Make it possible for ints/floats to return different values from getBooleanContents()
[oota-llvm.git] / lib / CodeGen / TargetLoweringBase.cpp
1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include <cctype>
38 using namespace llvm;
39
40 /// InitLibcallNames - Set default libcall names.
41 ///
42 static void InitLibcallNames(const char **Names, const Triple &TT) {
43   Names[RTLIB::SHL_I16] = "__ashlhi3";
44   Names[RTLIB::SHL_I32] = "__ashlsi3";
45   Names[RTLIB::SHL_I64] = "__ashldi3";
46   Names[RTLIB::SHL_I128] = "__ashlti3";
47   Names[RTLIB::SRL_I16] = "__lshrhi3";
48   Names[RTLIB::SRL_I32] = "__lshrsi3";
49   Names[RTLIB::SRL_I64] = "__lshrdi3";
50   Names[RTLIB::SRL_I128] = "__lshrti3";
51   Names[RTLIB::SRA_I16] = "__ashrhi3";
52   Names[RTLIB::SRA_I32] = "__ashrsi3";
53   Names[RTLIB::SRA_I64] = "__ashrdi3";
54   Names[RTLIB::SRA_I128] = "__ashrti3";
55   Names[RTLIB::MUL_I8] = "__mulqi3";
56   Names[RTLIB::MUL_I16] = "__mulhi3";
57   Names[RTLIB::MUL_I32] = "__mulsi3";
58   Names[RTLIB::MUL_I64] = "__muldi3";
59   Names[RTLIB::MUL_I128] = "__multi3";
60   Names[RTLIB::MULO_I32] = "__mulosi4";
61   Names[RTLIB::MULO_I64] = "__mulodi4";
62   Names[RTLIB::MULO_I128] = "__muloti4";
63   Names[RTLIB::SDIV_I8] = "__divqi3";
64   Names[RTLIB::SDIV_I16] = "__divhi3";
65   Names[RTLIB::SDIV_I32] = "__divsi3";
66   Names[RTLIB::SDIV_I64] = "__divdi3";
67   Names[RTLIB::SDIV_I128] = "__divti3";
68   Names[RTLIB::UDIV_I8] = "__udivqi3";
69   Names[RTLIB::UDIV_I16] = "__udivhi3";
70   Names[RTLIB::UDIV_I32] = "__udivsi3";
71   Names[RTLIB::UDIV_I64] = "__udivdi3";
72   Names[RTLIB::UDIV_I128] = "__udivti3";
73   Names[RTLIB::SREM_I8] = "__modqi3";
74   Names[RTLIB::SREM_I16] = "__modhi3";
75   Names[RTLIB::SREM_I32] = "__modsi3";
76   Names[RTLIB::SREM_I64] = "__moddi3";
77   Names[RTLIB::SREM_I128] = "__modti3";
78   Names[RTLIB::UREM_I8] = "__umodqi3";
79   Names[RTLIB::UREM_I16] = "__umodhi3";
80   Names[RTLIB::UREM_I32] = "__umodsi3";
81   Names[RTLIB::UREM_I64] = "__umoddi3";
82   Names[RTLIB::UREM_I128] = "__umodti3";
83
84   // These are generally not available.
