MachineInstr: Remove unused parameter.
[oota-llvm.git] / lib / CodeGen / TwoAddressInstructionPass.cpp
1 //===-- TwoAddressInstructionPass.cpp - Two-Address instruction pass ------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TwoAddress instruction pass which is used
11 // by most register allocators. Two-Address instructions are rewritten
12 // from:
13 //
14 //     A = B op C
15 //
16 // to:
17 //
18 //     A = B
19 //     A op= C
20 //
21 // Note that if a register allocator chooses to use this pass, that it
22 // has to be capable of handling the non-SSA nature of these rewritten
23 // virtual registers.
24 //
25 // It is also worth noting that the duplicate operand of the two
26 // address instruction is removed.
27 //
28 //===----------------------------------------------------------------------===//
29
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/ADT/BitVector.h"
32 #include "llvm/ADT/DenseMap.h"
33 #include "llvm/ADT/STLExtras.h"
34 #include "llvm/ADT/SmallSet.h"
35 #include "llvm/ADT/Statistic.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
38 #include "llvm/CodeGen/LiveVariables.h"
39 #include "llvm/CodeGen/MachineFunctionPass.h"
40 #include "llvm/CodeGen/MachineInstr.h"
41 #include "llvm/CodeGen/MachineInstrBuilder.h"
42 #include "llvm/CodeGen/MachineRegisterInfo.h"
43 #include "llvm/IR/Function.h"
44 #include "llvm/MC/MCInstrItineraries.h"
45 #include "llvm/Support/CommandLine.h"
46 #include "llvm/Support/Debug.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include "llvm/Target/TargetInstrInfo.h"
50 #include "llvm/Target/TargetMachine.h"
51 #include "llvm/Target/TargetRegisterInfo.h"
52 #include "llvm/Target/TargetSubtargetInfo.h"
53 using namespace llvm;
54
55 #define DEBUG_TYPE "twoaddrinstr"
56
57 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions");
58 STATISTIC(NumCommuted        , "Number of instructions commuted to coalesce");
59 STATISTIC(NumAggrCommuted    , "Number of instructions aggressively commuted");
60 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address");
61 STATISTIC(Num3AddrSunk,        "Number of 3-address instructions sunk");
62 STATISTIC(NumReSchedUps,       "Number of instructions re-scheduled up");
63 STATISTIC(NumReSchedDowns,     "Number of instructions re-scheduled down");
64
65 // Temporary flag to disable rescheduling.
66 static cl::opt<bool>
67 EnableRescheduling("twoaddr-reschedule",
68                    cl::desc("Coalesce copies by rescheduling (default=true)"),
69                    cl::init(true), cl::Hidden);
70
71 namespace {
72 class TwoAddressInstructionPass : public MachineFunctionPass {
73   MachineFunction *MF;
74   const TargetInstrInfo *TII;
75   const TargetRegisterInfo *TRI;
76   const InstrItineraryData *InstrItins;
77   MachineRegisterInfo *MRI;
78   LiveVariables *LV;
79   LiveIntervals *LIS;
80   AliasAnalysis *AA;
81   CodeGenOpt::Level OptLevel;
82
83   // The current basic block being processed.
84   MachineBasicBlock *MBB;
85
86   // DistanceMap - Keep track the distance of a MI from the start of the
87   // current basic block.
88   DenseMap<MachineInstr*, unsigned> DistanceMap;
89
90   // Set of already processed instructions in the current block.
91   SmallPtrSet<MachineInstr*, 8> Processed;
92
93   // SrcRegMap - A map from virtual registers to physical registers which are
94   // likely targets to be coalesced to due to copies from physical registers to
95   // virtual registers. e.g. v1024 = move r0.
96   DenseMap<unsigned, unsigned> SrcRegMap;
97
98   // DstRegMap - A map from virtual registers to physical registers which are
99   // likely targets to be coalesced to due to copies to physical registers from
100   // virtual registers. e.g. r1 = move v1024.
101   DenseMap<unsigned, unsigned> DstRegMap;
102
103   bool sink3AddrInstruction(MachineInstr *MI, unsigned Reg,
104                             MachineBasicBlock::iterator OldPos);
105
106   bool isRevCopyChain(unsigned FromReg, unsigned ToReg, int Maxlen);
107
108   bool noUseAfterLastDef(unsigned Reg, unsigned Dist, unsigned &LastDef);
109
110   bool isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
111                              MachineInstr *MI, unsigned Dist);
112
113   bool commuteInstruction(MachineBasicBlock::iterator &mi,
114                           unsigned RegB, unsigned RegC, unsigned Dist);
115
116   bool isProfitableToConv3Addr(unsigned RegA, unsigned RegB);
117
118   bool convertInstTo3Addr(MachineBasicBlock::iterator &mi,
119                           MachineBasicBlock::iterator &nmi,
120                           unsigned RegA, unsigned RegB, unsigned Dist);
121
122   bool isDefTooClose(unsigned Reg, unsigned Dist, MachineInstr *MI);
123
124   bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
125                              MachineBasicBlock::iterator &nmi,
126                              unsigned Reg);
127   bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
128                              MachineBasicBlock::iterator &nmi,
129                              unsigned Reg);
130
131   bool tryInstructionTransform(MachineBasicBlock::iterator &mi,
132                                MachineBasicBlock::iterator &nmi,
133                                unsigned SrcIdx, unsigned DstIdx,
134                                unsigned Dist, bool shouldOnlyCommute);
135
136   void scanUses(unsigned DstReg);
137
138   void processCopy(MachineInstr *MI);
139
140   typedef SmallVector<std::pair<unsigned, unsigned>, 4> TiedPairList;
141   typedef SmallDenseMap<unsigned, TiedPairList> TiedOperandMap;
142   bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&);
143   void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist);
144   void eliminateRegSequence(MachineBasicBlock::iterator&);
145
146 public:
147   static char ID; // Pass identification, replacement for typeid
148   TwoAddressInstructionPass() : MachineFunctionPass(ID) {
149     initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry());
150   }
151
152   void getAnalysisUsage(AnalysisUsage &AU) const override {
153     AU.setPreservesCFG();
154     AU.addRequired<AliasAnalysis>();
155     AU.addPreserved<LiveVariables>();
156     AU.addPreserved<SlotIndexes>();
157     AU.addPreserved<LiveIntervals>();
158     AU.addPreservedID(MachineLoopInfoID);
159     AU.addPreservedID(MachineDominatorsID);
160     MachineFunctionPass::getAnalysisUsage(AU);
161   }
162
163   /// runOnMachineFunction - Pass entry point.
164   bool runOnMachineFunction(MachineFunction&) override;
165 };
166 } // end anonymous namespace
167
168 char TwoAddressInstructionPass::ID = 0;
169 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, "twoaddressinstruction",
170                 "Two-Address instruction pass", false, false)
171 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
172 INITIALIZE_PASS_END(TwoAddressInstructionPass, "twoaddressinstruction",
173                 "Two-Address instruction pass", false, false)
174
175 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID;
176
177 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg, LiveIntervals *LIS);
178
179 /// sink3AddrInstruction - A two-address instruction has been converted to a
180 /// three-address instruction to avoid clobbering a register. Try to sink it
181 /// past the instruction that would kill the above mentioned register to reduce
182 /// register pressure.
183 bool TwoAddressInstructionPass::
184 sink3AddrInstruction(MachineInstr *MI, unsigned SavedReg,
185                      MachineBasicBlock::iterator OldPos) {
186   // FIXME: Shouldn't we be trying to do this before we three-addressify the
187   // instruction?  After this transformation is done, we no longer need
188   // the instruction to be in three-address form.
189
190   // Check if it's safe to move this instruction.
191   bool SeenStore = true; // Be conservative.
192   if (!MI->isSafeToMove(AA, SeenStore))
193     return false;
194
195   unsigned DefReg = 0;
196   SmallSet<unsigned, 4> UseRegs;
197
198   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
199     const MachineOperand &MO = MI->getOperand(i);
200     if (!MO.isReg())
201       continue;
202     unsigned MOReg = MO.getReg();
203     if (!MOReg)
204       continue;
205     if (MO.isUse() && MOReg != SavedReg)
206       UseRegs.insert(MO.getReg());
207     if (!MO.isDef())
208       continue;
209     if (MO.isImplicit())
210       // Don't try to move it if it implicitly defines a register.
211       return false;
212     if (DefReg)
213       // For now, don't move any instructions that define multiple registers.
214       return false;
215     DefReg = MO.getReg();
216   }
217
218   // Find the instruction that kills SavedReg.
