EH Pad still has a PHI!");
868       if (EHPadHasPHI)
869         report_fatal_error("EH Pad still has a PHI!");
870     }
871   }
872 }
873
874 bool WinEHPrepare::prepareExplicitEH(Function &F) {
875   // Remove unreachable blocks.  It is not valuable to assign them a color and
876   // their existence can trick us into thinking values are alive when they are
877   // not.
878   removeUnreachableBlocks(F);
879
880   // Determine which blocks are reachable from which funclet entries.
881   colorFunclets(F);
882
883   cloneCommonBlocks(F);
884
885   if (!DisableDemotion)
886     demotePHIsOnFunclets(F);
887
888   if (!DisableCleanups) {
889     removeImplausibleInstructions(F);
890
891     cleanupPreparedFunclets(F);
892   }
893
894   verifyPreparedFunclets(F);
895
896   BlockColors.clear();
897   FuncletBlocks.clear();
898
899   return true;
900 }
901
902 // TODO: Share loads when one use dominates another, or when a catchpad exit
903 // dominates uses (needs dominators).
904 AllocaInst *WinEHPrepare::insertPHILoads(PHINode *PN, Function &F) {
905   BasicBlock *PHIBlock = PN->getParent();
906   AllocaInst *SpillSlot = nullptr;
907   Instruction *EHPad = PHIBlock->getFirstNonPHI();
908
909   if (!isa<TerminatorInst>(EHPad)) {
910     // If the EHPad isn't a terminator, then we can insert a load in this block
911     // that will dominate all uses.
912     SpillSlot = new AllocaInst(PN->getType(), nullptr,
913                                Twine(PN->getName(), ".wineh.spillslot"),
914                                &F.getEntryBlock().front());
915     Value *V = new LoadInst(SpillSlot, Twine(PN->getName(), ".wineh.reload"),
916                             &*PHIBlock->getFirstInsertionPt());
917     PN->replaceAllUsesWith(V);
918     return SpillSlot;
919   }
920
921   // Otherwise, we have a PHI on a terminator EHPad, and we give up and insert
922   // loads of the slot before every use.
923   DenseMap<BasicBlock *, Value *> Loads;
924   for (Value::use_iterator UI = PN->use_begin(), UE = PN->use_end();
925        UI != UE;) {
926     Use &U = *UI++;
927     auto *UsingInst = cast<Instruction>(U.getUser());
928     if (isa<PHINode>(UsingInst) && UsingInst->getParent()->isEHPad()) {
929       // Use is on an EH pad phi.  Leave it alone; we'll insert loads and
930       // stores for it separately.
931       continue;
932     }
933     replaceUseWithLoad(PN, U, SpillSlot, Loads, F);
934   }
935   return SpillSlot;
936 }
937
938 // TODO: improve store placement.  Inserting at def is probably good, but need
939 // to be careful not to introduce interfering stores (needs liveness analysis).
940 // TODO: identify related phi nodes that can share spill slots, and share them
941 // (also needs liveness).
942 void WinEHPrepare::insertPHIStores(PHINode *OriginalPHI,
943                                    AllocaInst *SpillSlot) {
944   // Use a worklist of (Block, Value) pairs -- the given Value needs to be
945   // stored to the spill slot by the end of the given Block.
946   SmallVector<std::pair<BasicBlock *, Value *>, 4> Worklist;
947
948   Worklist.push_back({OriginalPHI->getParent(), OriginalPHI});
949
950   while (!Worklist.empty()) {
951     BasicBlock *EHBlock;
952     Value *InVal;
953     std::tie(EHBlock, InVal) = Worklist.pop_back_val();
954
955     PHINode *PN = dyn_cast<PHINode>(InVal);
956     if (PN && PN->getParent() == EHBlock) {
957       // The value is defined by another PHI we need to remove, with no room to
958       // insert a store after the PHI, so each predecessor needs to store its
959       // incoming value.
960       for (unsigned i = 0, e = PN->getNumIncomingValues(); i < e; ++i) {
961         Value *PredVal = PN->getIncomingValue(i);
962
963         // Undef can safely be skipped.
964         if (isa<UndefValue>(PredVal))
965           continue;
966
967         insertPHIStore(PN->getIncomingBlock(i), PredVal, SpillSlot, Worklist);
968       }
969     } else {
970       // We need to store InVal, which dominates EHBlock, but can't put a store
971       // in EHBlock, so need to put stores in each predecessor.