85   Names[RTLIB::SDIVREM_I8] = nullptr;
86   Names[RTLIB::SDIVREM_I16] = nullptr;
87   Names[RTLIB::SDIVREM_I32] = nullptr;
88   Names[RTLIB::SDIVREM_I64] = nullptr;
89   Names[RTLIB::SDIVREM_I128] = nullptr;
90   Names[RTLIB::UDIVREM_I8] = nullptr;
91   Names[RTLIB::UDIVREM_I16] = nullptr;
92   Names[RTLIB::UDIVREM_I32] = nullptr;
93   Names[RTLIB::UDIVREM_I64] = nullptr;
94   Names[RTLIB::UDIVREM_I128] = nullptr;
95
96   Names[RTLIB::NEG_I32] = "__negsi2";
97   Names[RTLIB::NEG_I64] = "__negdi2";
98   Names[RTLIB::ADD_F32] = "__addsf3";
99   Names[RTLIB::ADD_F64] = "__adddf3";
100   Names[RTLIB::ADD_F80] = "__addxf3";
101   Names[RTLIB::ADD_F128] = "__addtf3";
102   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
103   Names[RTLIB::SUB_F32] = "__subsf3";
104   Names[RTLIB::SUB_F64] = "__subdf3";
105   Names[RTLIB::SUB_F80] = "__subxf3";
106   Names[RTLIB::SUB_F128] = "__subtf3";
107   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
108   Names[RTLIB::MUL_F32] = "__mulsf3";
109   Names[RTLIB::MUL_F64] = "__muldf3";
110   Names[RTLIB::MUL_F80] = "__mulxf3";
111   Names[RTLIB::MUL_F128] = "__multf3";
112   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
113   Names[RTLIB::DIV_F32] = "__divsf3";
114   Names[RTLIB::DIV_F64] = "__divdf3";
115   Names[RTLIB::DIV_F80] = "__divxf3";
116   Names[RTLIB::DIV_F128] = "__divtf3";
117   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
118   Names[RTLIB::REM_F32] = "fmodf";
119   Names[RTLIB::REM_F64] = "fmod";
120   Names[RTLIB::REM_F80] = "fmodl";
121   Names[RTLIB::REM_F128] = "fmodl";
122   Names[RTLIB::REM_PPCF128] = "fmodl";
123   Names[RTLIB::FMA_F32] = "fmaf";
124   Names[RTLIB::FMA_F64] = "fma";
125   Names[RTLIB::FMA_F80] = "fmal";
126   Names[RTLIB::FMA_F128] = "fmal";
127   Names[RTLIB::FMA_PPCF128] = "fmal";
128   Names[RTLIB::POWI_F32] = "__powisf2";
129   Names[RTLIB::POWI_F64] = "__powidf2";
130   Names[RTLIB::POWI_F80] = "__powixf2";
131   Names[RTLIB::POWI_F128] = "__powitf2";
132   Names[RTLIB::POWI_PPCF128] = "__powitf2";
133   Names[RTLIB::SQRT_F32] = "sqrtf";
134   Names[RTLIB::SQRT_F64] = "sqrt";
135   Names[RTLIB::SQRT_F80] = "sqrtl";
136   Names[RTLIB::SQRT_F128] = "sqrtl";
137   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
138   Names[RTLIB::LOG_F32] = "logf";
139   Names[RTLIB::LOG_F64] = "log";
140   Names[RTLIB::LOG_F80] = "logl";
141   Names[RTLIB::LOG_F128] = "logl";
142   Names[RTLIB::LOG_PPCF128] = "logl";
143   Names[RTLIB::LOG2_F32] = "log2f";
144   Names[RTLIB::LOG2_F64] = "log2";
145   Names[RTLIB::LOG2_F80] = "log2l";
146   Names[RTLIB::LOG2_F128] = "log2l";
147   Names[RTLIB::LOG2_PPCF128] = "log2l";
148   Names[RTLIB::LOG10_F32] = "log10f";
149   Names[RTLIB::LOG10_F64] = "log10";
150   Names[RTLIB::LOG10_F80] = "log10l";
151   Names[RTLIB::LOG10_F128] = "log10l";
152   Names[RTLIB::LOG10_PPCF128] = "log10l";
153   Names[RTLIB::EXP_F32] = "expf";
154   Names[RTLIB::EXP_F64] = "exp";
155   Names[RTLIB::EXP_F80] = "expl";
156   Names[RTLIB::EXP_F128] = "expl";
157   Names[RTLIB::EXP_PPCF128] = "expl";
158   Names[RTLIB::EXP2_F32] = "exp2f";
159   Names[RTLIB::EXP2_F64] = "exp2";
160   Names[RTLIB::EXP2_F80] = "exp2l";
161   Names[RTLIB::EXP2_F128] = "exp2l";
162   Names[RTLIB::EXP2_PPCF128] = "exp2l";
163   Names[RTLIB::SIN_F32] = "sinf";
164   Names[RTLIB::SIN_F64] = "sin";
165   Names[RTLIB::SIN_F80] = "sinl";
166   Names[RTLIB::SIN_F128] = "sinl";
167   Names[RTLIB::SIN_PPCF128] = "sinl";
168   Names[RTLIB::COS_F32] = "cosf";
169   Names[RTLIB::COS_F64] = "cos";
170   Names[RTLIB::COS_F80] = "cosl";
171   Names[RTLIB::COS_F128] = "cosl";
172   Names[RTLIB::COS_PPCF128] = "cosl";
173   Names[RTLIB::POW_F32] = "powf";
174   Names[RTLIB::POW_F64] = "pow";
175   Names[RTLIB::POW_F80] = "powl";
176   Names[RTLIB::POW_F128] = "powl";
177   Names[RTLIB::POW_PPCF128] = "powl";
178   Names[RTLIB::CEIL_F32] = "ceilf";
179   Names[RTLIB::CEIL_F64] = "ceil";
180   Names[RTLIB::CEIL_F80] = "ceill";
181   Names[RTLIB::CEIL_F128] = "ceill";
182   Names[RTLIB::CEIL_PPCF128] = "ceill";
183   Names[RTLIB::TRUNC_F32] = "truncf";
184   Names[RTLIB::TRUNC_F64] = "trunc";
185   Names[RTLIB::TRUNC_F80] = "truncl";
186   Names[RTLIB::TRUNC_F128] = "truncl";
187   Names[RTLIB::TRUNC_PPCF128] = "truncl";
188   Names[RTLIB::RINT_F32] = "rintf";
189   Names[RTLIB::RINT_F64] = "rint";
190   Names[RTLIB::RINT_F80] = "rintl";
191   Names[RTLIB::RINT_F128] = "rintl";
192   Names[RTLIB::RINT_PPCF128] = "rintl";
193   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
194   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
195   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
196   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
197   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
198   Names[RTLIB::ROUND_F32] = "roundf";
199   Names[RTLIB::ROUND_F64] = "round";
200   Names[RTLIB::ROUND_F80] = "roundl";
201   Names[RTLIB::ROUND_F128] = "roundl";
202   Names[RTLIB::ROUND_PPCF128] = "roundl";
203   Names[RTLIB::FLOOR_F32] = "floorf";
204   Names[RTLIB::FLOOR_F64] = "floor";
205   Names[RTLIB::FLOOR_F80] = "floorl";
206   Names[RTLIB::FLOOR_F128] = "floorl";
207   Names[RTLIB::FLOOR_PPCF128] = "floorl";
208   Names[RTLIB::ROUND_F32] = "roundf";
209   Names[RTLIB::ROUND_F64] = "round";
210   Names[RTLIB::ROUND_F80] = "roundl";
211   Names[RTLIB::ROUND_F128] = "roundl";
212   Names[RTLIB::ROUND_PPCF128] = "roundl";
213   Names[RTLIB::COPYSIGN_F32] = "copysignf";
214   Names[RTLIB::COPYSIGN_F64] = "copysign";
215   Names[RTLIB::COPYSIGN_F80] = "copysignl";
216   Names[RTLIB::COPYSIGN_F128] = "copysignl";