219   MachineInstr *KillMI = nullptr;
220   if (LIS) {
221     LiveInterval &LI = LIS->getInterval(SavedReg);
222     assert(LI.end() != LI.begin() &&
223            "Reg should not have empty live interval.");
224
225     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
226     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
227     if (I != LI.end() && I->start < MBBEndIdx)
228       return false;
229
230     --I;
231     KillMI = LIS->getInstructionFromIndex(I->end);
232   }
233   if (!KillMI) {
234     for (MachineRegisterInfo::use_nodbg_iterator
235            UI = MRI->use_nodbg_begin(SavedReg),
236            UE = MRI->use_nodbg_end(); UI != UE; ++UI) {
237       MachineOperand &UseMO = *UI;
238       if (!UseMO.isKill())
239         continue;
240       KillMI = UseMO.getParent();
241       break;
242     }
243   }
244
245   // If we find the instruction that kills SavedReg, and it is in an
246   // appropriate location, we can try to sink the current instruction
247   // past it.
248   if (!KillMI || KillMI->getParent() != MBB || KillMI == MI ||
249       KillMI == OldPos || KillMI->isTerminator())
250     return false;
251
252   // If any of the definitions are used by another instruction between the
253   // position and the kill use, then it's not safe to sink it.
254   //
255   // FIXME: This can be sped up if there is an easy way to query whether an
256   // instruction is before or after another instruction. Then we can use
257   // MachineRegisterInfo def / use instead.
258   MachineOperand *KillMO = nullptr;
259   MachineBasicBlock::iterator KillPos = KillMI;
260   ++KillPos;
261
262   unsigned NumVisited = 0;
263   for (MachineBasicBlock::iterator I = std::next(OldPos); I != KillPos; ++I) {
264     MachineInstr *OtherMI = I;
265     // DBG_VALUE cannot be counted against the limit.
266     if (OtherMI->isDebugValue())
267       continue;
268     if (NumVisited > 30)  // FIXME: Arbitrary limit to reduce compile time cost.
269       return false;
270     ++NumVisited;
271     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
272       MachineOperand &MO = OtherMI->getOperand(i);
273       if (!MO.isReg())
274         continue;
275       unsigned MOReg = MO.getReg();
276       if (!MOReg)
277         continue;
278       if (DefReg == MOReg)
279         return false;
280
281       if (MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))) {
282         if (OtherMI == KillMI && MOReg == SavedReg)
283           // Save the operand that kills the register. We want to unset the kill
284           // marker if we can sink MI past it.
285           KillMO = &MO;
286         else if (UseRegs.count(MOReg))
287           // One of the uses is killed before the destination.
288           return false;
289       }
290     }
291   }
292   assert(KillMO && "Didn't find kill");
293
294   if (!LIS) {
295     // Update kill and LV information.
296     KillMO->setIsKill(false);
297     KillMO = MI->findRegisterUseOperand(SavedReg, false, TRI);
298     KillMO->setIsKill(true);
299
300     if (LV)
301       LV->replaceKillInstruction(SavedReg, KillMI, MI);
302   }
303
304   // Move instruction to its destination.
305   MBB->remove(MI);
306   MBB->insert(KillPos, MI);
307
308   if (LIS)
309     LIS->handleMove(MI);
310
311   ++Num3AddrSunk;
312   return true;
313 }
314
315 /// getSingleDef -- return the MachineInstr* if it is the single def of the Reg
316 /// in current BB.
317 static MachineInstr *getSingleDef(unsigned Reg, MachineBasicBlock *BB,
318                                   const MachineRegisterInfo *MRI) {
319   MachineInstr *Ret = nullptr;
320   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
321     if (DefMI.getParent() != BB || DefMI.isDebugValue())
322       continue;
323     if (!Ret)
324       Ret = &DefMI;
325     else if (Ret != &DefMI)
326       return nullptr;
327   }
328   return Ret;
329 }
330
331 /// Check if there is a reversed copy chain from FromReg to ToReg:
332 /// %Tmp1 = copy %Tmp2;
333 /// %FromReg = copy %Tmp1;
334 /// %ToReg = add %FromReg ...
335 /// %Tmp2 = copy %ToReg;
336 /// MaxLen specifies the maximum length of the copy chain the func
337 /// can walk through.
338 bool TwoAddressInstructionPass::isRevCopyChain(unsigned FromReg, unsigned ToReg,
339                                                int Maxlen) {
340   unsigned TmpReg = FromReg;
341   for (int i = 0; i < Maxlen; i++) {
342     MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI);
343     if (!Def || !Def->isCopy())
344       return false;
345
346     TmpReg = Def->getOperand(1).getReg();
347
348     if (TmpReg == ToReg)
349       return true;
350   }
351   return false;
352 }
353
354 /// noUseAfterLastDef - Return true if there are no intervening uses between the
355 /// last instruction in the MBB that defines the specified register and the
356 /// two-address instruction which is being processed. It also returns the last
357 /// def location by reference
358 bool TwoAddressInstructionPass::noUseAfterLastDef(unsigned Reg, unsigned Dist,
359                                                   unsigned &LastDef) {
360   LastDef = 0;
361   unsigned LastUse = Dist;
362   for (MachineOperand &MO : MRI->reg_operands(Reg)) {
363     MachineInstr *MI = MO.getParent();
364     if (MI->getParent() != MBB || MI->isDebugValue())
365       continue;
366     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
367     if (DI == DistanceMap.end())
368       continue;
369     if (MO.isUse() && DI->second < LastUse)
370       LastUse = DI->second;
371     if (MO.isDef() && DI->second > LastDef)
372       LastDef = DI->second;
373   }
374
375   return !(LastUse > LastDef && LastUse < Dist);
376 }
377
378 /// isCopyToReg - Return true if the specified MI is a copy instruction or
379 /// a extract_subreg instruction. It also returns the source and destination
380 /// registers and whether they are physical registers by reference.
381 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII,
382                         unsigned &SrcReg, unsigned &DstReg,
383                         bool &IsSrcPhys, bool &IsDstPhys) {
384   SrcReg = 0;
385   DstReg = 0;
386   if (MI.isCopy()) {
387     DstReg = MI.getOperand(0).getReg();
388     SrcReg = MI.getOperand(1).getReg();
389   } else if (MI.isInsertSubreg() || MI.isSubregToReg()) {
390     DstReg = MI.getOperand(0).getReg();
391     SrcReg = MI.getOperand(2).getReg();
392   } else
393     return false;
394
395   IsSrcPhys = TargetRegisterInfo::isPhysicalRegister(SrcReg);
396   IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
397   return true;
398 }
399
400 /// isPLainlyKilled - Test if the given register value, which is used by the
401 // given instruction, is killed by the given instruction.
402 static bool isPlainlyKilled(MachineInstr *MI, unsigned Reg,
403                             LiveIntervals *LIS) {
404   if (LIS && TargetRegisterInfo::isVirtualRegister(Reg) &&
405       !LIS->isNotInMIMap(MI)) {
406     // FIXME: Sometimes tryInstructionTransform() will add instructions and
407     // test whether they can be folded before keeping them. In this case it
408     // sets a kill before recursively calling tryInstructionTransform() again.
409     // If there is no interval available, we assume that this instruction is
410     // one of those. A kill flag is manually inserted on the operand so the
411     // check below will handle it.
412     LiveInterval &LI = LIS->getInterval(Reg);
413     // This is to match the kill flag version where undefs don't have kill
414     // flags.
415     if (!LI.hasAtLeastOneValue())
416       return false;
417
418     SlotIndex useIdx = LIS->getInstructionIndex(MI);
419     LiveInterval::const_iterator I = LI.find(useIdx);
420     assert(I != LI.end() && "Reg must be live-in to use.");
421     return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx);
422   }
423
424   return MI->killsRegister(Reg);
425 }
426
427 /// isKilled - Test if the given register value, which is used by the given
428 /// instruction, is killed by the given instruction. This looks through
429 /// coalescable copies to see if the original value is potentially not killed.
430 ///
431 /// For example, in this code:
432 ///
433 ///   %reg1034 = copy %reg1024
434 ///   %reg1035 = copy %reg1025<kill>
435 ///   %reg1036 = add %reg1034<kill>, %reg1035<kill>
436 ///
437 /// %reg1034 is not considered to be killed, since it is copied from a
438 /// register which is not killed. Treating it as not killed lets the
439 /// normal heuristics commute the (two-address) add, which lets
440 /// coalescing eliminate the extra copy.
441 ///
442 /// If allowFalsePositives is true then likely kills are treated as kills even
443 /// if it can't be proven that they are kills.
444 static bool isKilled(MachineInstr &MI, unsigned Reg,
445                      const MachineRegisterInfo *MRI,
446                      const TargetInstrInfo *TII,
447                      LiveIntervals *LIS,
448                      bool allowFalsePositives) {
449   MachineInstr *DefMI = &MI;
450   for (;;) {
451     // All uses of physical registers are likely to be kills.