972       for (BasicBlock *PredBlock : predecessors(EHBlock)) {
973         insertPHIStore(PredBlock, InVal, SpillSlot, Worklist);
974       }
975     }
976   }
977 }
978
979 void WinEHPrepare::insertPHIStore(
980     BasicBlock *PredBlock, Value *PredVal, AllocaInst *SpillSlot,
981     SmallVectorImpl<std::pair<BasicBlock *, Value *>> &Worklist) {
982
983   if (PredBlock->isEHPad() &&
984       isa<TerminatorInst>(PredBlock->getFirstNonPHI())) {
985     // Pred is unsplittable, so we need to queue it on the worklist.
986     Worklist.push_back({PredBlock, PredVal});
987     return;
988   }
989
990   // Otherwise, insert the store at the end of the basic block.
991   new StoreInst(PredVal, SpillSlot, PredBlock->getTerminator());
992 }
993
994 void WinEHPrepare::replaceUseWithLoad(Value *V, Use &U, AllocaInst *&SpillSlot,
995                                       DenseMap<BasicBlock *, Value *> &Loads,
996                                       Function &F) {
997   // Lazilly create the spill slot.
998   if (!SpillSlot)
999     SpillSlot = new AllocaInst(V->getType(), nullptr,
1000                                Twine(V->getName(), ".wineh.spillslot"),
1001                                &F.getEntryBlock().front());
1002
1003   auto *UsingInst = cast<Instruction>(U.getUser());
1004   if (auto *UsingPHI = dyn_cast<PHINode>(UsingInst)) {
1005     // If this is a PHI node, we can't insert a load of the value before
1006     // the use.  Instead insert the load in the predecessor block
1007     // corresponding to the incoming value.
1008     //
1009     // Note that if there are multiple edges from a basic block to this
1010     // PHI node that we cannot have multiple loads.  The problem is that
1011     // the resulting PHI node will have multiple values (from each load)
1012     // coming in from the same block, which is illegal SSA form.
1013     // For this reason, we keep track of and reuse loads we insert.
1014     BasicBlock *IncomingBlock = UsingPHI->getIncomingBlock(U);
1015     if (auto *CatchRet =
1016             dyn_cast<CatchReturnInst>(IncomingBlock->getTerminator())) {
1017       // Putting a load above a catchret and use on the phi would still leave
1018       // a cross-funclet def/use.  We need to split the edge, change the
1019       // catchret to target the new block, and put the load there.
1020       BasicBlock *PHIBlock = UsingInst->getParent();
1021       BasicBlock *NewBlock = SplitEdge(IncomingBlock, PHIBlock);
1022       // SplitEdge gives us:
1023       //   IncomingBlock:
1024       //     ...
1025       //     br label %NewBlock
1026       //   NewBlock:
1027       //     catchret label %PHIBlock
1028       // But we need:
1029       //   IncomingBlock:
1030       //     ...
1031       //     catchret label %NewBlock
1032       //   NewBlock:
1033       //     br label %PHIBlock
1034       // So move the terminators to each others' blocks and swap their
1035       // successors.
1036       BranchInst *Goto = cast<BranchInst>(IncomingBlock->getTerminator());
1037       Goto->removeFromParent();
1038       CatchRet->removeFromParent();
1039       IncomingBlock->getInstList().push_back(CatchRet);
1040       NewBlock->getInstList().push_back(Goto);
1041       Goto->setSuccessor(0, PHIBlock);
1042       CatchRet->setSuccessor(NewBlock);
1043       // Update the color mapping for the newly split edge.
1044       ColorVector &ColorsForPHIBlock = BlockColors[PHIBlock];
1045       BlockColors[NewBlock] = ColorsForPHIBlock;
1046       for (BasicBlock *FuncletPad : ColorsForPHIBlock)
1047         FuncletBlocks[FuncletPad].push_back(NewBlock);
1048       // Treat the new block as incoming for load insertion.
1049       IncomingBlock = NewBlock;
1050     }
1051     Value *&Load = Loads[IncomingBlock];
1052     // Insert the load into the predecessor block
1053     if (!Load)
1054       Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
1055                           /*Volatile=*/false, IncomingBlock->getTerminator());
1056
1057     U.set(Load);
1058   } else {
1059     // Reload right before the old use.
1060     auto *Load = new LoadInst(SpillSlot, Twine(V->getName(), ".wineh.reload"),
1061                               /*Volatile=*/false, UsingInst);
1062     U.set(Load);
1063   }
1064 }
1065
1066 void WinEHFuncInfo::addIPToStateRange(const InvokeInst *II,
1067                                       MCSymbol *InvokeBegin,
1068                                       MCSymbol *InvokeEnd) {
1069   assert(InvokeStateMap.count(II) &&
1070          "should get invoke with precomputed state");
1071   LabelToStateMap[InvokeBegin] = std::make_pair(InvokeStateMap[II], InvokeEnd);
1072 }