217   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
218   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
219   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
220   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
221   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
222   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
223   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
224   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
225   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
226   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
227   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
228   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
229   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
230   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
231   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
232   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
233   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
234   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
235   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
236   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
237   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
238   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
239   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
240   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
241   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
242   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
243   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
244   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
245   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
246   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
247   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
248   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
249   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
250   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
251   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
252   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
253   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
254   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
255   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
256   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
257   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
258   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
259   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
260   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
261   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
262   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
263   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
264   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
265   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
266   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
267   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
268   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
269   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
270   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
271   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
272   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
273   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
274   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
275   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
276   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
277   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
278   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
279   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
280   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
281   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
282   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
283   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
284   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
285   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
286   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
287   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
288   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
289   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
290   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
291   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
292   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
293   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
294   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
295   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
296   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
297   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
298   Names[RTLIB::OEQ_F32] = "__eqsf2";
299   Names[RTLIB::OEQ_F64] = "__eqdf2";
300   Names[RTLIB::OEQ_F128] = "__eqtf2";
301   Names[RTLIB::UNE_F32] = "__nesf2";
302   Names[RTLIB::UNE_F64] = "__nedf2";
303   Names[RTLIB::UNE_F128] = "__netf2";
304   Names[RTLIB::OGE_F32] = "__gesf2";
305   Names[RTLIB::OGE_F64] = "__gedf2";
306   Names[RTLIB::OGE_F128] = "__getf2";
307   Names[RTLIB::OLT_F32] = "__ltsf2";
308   Names[RTLIB::OLT_F64] = "__ltdf2";
309   Names[RTLIB::OLT_F128] = "__lttf2";
310   Names[RTLIB::OLE_F32] = "__lesf2";
311   Names[RTLIB::OLE_F64] = "__ledf2";
312   Names[RTLIB::OLE_F128] = "__letf2";
313   Names[RTLIB::OGT_F32] = "__gtsf2";
314   Names[RTLIB::OGT_F64] = "__gtdf2";
315   Names[RTLIB::OGT_F128] = "__gttf2";
316   Names[RTLIB::UO_F32] = "__unordsf2";