452     if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
453         (allowFalsePositives || MRI->hasOneUse(Reg)))
454       return true;
455     if (!isPlainlyKilled(DefMI, Reg, LIS))
456       return false;
457     if (TargetRegisterInfo::isPhysicalRegister(Reg))
458       return true;
459     MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg);
460     // If there are multiple defs, we can't do a simple analysis, so just
461     // go with what the kill flag says.
462     if (std::next(Begin) != MRI->def_end())
463       return true;
464     DefMI = Begin->getParent();
465     bool IsSrcPhys, IsDstPhys;
466     unsigned SrcReg,  DstReg;
467     // If the def is something other than a copy, then it isn't going to
468     // be coalesced, so follow the kill flag.
469     if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
470       return true;
471     Reg = SrcReg;
472   }
473 }
474
475 /// isTwoAddrUse - Return true if the specified MI uses the specified register
476 /// as a two-address use. If so, return the destination register by reference.
477 static bool isTwoAddrUse(MachineInstr &MI, unsigned Reg, unsigned &DstReg) {
478   for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) {
479     const MachineOperand &MO = MI.getOperand(i);
480     if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg)
481       continue;
482     unsigned ti;
483     if (MI.isRegTiedToDefOperand(i, &ti)) {
484       DstReg = MI.getOperand(ti).getReg();
485       return true;
486     }
487   }
488   return false;
489 }
490
491 /// findOnlyInterestingUse - Given a register, if has a single in-basic block
492 /// use, return the use instruction if it's a copy or a two-address use.
493 static
494 MachineInstr *findOnlyInterestingUse(unsigned Reg, MachineBasicBlock *MBB,
495                                      MachineRegisterInfo *MRI,
496                                      const TargetInstrInfo *TII,
497                                      bool &IsCopy,
498                                      unsigned &DstReg, bool &IsDstPhys) {
499   if (!MRI->hasOneNonDBGUse(Reg))
500     // None or more than one use.
501     return nullptr;
502   MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(Reg);
503   if (UseMI.getParent() != MBB)
504     return nullptr;
505   unsigned SrcReg;
506   bool IsSrcPhys;
507   if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) {
508     IsCopy = true;
509     return &UseMI;
510   }
511   IsDstPhys = false;
512   if (isTwoAddrUse(UseMI, Reg, DstReg)) {
513     IsDstPhys = TargetRegisterInfo::isPhysicalRegister(DstReg);
514     return &UseMI;
515   }
516   return nullptr;
517 }
518
519 /// getMappedReg - Return the physical register the specified virtual register
520 /// might be mapped to.
521 static unsigned
522 getMappedReg(unsigned Reg, DenseMap<unsigned, unsigned> &RegMap) {
523   while (TargetRegisterInfo::isVirtualRegister(Reg))  {
524     DenseMap<unsigned, unsigned>::iterator SI = RegMap.find(Reg);
525     if (SI == RegMap.end())
526       return 0;
527     Reg = SI->second;
528   }
529   if (TargetRegisterInfo::isPhysicalRegister(Reg))
530     return Reg;
531   return 0;
532 }
533
534 /// regsAreCompatible - Return true if the two registers are equal or aliased.
535 ///
536 static bool
537 regsAreCompatible(unsigned RegA, unsigned RegB, const TargetRegisterInfo *TRI) {
538   if (RegA == RegB)
539     return true;
540   if (!RegA || !RegB)
541     return false;
542   return TRI->regsOverlap(RegA, RegB);
543 }
544
545
546 /// isProfitableToCommute - Return true if it's potentially profitable to commute
547 /// the two-address instruction that's being processed.
548 bool
549 TwoAddressInstructionPass::
550 isProfitableToCommute(unsigned regA, unsigned regB, unsigned regC,
551                       MachineInstr *MI, unsigned Dist) {
552   if (OptLevel == CodeGenOpt::None)
553     return false;
554
555   // Determine if it's profitable to commute this two address instruction. In
556   // general, we want no uses between this instruction and the definition of
557   // the two-address register.
558   // e.g.
559   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
560   // %reg1029<def> = MOV8rr %reg1028
561   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
562   // insert => %reg1030<def> = MOV8rr %reg1028
563   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
564   // In this case, it might not be possible to coalesce the second MOV8rr
565   // instruction if the first one is coalesced. So it would be profitable to
566   // commute it:
567   // %reg1028<def> = EXTRACT_SUBREG %reg1027<kill>, 1
568   // %reg1029<def> = MOV8rr %reg1028
569   // %reg1029<def> = SHR8ri %reg1029, 7, %EFLAGS<imp-def,dead>
570   // insert => %reg1030<def> = MOV8rr %reg1029
571   // %reg1030<def> = ADD8rr %reg1029<kill>, %reg1028<kill>, %EFLAGS<imp-def,dead>
572
573   if (!isPlainlyKilled(MI, regC, LIS))
574     return false;
575
576   // Ok, we have something like:
577   // %reg1030<def> = ADD8rr %reg1028<kill>, %reg1029<kill>, %EFLAGS<imp-def,dead>
578   // let's see if it's worth commuting it.
579
580   // Look for situations like this:
581   // %reg1024<def> = MOV r1
582   // %reg1025<def> = MOV r0
583   // %reg1026<def> = ADD %reg1024, %reg1025
584   // r0            = MOV %reg1026
585   // Commute the ADD to hopefully eliminate an otherwise unavoidable copy.
586   unsigned ToRegA = getMappedReg(regA, DstRegMap);
587   if (ToRegA) {
588     unsigned FromRegB = getMappedReg(regB, SrcRegMap);
589     unsigned FromRegC = getMappedReg(regC, SrcRegMap);
590     bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI);
591     bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI);
592
593     // Compute if any of the following are true:
594     // -RegB is not tied to a register and RegC is compatible with RegA.
595     // -RegB is tied to the wrong physical register, but RegC is.
596     // -RegB is tied to the wrong physical register, and RegC isn't tied.
597     if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC)))
598       return true;
599     // Don't compute if any of the following are true:
600     // -RegC is not tied to a register and RegB is compatible with RegA.
601     // -RegC is tied to the wrong physical register, but RegB is.
602     // -RegC is tied to the wrong physical register, and RegB isn't tied.
603     if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB)))
604       return false;
605   }
606
607   // If there is a use of regC between its last def (could be livein) and this
608   // instruction, then bail.
609   unsigned LastDefC = 0;
610   if (!noUseAfterLastDef(regC, Dist, LastDefC))
611     return false;
612
613   // If there is a use of regB between its last def (could be livein) and this
614   // instruction, then go ahead and make this transformation.
615   unsigned LastDefB = 0;
616   if (!noUseAfterLastDef(regB, Dist, LastDefB))
617     return true;
618
619   // Look for situation like this:
620   // %reg101 = MOV %reg100
621   // %reg102 = ...
622   // %reg103 = ADD %reg102, %reg101
623   // ... = %reg103 ...
624   // %reg100 = MOV %reg103
625   // If there is a reversed copy chain from reg101 to reg103, commute the ADD
626   // to eliminate an otherwise unavoidable copy.
627   // FIXME:
628   // We can extend the logic further: If an pair of operands in an insn has
629   // been merged, the insn could be regarded as a virtual copy, and the virtual
630   // copy could also be used to construct a copy chain.
631   // To more generally minimize register copies, ideally the logic of two addr
632   // instruction pass should be integrated with register allocation pass where
633   // interference graph is available.
634   if (isRevCopyChain(regC, regA, 3))
635     return true;
636
637   if (isRevCopyChain(regB, regA, 3))
638     return false;
639
640   // Since there are no intervening uses for both registers, then commute
641   // if the def of regC is closer. Its live interval is shorter.
642   return LastDefB && LastDefC && LastDefC > LastDefB;
643 }
644
645 /// commuteInstruction - Commute a two-address instruction and update the basic
646 /// block, distance map, and live variables if needed. Return true if it is
647 /// successful.
648 bool TwoAddressInstructionPass::
649 commuteInstruction(MachineBasicBlock::iterator &mi,
650                    unsigned RegB, unsigned RegC, unsigned Dist) {
651   MachineInstr *MI = mi;
652   DEBUG(dbgs() << "2addr: COMMUTING  : " << *MI);
653   MachineInstr *NewMI = TII->commuteInstruction(MI);
654
655   if (NewMI == nullptr) {
656     DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n");
657     return false;
658   }
659
660   DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI);
661   assert(NewMI == MI &&
662          "TargetInstrInfo::commuteInstruction() should not return a new "
663          "instruction unless it was requested.");
664
665   // Update source register map.
666   unsigned FromRegC = getMappedReg(RegC, SrcRegMap);
667   if (FromRegC) {
668     unsigned RegA = MI->getOperand(0).getReg();
669     SrcRegMap[RegA] = FromRegC;
670   }
671
672   return true;
673 }
674
675 /// isProfitableToConv3Addr - Return true if it is profitable to convert the
676 /// given 2-address instruction to a 3-address one.
677 bool
678 TwoAddressInstructionPass::isProfitableToConv3Addr(unsigned RegA,unsigned RegB){
679   // Look for situations like this:
680   // %reg1024<def> = MOV r1
681   // %reg1025<def> = MOV r0
682   // %reg1026<def> = ADD %reg1024, %reg1025
683   // r2            = MOV %reg1026
684   // Turn ADD into a 3-address instruction to avoid a copy.
685   unsigned FromRegB = getMappedReg(RegB, SrcRegMap);
686   if (!FromRegB)
687     return false;
688   unsigned ToRegA = getMappedReg(RegA, DstRegMap);
689   return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI));
690 }
691
692 /// convertInstTo3Addr - Convert the specified two-address instruction into a
693 /// three address one. Return true if this transformation was successful.
694 bool
695 TwoAddressInstructionPass::convertInstTo3Addr(MachineBasicBlock::iterator &mi,
696                                               MachineBasicBlock::iterator &nmi,
697                                               unsigned RegA, unsigned RegB,
698                                               unsigned Dist) {
699   // FIXME: Why does convertToThreeAddress() need an iterator reference?
700   MachineFunction::iterator MFI = MBB;
701   MachineInstr *NewMI = TII->convertToThreeAddress(MFI, mi, LV);
702   assert(MBB == MFI && "convertToThreeAddress changed iterator reference");
703   if (!NewMI)
704     return false;
705
706   DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi);
707   DEBUG(dbgs() << "2addr:         TO 3-ADDR: " << *NewMI);
708   bool Sunk = false;
709
710   if (LIS)
711     LIS->ReplaceMachineInstrInMaps(mi, NewMI);
712
713   if (NewMI->findRegisterUseOperand(RegB, false, TRI))
714     // FIXME: Temporary workaround. If the new instruction doesn't
715     // uses RegB, convertToThreeAddress must have created more
716     // then one instruction.
717     Sunk = sink3AddrInstruction(NewMI, RegB, mi);
718
719   MBB->erase(mi); // Nuke the old inst.
720
721   if (!Sunk) {
722     DistanceMap.insert(std::make_pair(NewMI, Dist));
723     mi = NewMI;
724     nmi = std::next(mi);
725   }
726
727   // Update source and destination register maps.
728   SrcRegMap.erase(RegA);
729   DstRegMap.erase(RegB);
730   return true;
731 }
732
733 /// scanUses - Scan forward recursively for only uses, update maps if the use
734 /// is a copy or a two-address instruction.
735 void
736 TwoAddressInstructionPass::scanUses(unsigned DstReg) {
737   SmallVector<unsigned, 4> VirtRegPairs;
738   bool IsDstPhys;
739   bool IsCopy = false;
740   unsigned NewReg = 0;
741   unsigned Reg = DstReg;
742   while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy,
743                                                       NewReg, IsDstPhys)) {
744     if (IsCopy && !Processed.insert(UseMI).second)
745       break;
746
747     DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI);
748     if (DI != DistanceMap.end())
749       // Earlier in the same MBB.Reached via a back edge.
750       break;
751
752     if (IsDstPhys) {
753       VirtRegPairs.push_back(NewReg);
754       break;
755     }
756     bool isNew = SrcRegMap.insert(std::make_pair(NewReg, Reg)).second;
757     if (!isNew)
758       assert(SrcRegMap[NewReg] == Reg && "Can't map to two src registers!");
759     VirtRegPairs.push_back(NewReg);
760     Reg = NewReg;
761   }
762
763   if (!VirtRegPairs.empty()) {
764     unsigned ToReg = VirtRegPairs.back();
765     VirtRegPairs.pop_back();
766     while (!VirtRegPairs.empty()) {
767       unsigned FromReg = VirtRegPairs.back();
768       VirtRegPairs.pop_back();
769       bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second;
770       if (!isNew)
771         assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!");
772       ToReg = FromReg;
773     }
774     bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second;
775     if (!isNew)
776       assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!");
777   }
778 }
779
780 /// processCopy - If the specified instruction is not yet processed, process it
781 /// if it's a copy. For a copy instruction, we find the physical registers the
782 /// source and destination registers might be mapped to. These are kept in
783 /// point-to maps used to determine future optimizations. e.g.
784 /// v1024 = mov r0
785 /// v1025 = mov r1
786 /// v1026 = add v1024, v1025
787 /// r1    = mov r1026
788 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially
789 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is
790 /// potentially joined with r1 on the output side. It's worthwhile to commute
791 /// 'add' to eliminate a copy.
792 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) {
793   if (Processed.count(MI))
794     return;
795
796   bool IsSrcPhys, IsDstPhys;
797   unsigned SrcReg, DstReg;
798   if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys))
799     return;
800
801   if (IsDstPhys && !IsSrcPhys)
802     DstRegMap.insert(std::make_pair(SrcReg, DstReg));
803   else if (!IsDstPhys && IsSrcPhys) {
804     bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second;
805     if (!isNew)
806       assert(SrcRegMap[DstReg] == SrcReg &&
807              "Can't map to two src physical registers!");
808
809     scanUses(DstReg);
810   }
811
812   Processed.insert(MI);
813   return;
814 }
815
816 /// rescheduleMIBelowKill - If there is one more local instruction that reads
817 /// 'Reg' and it kills 'Reg, consider moving the instruction below the kill
818 /// instruction in order to eliminate the need for the copy.
819 bool TwoAddressInstructionPass::
820 rescheduleMIBelowKill(MachineBasicBlock::iterator &mi,
821                       MachineBasicBlock::iterator &nmi,
822                       unsigned Reg) {
823   // Bail immediately if we don't have LV or LIS available. We use them to find
824   // kills efficiently.
825   if (!LV && !LIS)
826     return false;
827
828   MachineInstr *MI = &*mi;
829   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
830   if (DI == DistanceMap.end())
831     // Must be created from unfolded load. Don't waste time trying this.
832     return false;
833
834   MachineInstr *KillMI = nullptr;
835   if (LIS) {
836     LiveInterval &LI = LIS->getInterval(Reg);
837     assert(LI.end() != LI.begin() &&
838            "Reg should not have empty live interval.");
839
840     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
841     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
842     if (I != LI.end() && I->start < MBBEndIdx)
843       return false;
844
845     --I;
846     KillMI = LIS->getInstructionFromIndex(I->end);
847   } else {
848     KillMI = LV->getVarInfo(Reg).findKill(MBB);
849   }
850   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
851     // Don't mess with copies, they may be coalesced later.
852     return false;
853
854   if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() ||
855       KillMI->isBranch() || KillMI->isTerminator())
856     // Don't move pass calls, etc.
857     return false;
858
859   unsigned DstReg;
860   if (isTwoAddrUse(*KillMI, Reg, DstReg))
861     return false;
862
863   bool SeenStore = true;
864   if (!MI->isSafeToMove(AA, SeenStore))
865     return false;
866
867   if (TII->getInstrLatency(InstrItins, MI) > 1)
868     // FIXME: Needs more sophisticated heuristics.
869     return false;
870
871   SmallSet<unsigned, 2> Uses;
872   SmallSet<unsigned, 2> Kills;
873   SmallSet<unsigned, 2> Defs;
874   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
875     const MachineOperand &MO = MI->getOperand(i);
876     if (!MO.isReg())
877       continue;
878     unsigned MOReg = MO.getReg();
879     if (!MOReg)
880       continue;
881     if (MO.isDef())
882       Defs.insert(MOReg);
883     else {
884       Uses.insert(MOReg);
885       if (MOReg != Reg && (MO.isKill() ||
886                            (LIS && isPlainlyKilled(MI, MOReg, LIS))))
887         Kills.insert(MOReg);
888     }
889   }
890
891   // Move the copies connected to MI down as well.
892   MachineBasicBlock::iterator Begin = MI;
893   MachineBasicBlock::iterator AfterMI = std::next(Begin);
894
895   MachineBasicBlock::iterator End = AfterMI;
896   while (End->isCopy() && Defs.count(End->getOperand(1).getReg())) {
897     Defs.insert(End->getOperand(0).getReg());
898     ++End;
899   }
900
901   // Check if the reschedule will not break depedencies.
902   unsigned NumVisited = 0;
903   MachineBasicBlock::iterator KillPos = KillMI;
904   ++KillPos;
905   for (MachineBasicBlock::iterator I = End; I != KillPos; ++I) {
906     MachineInstr *OtherMI = I;
907     // DBG_VALUE cannot be counted against the limit.