317   Names[RTLIB::UO_F64] = "__unorddf2";
318   Names[RTLIB::UO_F128] = "__unordtf2";
319   Names[RTLIB::O_F32] = "__unordsf2";
320   Names[RTLIB::O_F64] = "__unorddf2";
321   Names[RTLIB::O_F128] = "__unordtf2";
322   Names[RTLIB::MEMCPY] = "memcpy";
323   Names[RTLIB::MEMMOVE] = "memmove";
324   Names[RTLIB::MEMSET] = "memset";
325   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
326   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
327   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
328   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
329   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
330   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
331   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
332   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
333   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
334   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
335   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
336   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
337   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
338   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
339   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
340   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
341   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
342   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
343   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
344   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
345   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
346   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
347   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
348   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
349   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
350   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
351   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
352   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
353   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
354   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
355   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
356   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
357   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
358   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
359   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
360   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
361   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
362   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
363   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
364   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
365   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
366   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
367   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
368   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
369   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
370   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
371   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
372   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
373   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
374   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
375   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
376   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
377   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
378   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
379   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
380   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
381   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
382   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
383   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
384   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
385   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
386   
387   if (TT.getEnvironment() == Triple::GNU) {
388     Names[RTLIB::SINCOS_F32] = "sincosf";
389     Names[RTLIB::SINCOS_F64] = "sincos";
390     Names[RTLIB::SINCOS_F80] = "sincosl";
391     Names[RTLIB::SINCOS_F128] = "sincosl";
392     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
393   } else {
394     // These are generally not available.
395     Names[RTLIB::SINCOS_F32] = nullptr;
396     Names[RTLIB::SINCOS_F64] = nullptr;
397     Names[RTLIB::SINCOS_F80] = nullptr;
398     Names[RTLIB::SINCOS_F128] = nullptr;
399     Names[RTLIB::SINCOS_PPCF128] = nullptr;
400   }
401
402   if (TT.getOS() != Triple::OpenBSD) {
403     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
404   } else {
405     // These are generally not available.
406     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
407   }
408 }
409
410 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
411 ///
412 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
413   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
414     CCs[i] = CallingConv::C;
415   }
416 }
417
418 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
419 /// UNKNOWN_LIBCALL if there is none.
420 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
421   if (OpVT == MVT::f32) {
422     if (RetVT == MVT::f64)
423       return FPEXT_F32_F64;
424     if (RetVT == MVT::f128)
425       return FPEXT_F32_F128;
426   } else if (OpVT == MVT::f64) {
427     if (RetVT == MVT::f128)
428       return FPEXT_F64_F128;
429   }
430
431   return UNKNOWN_LIBCALL;
432 }
433
434 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
435 /// UNKNOWN_LIBCALL if there is none.
436 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
437   if (RetVT == MVT::f32) {
438     if (OpVT == MVT::f64)
439       return FPROUND_F64_F32;
440     if (OpVT == MVT::f80)
441       return FPROUND_F80_F32;
442     if (OpVT == MVT::f128)
443       return FPROUND_F128_F32;
444     if (OpVT == MVT::ppcf128)
445       return FPROUND_PPCF128_F32;
446   } else if (RetVT == MVT::f64) {
447     if (OpVT == MVT::f80)
448       return FPROUND_F80_F64;
449     if (OpVT == MVT::f128)
450       return FPROUND_F128_F64;
451     if (OpVT == MVT::ppcf128)
452       return FPROUND_PPCF128_F64;
453   }
454
455   return UNKNOWN_LIBCALL;
456 }
457
458 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
459 /// UNKNOWN_LIBCALL if there is none.
460 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
461   if (OpVT == MVT::f32) {
462     if (RetVT == MVT::i8)
463       return FPTOSINT_F32_I8;
464     if (RetVT == MVT::i16)
465       return FPTOSINT_F32_I16;
466     if (RetVT == MVT::i32)
467       return FPTOSINT_F32_I32;
468     if (RetVT == MVT::i64)
469       return FPTOSINT_F32_I64;
470     if (RetVT == MVT::i128)
471       return FPTOSINT_F32_I128;
472   } else if (OpVT == MVT::f64) {
473     if (RetVT == MVT::i8)
474       return FPTOSINT_F64_I8;
475     if (RetVT == MVT::i16)
476       return FPTOSINT_F64_I16;
477     if (RetVT == MVT::i32)
478       return FPTOSINT_F64_I32;
479     if (RetVT == MVT::i64)
480       return FPTOSINT_F64_I64;
481     if (RetVT == MVT::i128)
482       return FPTOSINT_F64_I128;
483   } else if (OpVT == MVT::f80) {
484     if (RetVT == MVT::i32)
485       return FPTOSINT_F80_I32;
486     if (RetVT == MVT::i64)
487       return FPTOSINT_F80_I64;
488     if (RetVT == MVT::i128)
489       return FPTOSINT_F80_I128;
490   } else if (OpVT == MVT::f128) {
491     if (RetVT == MVT::i32)
492       return FPTOSINT_F128_I32;
493     if (RetVT == MVT::i64)
494       return FPTOSINT_F128_I64;
495     if (RetVT == MVT::i128)
496       return FPTOSINT_F128_I128;
497   } else if (OpVT == MVT::ppcf128) {
498     if (RetVT == MVT::i32)
499       return FPTOSINT_PPCF128_I32;
500     if (RetVT == MVT::i64)
501       return FPTOSINT_PPCF128_I64;
502     if (RetVT == MVT::i128)
503       return FPTOSINT_PPCF128_I128;
504   }
505   return UNKNOWN_LIBCALL;
506 }
507
508 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
509 /// UNKNOWN_LIBCALL if there is none.