908     if (OtherMI->isDebugValue())
909       continue;
910     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
911       return false;
912     ++NumVisited;
913     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
914         OtherMI->isBranch() || OtherMI->isTerminator())
915       // Don't move pass calls, etc.
916       return false;
917     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
918       const MachineOperand &MO = OtherMI->getOperand(i);
919       if (!MO.isReg())
920         continue;
921       unsigned MOReg = MO.getReg();
922       if (!MOReg)
923         continue;
924       if (MO.isDef()) {
925         if (Uses.count(MOReg))
926           // Physical register use would be clobbered.
927           return false;
928         if (!MO.isDead() && Defs.count(MOReg))
929           // May clobber a physical register def.
930           // FIXME: This may be too conservative. It's ok if the instruction
931           // is sunken completely below the use.
932           return false;
933       } else {
934         if (Defs.count(MOReg))
935           return false;
936         bool isKill = MO.isKill() ||
937                       (LIS && isPlainlyKilled(OtherMI, MOReg, LIS));
938         if (MOReg != Reg &&
939             ((isKill && Uses.count(MOReg)) || Kills.count(MOReg)))
940           // Don't want to extend other live ranges and update kills.
941           return false;
942         if (MOReg == Reg && !isKill)
943           // We can't schedule across a use of the register in question.
944           return false;
945         // Ensure that if this is register in question, its the kill we expect.
946         assert((MOReg != Reg || OtherMI == KillMI) &&
947                "Found multiple kills of a register in a basic block");
948       }
949     }
950   }
951
952   // Move debug info as well.
953   while (Begin != MBB->begin() && std::prev(Begin)->isDebugValue())
954     --Begin;
955
956   nmi = End;
957   MachineBasicBlock::iterator InsertPos = KillPos;
958   if (LIS) {
959     // We have to move the copies first so that the MBB is still well-formed
960     // when calling handleMove().
961     for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) {
962       MachineInstr *CopyMI = MBBI;
963       ++MBBI;
964       MBB->splice(InsertPos, MBB, CopyMI);
965       LIS->handleMove(CopyMI);
966       InsertPos = CopyMI;
967     }
968     End = std::next(MachineBasicBlock::iterator(MI));
969   }
970
971   // Copies following MI may have been moved as well.
972   MBB->splice(InsertPos, MBB, Begin, End);
973   DistanceMap.erase(DI);
974
975   // Update live variables
976   if (LIS) {
977     LIS->handleMove(MI);
978   } else {
979     LV->removeVirtualRegisterKilled(Reg, KillMI);
980     LV->addVirtualRegisterKilled(Reg, MI);
981   }
982
983   DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI);
984   return true;
985 }
986
987 /// isDefTooClose - Return true if the re-scheduling will put the given
988 /// instruction too close to the defs of its register dependencies.
989 bool TwoAddressInstructionPass::isDefTooClose(unsigned Reg, unsigned Dist,
990                                               MachineInstr *MI) {
991   for (MachineInstr &DefMI : MRI->def_instructions(Reg)) {
992     if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike())
993       continue;
994     if (&DefMI == MI)
995       return true; // MI is defining something KillMI uses
996     DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI);
997     if (DDI == DistanceMap.end())
998       return true;  // Below MI
999     unsigned DefDist = DDI->second;
1000     assert(Dist > DefDist && "Visited def already?");
1001     if (TII->getInstrLatency(InstrItins, &DefMI) > (Dist - DefDist))
1002       return true;
1003   }
1004   return false;
1005 }
1006
1007 /// rescheduleKillAboveMI - If there is one more local instruction that reads
1008 /// 'Reg' and it kills 'Reg, consider moving the kill instruction above the
1009 /// current two-address instruction in order to eliminate the need for the
1010 /// copy.
1011 bool TwoAddressInstructionPass::
1012 rescheduleKillAboveMI(MachineBasicBlock::iterator &mi,
1013                       MachineBasicBlock::iterator &nmi,
1014                       unsigned Reg) {
1015   // Bail immediately if we don't have LV or LIS available. We use them to find
1016   // kills efficiently.
1017   if (!LV && !LIS)
1018     return false;
1019
1020   MachineInstr *MI = &*mi;
1021   DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI);
1022   if (DI == DistanceMap.end())
1023     // Must be created from unfolded load. Don't waste time trying this.
1024     return false;
1025
1026   MachineInstr *KillMI = nullptr;
1027   if (LIS) {
1028     LiveInterval &LI = LIS->getInterval(Reg);
1029     assert(LI.end() != LI.begin() &&
1030            "Reg should not have empty live interval.");
1031
1032     SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot();
1033     LiveInterval::const_iterator I = LI.find(MBBEndIdx);
1034     if (I != LI.end() && I->start < MBBEndIdx)
1035       return false;
1036
1037     --I;
1038     KillMI = LIS->getInstructionFromIndex(I->end);
1039   } else {
1040     KillMI = LV->getVarInfo(Reg).findKill(MBB);
1041   }
1042   if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike())
1043     // Don't mess with copies, they may be coalesced later.
1044     return false;
1045
1046   unsigned DstReg;
1047   if (isTwoAddrUse(*KillMI, Reg, DstReg))
1048     return false;
1049
1050   bool SeenStore = true;
1051   if (!KillMI->isSafeToMove(AA, SeenStore))
1052     return false;
1053
1054   SmallSet<unsigned, 2> Uses;
1055   SmallSet<unsigned, 2> Kills;
1056   SmallSet<unsigned, 2> Defs;
1057   SmallSet<unsigned, 2> LiveDefs;
1058   for (unsigned i = 0, e = KillMI->getNumOperands(); i != e; ++i) {
1059     const MachineOperand &MO = KillMI->getOperand(i);
1060     if (!MO.isReg())
1061       continue;
1062     unsigned MOReg = MO.getReg();
1063     if (MO.isUse()) {
1064       if (!MOReg)
1065         continue;
1066       if (isDefTooClose(MOReg, DI->second, MI))
1067         return false;
1068       bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS));
1069       if (MOReg == Reg && !isKill)
1070         return false;
1071       Uses.insert(MOReg);
1072       if (isKill && MOReg != Reg)
1073         Kills.insert(MOReg);
1074     } else if (TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1075       Defs.insert(MOReg);
1076       if (!MO.isDead())
1077         LiveDefs.insert(MOReg);
1078     }
1079   }
1080
1081   // Check if the reschedule will not break depedencies.
1082   unsigned NumVisited = 0;
1083   MachineBasicBlock::iterator KillPos = KillMI;
1084   for (MachineBasicBlock::iterator I = mi; I != KillPos; ++I) {
1085     MachineInstr *OtherMI = I;
1086     // DBG_VALUE cannot be counted against the limit.
1087     if (OtherMI->isDebugValue())
1088       continue;
1089     if (NumVisited > 10)  // FIXME: Arbitrary limit to reduce compile time cost.
1090       return false;
1091     ++NumVisited;
1092     if (OtherMI->hasUnmodeledSideEffects() || OtherMI->isCall() ||
1093         OtherMI->isBranch() || OtherMI->isTerminator())
1094       // Don't move pass calls, etc.
1095       return false;
1096     SmallVector<unsigned, 2> OtherDefs;
1097     for (unsigned i = 0, e = OtherMI->getNumOperands(); i != e; ++i) {
1098       const MachineOperand &MO = OtherMI->getOperand(i);
1099       if (!MO.isReg())
1100         continue;
1101       unsigned MOReg = MO.getReg();
1102       if (!MOReg)
1103         continue;
1104       if (MO.isUse()) {
1105         if (Defs.count(MOReg))
1106           // Moving KillMI can clobber the physical register if the def has
1107           // not been seen.
1108           return false;
1109         if (Kills.count(MOReg))
1110           // Don't want to extend other live ranges and update kills.
1111           return false;
1112         if (OtherMI != MI && MOReg == Reg &&
1113             !(MO.isKill() || (LIS && isPlainlyKilled(OtherMI, MOReg, LIS))))
1114           // We can't schedule across a use of the register in question.
1115           return false;
1116       } else {
1117         OtherDefs.push_back(MOReg);
1118       }
1119     }
1120
1121     for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) {
1122       unsigned MOReg = OtherDefs[i];
1123       if (Uses.count(MOReg))
1124         return false;
1125       if (TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1126           LiveDefs.count(MOReg))
1127         return false;
1128       // Physical register def is seen.
1129       Defs.erase(MOReg);
1130     }
1131   }
1132
1133   // Move the old kill above MI, don't forget to move debug info as well.
1134   MachineBasicBlock::iterator InsertPos = mi;
1135   while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugValue())
1136     --InsertPos;
1137   MachineBasicBlock::iterator From = KillMI;
1138   MachineBasicBlock::iterator To = std::next(From);
1139   while (std::prev(From)->isDebugValue())
1140     --From;
1141   MBB->splice(InsertPos, MBB, From, To);
1142
1143   nmi = std::prev(InsertPos); // Backtrack so we process the moved instr.
1144   DistanceMap.erase(DI);
1145
1146   // Update live variables
1147   if (LIS) {
1148     LIS->handleMove(KillMI);
1149   } else {
1150     LV->removeVirtualRegisterKilled(Reg, KillMI);
1151     LV->addVirtualRegisterKilled(Reg, MI);
1152   }
1153
1154   DEBUG(dbgs() << "\trescheduled kill: " << *KillMI);
1155   return true;
1156 }
1157
1158 /// tryInstructionTransform - For the case where an instruction has a single
1159 /// pair of tied register operands, attempt some transformations that may
1160 /// either eliminate the tied operands or improve the opportunities for
1161 /// coalescing away the register copy.  Returns true if no copy needs to be
1162 /// inserted to untie mi's operands (either because they were untied, or
1163 /// because mi was rescheduled, and will be visited again later). If the
1164 /// shouldOnlyCommute flag is true, only instruction commutation is attempted.
1165 bool TwoAddressInstructionPass::
1166 tryInstructionTransform(MachineBasicBlock::iterator &mi,
1167                         MachineBasicBlock::iterator &nmi,
1168                         unsigned SrcIdx, unsigned DstIdx,
1169                         unsigned Dist, bool shouldOnlyCommute) {
1170   if (OptLevel == CodeGenOpt::None)
1171     return false;
1172
1173   MachineInstr &MI = *mi;
1174   unsigned regA = MI.getOperand(DstIdx).getReg();
1175   unsigned regB = MI.getOperand(SrcIdx).getReg();
1176
1177   assert(TargetRegisterInfo::isVirtualRegister(regB) &&
1178          "cannot make instruction into two-address form");
1179   bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true);
1180
1181   if (TargetRegisterInfo::isVirtualRegister(regA))
1182     scanUses(regA);
1183
1184   // Check if it is profitable to commute the operands.
1185   unsigned SrcOp1, SrcOp2;
1186   unsigned regC = 0;
1187   unsigned regCIdx = ~0U;
1188   bool TryCommute = false;
1189   bool AggressiveCommute = false;
1190   if (MI.isCommutable() && MI.getNumOperands() >= 3 &&
1191       TII->findCommutedOpIndices(&MI, SrcOp1, SrcOp2)) {
1192     if (SrcIdx == SrcOp1)
1193       regCIdx = SrcOp2;
1194     else if (SrcIdx == SrcOp2)
1195       regCIdx = SrcOp1;
1196
1197     if (regCIdx != ~0U) {
1198       regC = MI.getOperand(regCIdx).getReg();
1199       if (!regBKilled && isKilled(MI, regC, MRI, TII, LIS, false))
1200         // If C dies but B does not, swap the B and C operands.
1201         // This makes the live ranges of A and C joinable.
1202         TryCommute = true;
1203       else if (isProfitableToCommute(regA, regB, regC, &MI, Dist)) {
1204         TryCommute = true;
1205         AggressiveCommute = true;
1206       }
1207     }
1208   }
1209
1210   // If it's profitable to commute, try to do so.
1211   if (TryCommute && commuteInstruction(mi, regB, regC, Dist)) {
1212     ++NumCommuted;
1213     if (AggressiveCommute)
1214       ++NumAggrCommuted;
1215     return false;
1216   }
1217
1218   if (shouldOnlyCommute)
1219     return false;
1220
1221   // If there is one more use of regB later in the same MBB, consider
1222   // re-schedule this MI below it.
1223   if (EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) {
1224     ++NumReSchedDowns;
1225     return true;
1226   }
1227
1228   if (MI.isConvertibleTo3Addr()) {
1229     // This instruction is potentially convertible to a true
1230     // three-address instruction.  Check if it is profitable.
1231     if (!regBKilled || isProfitableToConv3Addr(regA, regB)) {
1232       // Try to convert it.
1233       if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) {
1234         ++NumConvertedTo3Addr;
1235         return true; // Done with this instruction.
1236       }
1237     }
1238   }
1239
1240   // If there is one more use of regB later in the same MBB, consider
1241   // re-schedule it before this MI if it's legal.
1242   if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) {
1243     ++NumReSchedUps;
1244     return true;
1245   }
1246
1247   // If this is an instruction with a load folded into it, try unfolding
1248   // the load, e.g. avoid this:
1249   //   movq %rdx, %rcx
1250   //   addq (%rax), %rcx
1251   // in favor of this:
1252   //   movq (%rax), %rcx
1253   //   addq %rdx, %rcx
1254   // because it's preferable to schedule a load than a register copy.
1255   if (MI.mayLoad() && !regBKilled) {
1256     // Determine if a load can be unfolded.
1257     unsigned LoadRegIndex;
1258     unsigned NewOpc =
1259       TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(),
1260                                       /*UnfoldLoad=*/true,
1261                                       /*UnfoldStore=*/false,
1262                                       &LoadRegIndex);
1263     if (NewOpc != 0) {
1264       const MCInstrDesc &UnfoldMCID = TII->get(NewOpc);
1265       if (UnfoldMCID.getNumDefs() == 1) {
1266         // Unfold the load.
1267         DEBUG(dbgs() << "2addr:   UNFOLDING: " << MI);
1268         const TargetRegisterClass *RC =
1269           TRI->getAllocatableClass(
1270             TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF));
1271         unsigned Reg = MRI->createVirtualRegister(RC);
1272         SmallVector<MachineInstr *, 2> NewMIs;
1273         if (!TII->unfoldMemoryOperand(*MF, &MI, Reg,
1274                                       /*UnfoldLoad=*/true,/*UnfoldStore=*/false,
1275                                       NewMIs)) {
1276           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1277           return false;
1278         }
1279         assert(NewMIs.size() == 2 &&
1280                "Unfolded a load into multiple instructions!");
1281         // The load was previously folded, so this is the only use.
1282         NewMIs[1]->addRegisterKilled(Reg, TRI);
1283
1284         // Tentatively insert the instructions into the block so that they
1285         // look "normal" to the transformation logic.
1286         MBB->insert(mi, NewMIs[0]);
1287         MBB->insert(mi, NewMIs[1]);
1288
1289         DEBUG(dbgs() << "2addr:    NEW LOAD: " << *NewMIs[0]
1290                      << "2addr:    NEW INST: " << *NewMIs[1]);
1291
1292         // Transform the instruction, now that it no longer has a load.
1293         unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA);
1294         unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB);
1295         MachineBasicBlock::iterator NewMI = NewMIs[1];
1296         bool TransformResult =
1297           tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true);
1298         (void)TransformResult;
1299         assert(!TransformResult &&
1300                "tryInstructionTransform() should return false.");
1301         if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) {
1302           // Success, or at least we made an improvement. Keep the unfolded
1303           // instructions and discard the original.
1304           if (LV) {
1305             for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
1306               MachineOperand &MO = MI.getOperand(i);
1307               if (MO.isReg() &&
1308                   TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
1309                 if (MO.isUse()) {
1310                   if (MO.isKill()) {
1311                     if (NewMIs[0]->killsRegister(MO.getReg()))
1312                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[0]);
1313                     else {
1314                       assert(NewMIs[1]->killsRegister(MO.getReg()) &&
1315                              "Kill missing after load unfold!");
1316                       LV->replaceKillInstruction(MO.getReg(), &MI, NewMIs[1]);
1317                     }
1318                   }
1319                 } else if (LV->removeVirtualRegisterDead(MO.getReg(), &MI)) {
1320                   if (NewMIs[1]->registerDefIsDead(MO.getReg()))
1321                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[1]);
1322                   else {
1323                     assert(NewMIs[0]->registerDefIsDead(MO.getReg()) &&
1324                            "Dead flag missing after load unfold!");
1325                     LV->addVirtualRegisterDead(MO.getReg(), NewMIs[0]);
1326                   }
1327                 }
1328               }
1329             }
1330             LV->addVirtualRegisterKilled(Reg, NewMIs[1]);
1331           }
1332
1333           SmallVector<unsigned, 4> OrigRegs;
1334           if (LIS) {
1335             for (MachineInstr::const_mop_iterator MOI = MI.operands_begin(),
1336                  MOE = MI.operands_end(); MOI != MOE; ++MOI) {
1337               if (MOI->isReg())
1338                 OrigRegs.push_back(MOI->getReg());
1339             }
1340           }
1341
1342           MI.eraseFromParent();
1343
1344           // Update LiveIntervals.