510 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
511   if (OpVT == MVT::f32) {
512     if (RetVT == MVT::i8)
513       return FPTOUINT_F32_I8;
514     if (RetVT == MVT::i16)
515       return FPTOUINT_F32_I16;
516     if (RetVT == MVT::i32)
517       return FPTOUINT_F32_I32;
518     if (RetVT == MVT::i64)
519       return FPTOUINT_F32_I64;
520     if (RetVT == MVT::i128)
521       return FPTOUINT_F32_I128;
522   } else if (OpVT == MVT::f64) {
523     if (RetVT == MVT::i8)
524       return FPTOUINT_F64_I8;
525     if (RetVT == MVT::i16)
526       return FPTOUINT_F64_I16;
527     if (RetVT == MVT::i32)
528       return FPTOUINT_F64_I32;
529     if (RetVT == MVT::i64)
530       return FPTOUINT_F64_I64;
531     if (RetVT == MVT::i128)
532       return FPTOUINT_F64_I128;
533   } else if (OpVT == MVT::f80) {
534     if (RetVT == MVT::i32)
535       return FPTOUINT_F80_I32;
536     if (RetVT == MVT::i64)
537       return FPTOUINT_F80_I64;
538     if (RetVT == MVT::i128)
539       return FPTOUINT_F80_I128;
540   } else if (OpVT == MVT::f128) {
541     if (RetVT == MVT::i32)
542       return FPTOUINT_F128_I32;
543     if (RetVT == MVT::i64)
544       return FPTOUINT_F128_I64;
545     if (RetVT == MVT::i128)
546       return FPTOUINT_F128_I128;
547   } else if (OpVT == MVT::ppcf128) {
548     if (RetVT == MVT::i32)
549       return FPTOUINT_PPCF128_I32;
550     if (RetVT == MVT::i64)
551       return FPTOUINT_PPCF128_I64;
552     if (RetVT == MVT::i128)
553       return FPTOUINT_PPCF128_I128;
554   }
555   return UNKNOWN_LIBCALL;
556 }
557
558 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
559 /// UNKNOWN_LIBCALL if there is none.
560 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
561   if (OpVT == MVT::i32) {
562     if (RetVT == MVT::f32)
563       return SINTTOFP_I32_F32;
564     if (RetVT == MVT::f64)
565       return SINTTOFP_I32_F64;
566     if (RetVT == MVT::f80)
567       return SINTTOFP_I32_F80;
568     if (RetVT == MVT::f128)
569       return SINTTOFP_I32_F128;
570     if (RetVT == MVT::ppcf128)
571       return SINTTOFP_I32_PPCF128;
572   } else if (OpVT == MVT::i64) {
573     if (RetVT == MVT::f32)
574       return SINTTOFP_I64_F32;
575     if (RetVT == MVT::f64)
576       return SINTTOFP_I64_F64;
577     if (RetVT == MVT::f80)
578       return SINTTOFP_I64_F80;
579     if (RetVT == MVT::f128)
580       return SINTTOFP_I64_F128;
581     if (RetVT == MVT::ppcf128)
582       return SINTTOFP_I64_PPCF128;
583   } else if (OpVT == MVT::i128) {
584     if (RetVT == MVT::f32)
585       return SINTTOFP_I128_F32;
586     if (RetVT == MVT::f64)
587       return SINTTOFP_I128_F64;
588     if (RetVT == MVT::f80)
589       return SINTTOFP_I128_F80;
590     if (RetVT == MVT::f128)
591       return SINTTOFP_I128_F128;
592     if (RetVT == MVT::ppcf128)
593       return SINTTOFP_I128_PPCF128;
594   }
595   return UNKNOWN_LIBCALL;
596 }
597
598 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
599 /// UNKNOWN_LIBCALL if there is none.
600 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
601   if (OpVT == MVT::i32) {
602     if (RetVT == MVT::f32)
603       return UINTTOFP_I32_F32;
604     if (RetVT == MVT::f64)
605       return UINTTOFP_I32_F64;
606     if (RetVT == MVT::f80)
607       return UINTTOFP_I32_F80;
608     if (RetVT == MVT::f128)
609       return UINTTOFP_I32_F128;
610     if (RetVT == MVT::ppcf128)
611       return UINTTOFP_I32_PPCF128;
612   } else if (OpVT == MVT::i64) {
613     if (RetVT == MVT::f32)
614       return UINTTOFP_I64_F32;
615     if (RetVT == MVT::f64)
616       return UINTTOFP_I64_F64;
617     if (RetVT == MVT::f80)
618       return UINTTOFP_I64_F80;
619     if (RetVT == MVT::f128)
620       return UINTTOFP_I64_F128;
621     if (RetVT == MVT::ppcf128)
622       return UINTTOFP_I64_PPCF128;
623   } else if (OpVT == MVT::i128) {
624     if (RetVT == MVT::f32)
625       return UINTTOFP_I128_F32;
626     if (RetVT == MVT::f64)
627       return UINTTOFP_I128_F64;
628     if (RetVT == MVT::f80)
629       return UINTTOFP_I128_F80;
630     if (RetVT == MVT::f128)
631       return UINTTOFP_I128_F128;
632     if (RetVT == MVT::ppcf128)
633       return UINTTOFP_I128_PPCF128;
634   }
635   return UNKNOWN_LIBCALL;
636 }
637
638 /// InitCmpLibcallCCs - Set default comparison libcall CC.