1345           if (LIS) {
1346             MachineBasicBlock::iterator Begin(NewMIs[0]);
1347             MachineBasicBlock::iterator End(NewMIs[1]);
1348             LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs);
1349           }
1350
1351           mi = NewMIs[1];
1352         } else {
1353           // Transforming didn't eliminate the tie and didn't lead to an
1354           // improvement. Clean up the unfolded instructions and keep the
1355           // original.
1356           DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n");
1357           NewMIs[0]->eraseFromParent();
1358           NewMIs[1]->eraseFromParent();
1359         }
1360       }
1361     }
1362   }
1363
1364   return false;
1365 }
1366
1367 // Collect tied operands of MI that need to be handled.
1368 // Rewrite trivial cases immediately.
1369 // Return true if any tied operands where found, including the trivial ones.
1370 bool TwoAddressInstructionPass::
1371 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) {
1372   const MCInstrDesc &MCID = MI->getDesc();
1373   bool AnyOps = false;
1374   unsigned NumOps = MI->getNumOperands();
1375
1376   for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) {
1377     unsigned DstIdx = 0;
1378     if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx))
1379       continue;
1380     AnyOps = true;
1381     MachineOperand &SrcMO = MI->getOperand(SrcIdx);
1382     MachineOperand &DstMO = MI->getOperand(DstIdx);
1383     unsigned SrcReg = SrcMO.getReg();
1384     unsigned DstReg = DstMO.getReg();
1385     // Tied constraint already satisfied?
1386     if (SrcReg == DstReg)
1387       continue;
1388
1389     assert(SrcReg && SrcMO.isUse() && "two address instruction invalid");
1390
1391     // Deal with <undef> uses immediately - simply rewrite the src operand.
1392     if (SrcMO.isUndef() && !DstMO.getSubReg()) {
1393       // Constrain the DstReg register class if required.
1394       if (TargetRegisterInfo::isVirtualRegister(DstReg))
1395         if (const TargetRegisterClass *RC = TII->getRegClass(MCID, SrcIdx,
1396                                                              TRI, *MF))
1397           MRI->constrainRegClass(DstReg, RC);
1398       SrcMO.setReg(DstReg);
1399       SrcMO.setSubReg(0);
1400       DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI);
1401       continue;
1402     }
1403     TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx));
1404   }
1405   return AnyOps;
1406 }
1407
1408 // Process a list of tied MI operands that all use the same source register.
1409 // The tied pairs are of the form (SrcIdx, DstIdx).
1410 void
1411 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI,
1412                                             TiedPairList &TiedPairs,
1413                                             unsigned &Dist) {
1414   bool IsEarlyClobber = false;
1415   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1416     const MachineOperand &DstMO = MI->getOperand(TiedPairs[tpi].second);
1417     IsEarlyClobber |= DstMO.isEarlyClobber();
1418   }
1419
1420   bool RemovedKillFlag = false;
1421   bool AllUsesCopied = true;
1422   unsigned LastCopiedReg = 0;
1423   SlotIndex LastCopyIdx;
1424   unsigned RegB = 0;
1425   unsigned SubRegB = 0;
1426   for (unsigned tpi = 0, tpe = TiedPairs.size(); tpi != tpe; ++tpi) {
1427     unsigned SrcIdx = TiedPairs[tpi].first;
1428     unsigned DstIdx = TiedPairs[tpi].second;
1429
1430     const MachineOperand &DstMO = MI->getOperand(DstIdx);
1431     unsigned RegA = DstMO.getReg();
1432
1433     // Grab RegB from the instruction because it may have changed if the
1434     // instruction was commuted.
1435     RegB = MI->getOperand(SrcIdx).getReg();
1436     SubRegB = MI->getOperand(SrcIdx).getSubReg();
1437
1438     if (RegA == RegB) {
1439       // The register is tied to multiple destinations (or else we would
1440       // not have continued this far), but this use of the register
1441       // already matches the tied destination.  Leave it.
1442       AllUsesCopied = false;
1443       continue;
1444     }
1445     LastCopiedReg = RegA;
1446
1447     assert(TargetRegisterInfo::isVirtualRegister(RegB) &&
1448            "cannot make instruction into two-address form");
1449
1450 #ifndef NDEBUG
1451     // First, verify that we don't have a use of "a" in the instruction
1452     // (a = b + a for example) because our transformation will not
1453     // work. This should never occur because we are in SSA form.
1454     for (unsigned i = 0; i != MI->getNumOperands(); ++i)
1455       assert(i == DstIdx ||
1456              !MI->getOperand(i).isReg() ||
1457              MI->getOperand(i).getReg() != RegA);
1458 #endif
1459
1460     // Emit a copy.
1461     MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1462                                       TII->get(TargetOpcode::COPY), RegA);
1463     // If this operand is folding a truncation, the truncation now moves to the
1464     // copy so that the register classes remain valid for the operands.
1465     MIB.addReg(RegB, 0, SubRegB);
1466     const TargetRegisterClass *RC = MRI->getRegClass(RegB);
1467     if (SubRegB) {
1468       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1469         assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA),
1470                                              SubRegB) &&
1471                "tied subregister must be a truncation");
1472         // The superreg class will not be used to constrain the subreg class.
1473         RC = nullptr;
1474       }
1475       else {
1476         assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB))
1477                && "tied subregister must be a truncation");
1478       }
1479     }
1480
1481     // Update DistanceMap.
1482     MachineBasicBlock::iterator PrevMI = MI;
1483     --PrevMI;
1484     DistanceMap.insert(std::make_pair(PrevMI, Dist));
1485     DistanceMap[MI] = ++Dist;
1486
1487     if (LIS) {
1488       LastCopyIdx = LIS->InsertMachineInstrInMaps(PrevMI).getRegSlot();
1489
1490       if (TargetRegisterInfo::isVirtualRegister(RegA)) {
1491         LiveInterval &LI = LIS->getInterval(RegA);
1492         VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator());
1493         SlotIndex endIdx =
1494           LIS->getInstructionIndex(MI).getRegSlot(IsEarlyClobber);
1495         LI.addSegment(LiveInterval::Segment(LastCopyIdx, endIdx, VNI));
1496       }
1497     }
1498
1499     DEBUG(dbgs() << "\t\tprepend:\t" << *MIB);
1500
1501     MachineOperand &MO = MI->getOperand(SrcIdx);
1502     assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() &&
1503            "inconsistent operand info for 2-reg pass");
1504     if (MO.isKill()) {
1505       MO.setIsKill(false);
1506       RemovedKillFlag = true;
1507     }
1508
1509     // Make sure regA is a legal regclass for the SrcIdx operand.
1510     if (TargetRegisterInfo::isVirtualRegister(RegA) &&
1511         TargetRegisterInfo::isVirtualRegister(RegB))
1512       MRI->constrainRegClass(RegA, RC);
1513     MO.setReg(RegA);
1514     // The getMatchingSuper asserts guarantee that the register class projected
1515     // by SubRegB is compatible with RegA with no subregister. So regardless of
1516     // whether the dest oper writes a subreg, the source oper should not.
1517     MO.setSubReg(0);
1518
1519     // Propagate SrcRegMap.
1520     SrcRegMap[RegA] = RegB;
1521   }
1522
1523
1524   if (AllUsesCopied) {
1525     if (!IsEarlyClobber) {
1526       // Replace other (un-tied) uses of regB with LastCopiedReg.
1527       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1528         MachineOperand &MO = MI->getOperand(i);
1529         if (MO.isReg() && MO.getReg() == RegB && MO.getSubReg() == SubRegB &&
1530             MO.isUse()) {
1531           if (MO.isKill()) {
1532             MO.setIsKill(false);
1533             RemovedKillFlag = true;
1534           }
1535           MO.setReg(LastCopiedReg);
1536           MO.setSubReg(0);
1537         }
1538       }
1539     }
1540
1541     // Update live variables for regB.
1542     if (RemovedKillFlag && LV && LV->getVarInfo(RegB).removeKill(MI)) {
1543       MachineBasicBlock::iterator PrevMI = MI;
1544       --PrevMI;
1545       LV->addVirtualRegisterKilled(RegB, PrevMI);
1546     }
1547
1548     // Update LiveIntervals.
1549     if (LIS) {
1550       LiveInterval &LI = LIS->getInterval(RegB);
1551       SlotIndex MIIdx = LIS->getInstructionIndex(MI);
1552       LiveInterval::const_iterator I = LI.find(MIIdx);
1553       assert(I != LI.end() && "RegB must be live-in to use.");
1554
1555       SlotIndex UseIdx = MIIdx.getRegSlot(IsEarlyClobber);
1556       if (I->end == UseIdx)
1557         LI.removeSegment(LastCopyIdx, UseIdx);
1558     }
1559
1560   } else if (RemovedKillFlag) {
1561     // Some tied uses of regB matched their destination registers, so
1562     // regB is still used in this instruction, but a kill flag was
1563     // removed from a different tied use of regB, so now we need to add
1564     // a kill flag to one of the remaining uses of regB.
1565     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1566       MachineOperand &MO = MI->getOperand(i);
1567       if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) {
1568         MO.setIsKill(true);
1569         break;
1570       }
1571     }
1572   }
1573 }
1574
1575 /// runOnMachineFunction - Reduce two-address instructions to two operands.
1576 ///
1577 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) {
1578   MF = &Func;
1579   const TargetMachine &TM = MF->getTarget();
1580   MRI = &MF->getRegInfo();
1581   TII = MF->getSubtarget().getInstrInfo();
1582   TRI = MF->getSubtarget().getRegisterInfo();
1583   InstrItins = MF->getSubtarget().getInstrItineraryData();
1584   LV = getAnalysisIfAvailable<LiveVariables>();
1585   LIS = getAnalysisIfAvailable<LiveIntervals>();
1586   AA = &getAnalysis<AliasAnalysis>();
1587   OptLevel = TM.getOptLevel();
1588
1589   bool MadeChange = false;
1590
1591   DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n");
1592   DEBUG(dbgs() << "********** Function: "
1593         << MF->getName() << '\n');
1594
1595   // This pass takes the function out of SSA form.
1596   MRI->leaveSSA();
1597
1598   TiedOperandMap TiedOperands;
1599   for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end();
1600        MBBI != MBBE; ++MBBI) {
1601     MBB = MBBI;
1602     unsigned Dist = 0;
1603     DistanceMap.clear();
1604     SrcRegMap.clear();
1605     DstRegMap.clear();
1606     Processed.clear();
1607     for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end();
1608          mi != me; ) {
1609       MachineBasicBlock::iterator nmi = std::next(mi);
1610       if (mi->isDebugValue()) {
1611         mi = nmi;
1612         continue;
1613       }
1614
1615       // Expand REG_SEQUENCE instructions. This will position mi at the first
1616       // expanded instruction.
1617       if (mi->isRegSequence())
1618         eliminateRegSequence(mi);
1619
1620       DistanceMap.insert(std::make_pair(mi, ++Dist));
1621
1622       processCopy(&*mi);
1623
1624       // First scan through all the tied register uses in this instruction
1625       // and record a list of pairs of tied operands for each register.
1626       if (!collectTiedOperands(mi, TiedOperands)) {
1627         mi = nmi;
1628         continue;
1629       }
1630
1631       ++NumTwoAddressInstrs;
1632       MadeChange = true;
1633       DEBUG(dbgs() << '\t' << *mi);
1634
1635       // If the instruction has a single pair of tied operands, try some
1636       // transformations that may either eliminate the tied operands or
1637       // improve the opportunities for coalescing away the register copy.
1638       if (TiedOperands.size() == 1) {
1639         SmallVectorImpl<std::pair<unsigned, unsigned> > &TiedPairs
1640           = TiedOperands.begin()->second;
1641         if (TiedPairs.size() == 1) {
1642           unsigned SrcIdx = TiedPairs[0].first;
1643           unsigned DstIdx = TiedPairs[0].second;
1644           unsigned SrcReg = mi->getOperand(SrcIdx).getReg();
1645           unsigned DstReg = mi->getOperand(DstIdx).getReg();
1646           if (SrcReg != DstReg &&
1647               tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) {
1648             // The tied operands have been eliminated or shifted further down the
1649             // block to ease elimination. Continue processing with 'nmi'.
1650             TiedOperands.clear();
1651             mi = nmi;
1652             continue;
1653           }
1654         }
1655       }
1656
1657       // Now iterate over the information collected above.
1658       for (TiedOperandMap::iterator OI = TiedOperands.begin(),
1659              OE = TiedOperands.end(); OI != OE; ++OI) {
1660         processTiedPairs(mi, OI->second, Dist);
1661         DEBUG(dbgs() << "\t\trewrite to:\t" << *mi);
1662       }
1663
1664       // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form.
1665       if (mi->isInsertSubreg()) {
1666         // From %reg = INSERT_SUBREG %reg, %subreg, subidx
1667         // To   %reg:subidx = COPY %subreg
1668         unsigned SubIdx = mi->getOperand(3).getImm();
1669         mi->RemoveOperand(3);
1670         assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx");
1671         mi->getOperand(0).setSubReg(SubIdx);
1672         mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef());
1673         mi->RemoveOperand(1);
1674         mi->setDesc(TII->get(TargetOpcode::COPY));
1675         DEBUG(dbgs() << "\t\tconvert to:\t" << *mi);
1676       }
1677
1678       // Clear TiedOperands here instead of at the top of the loop
1679       // since most instructions do not have tied operands.
1680       TiedOperands.clear();
1681       mi = nmi;
1682     }
1683   }
1684
1685   if (LIS)
1686     MF->verify(this, "After two-address instruction pass");
1687
1688   return MadeChange;
1689 }
1690
1691 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process.
1692 ///
1693 /// The instruction is turned into a sequence of sub-register copies:
1694 ///
1695 ///   %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1
1696 ///
1697 /// Becomes:
1698 ///
1699 ///   %dst:ssub0<def,undef> = COPY %v1
1700 ///   %dst:ssub1<def> = COPY %v2
1701 ///
1702 void TwoAddressInstructionPass::
1703 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) {
1704   MachineInstr *MI = MBBI;
1705   unsigned DstReg = MI->getOperand(0).getReg();
1706   if (MI->getOperand(0).getSubReg() ||
1707       TargetRegisterInfo::isPhysicalRegister(DstReg) ||
1708       !(MI->getNumOperands() & 1)) {
1709     DEBUG(dbgs() << "Illegal REG_SEQUENCE instruction:" << *MI);
1710     llvm_unreachable(nullptr);
1711   }
1712
1713   SmallVector<unsigned, 4> OrigRegs;
1714   if (LIS) {
1715     OrigRegs.push_back(MI->getOperand(0).getReg());
1716     for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2)
1717       OrigRegs.push_back(MI->getOperand(i).getReg());
1718   }
1719
1720   bool DefEmitted = false;
1721   for (unsigned i = 1, e = MI->getNumOperands(); i < e; i += 2) {
1722     MachineOperand &UseMO = MI->getOperand(i);
1723     unsigned SrcReg = UseMO.getReg();
1724     unsigned SubIdx = MI->getOperand(i+1).getImm();
1725     // Nothing needs to be inserted for <undef> operands.
1726     if (UseMO.isUndef())
1727       continue;
1728
1729     // Defer any kill flag to the last operand using SrcReg. Otherwise, we
1730     // might insert a COPY that uses SrcReg after is was killed.
1731     bool isKill = UseMO.isKill();
1732     if (isKill)
1733       for (unsigned j = i + 2; j < e; j += 2)
1734         if (MI->getOperand(j).getReg() == SrcReg) {
1735           MI->getOperand(j).setIsKill();
1736           UseMO.setIsKill(false);
1737           isKill = false;
1738           break;
1739         }
1740
1741     // Insert the sub-register copy.
1742     MachineInstr *CopyMI = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
1743                                    TII->get(TargetOpcode::COPY))
1744       .addReg(DstReg, RegState::Define, SubIdx)
1745       .addOperand(UseMO);
1746
1747     // The first def needs an <undef> flag because there is no live register
1748     // before it.
1749     if (!DefEmitted) {
1750       CopyMI->getOperand(0).setIsUndef(true);
1751       // Return an iterator pointing to the first inserted instr.
1752       MBBI = CopyMI;
1753     }
1754     DefEmitted = true;
1755
1756     // Update LiveVariables' kill info.
1757     if (LV && isKill && !TargetRegisterInfo::isPhysicalRegister(SrcReg))
1758       LV->replaceKillInstruction(SrcReg, MI, CopyMI);
1759
1760     DEBUG(dbgs() << "Inserted: " << *CopyMI);
1761   }
1762
1763   MachineBasicBlock::iterator EndMBBI =
1764       std::next(MachineBasicBlock::iterator(MI));
1765
1766   if (!DefEmitted) {
1767     DEBUG(dbgs() << "Turned: " << *MI << " into an IMPLICIT_DEF");
1768     MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
1769     for (int j = MI->getNumOperands() - 1, ee = 0; j > ee; --j)
1770       MI->RemoveOperand(j);
1771   } else {
1772     DEBUG(dbgs() << "Eliminated: " << *MI);
1773     MI->eraseFromParent();
1774   }
1775
1776   // Udpate LiveIntervals.
1777   if (LIS)
1778     LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs);
1779 }