639 ///
640 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
641   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
642   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
643   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
644   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
645   CCs[RTLIB::UNE_F32] = ISD::SETNE;
646   CCs[RTLIB::UNE_F64] = ISD::SETNE;
647   CCs[RTLIB::UNE_F128] = ISD::SETNE;
648   CCs[RTLIB::OGE_F32] = ISD::SETGE;
649   CCs[RTLIB::OGE_F64] = ISD::SETGE;
650   CCs[RTLIB::OGE_F128] = ISD::SETGE;
651   CCs[RTLIB::OLT_F32] = ISD::SETLT;
652   CCs[RTLIB::OLT_F64] = ISD::SETLT;
653   CCs[RTLIB::OLT_F128] = ISD::SETLT;
654   CCs[RTLIB::OLE_F32] = ISD::SETLE;
655   CCs[RTLIB::OLE_F64] = ISD::SETLE;
656   CCs[RTLIB::OLE_F128] = ISD::SETLE;
657   CCs[RTLIB::OGT_F32] = ISD::SETGT;
658   CCs[RTLIB::OGT_F64] = ISD::SETGT;
659   CCs[RTLIB::OGT_F128] = ISD::SETGT;
660   CCs[RTLIB::UO_F32] = ISD::SETNE;
661   CCs[RTLIB::UO_F64] = ISD::SETNE;
662   CCs[RTLIB::UO_F128] = ISD::SETNE;
663   CCs[RTLIB::O_F32] = ISD::SETEQ;
664   CCs[RTLIB::O_F64] = ISD::SETEQ;
665   CCs[RTLIB::O_F128] = ISD::SETEQ;
666 }
667
668 /// NOTE: The constructor takes ownership of TLOF.
669 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm,
670                                        const TargetLoweringObjectFile *tlof)
671   : TM(tm), DL(TM.getDataLayout()), TLOF(*tlof) {
672   initActions();
673
674   // Perform these initializations only once.
675   IsLittleEndian = DL->isLittleEndian();
676   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
677   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
678     = MaxStoresPerMemmoveOptSize = 4;
679   UseUnderscoreSetJmp = false;
680   UseUnderscoreLongJmp = false;
681   SelectIsExpensive = false;
682   HasMultipleConditionRegisters = false;
683   HasExtractBitsInsn = false;
684   IntDivIsCheap = false;
685   Pow2DivIsCheap = false;
686   JumpIsExpensive = false;
687   PredictableSelectIsExpensive = false;
688   MaskAndBranchFoldingIsLegal = false;
689   StackPointerRegisterToSaveRestore = 0;
690   ExceptionPointerRegister = 0;
691   ExceptionSelectorRegister = 0;
692   BooleanContents = UndefinedBooleanContent;
693   BooleanFloatContents = UndefinedBooleanContent;
694   BooleanVectorContents = UndefinedBooleanContent;
695   SchedPreferenceInfo = Sched::ILP;
696   JumpBufSize = 0;
697   JumpBufAlignment = 0;
698   MinFunctionAlignment = 0;
699   PrefFunctionAlignment = 0;
700   PrefLoopAlignment = 0;
701   MinStackArgumentAlignment = 1;
702   InsertFencesForAtomic = false;
703   SupportJumpTables = true;
704   MinimumJumpTableEntries = 4;
705
706   InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
707   InitCmpLibcallCCs(CmpLibcallCCs);
708   InitLibcallCallingConvs(LibcallCallingConvs);
709 }
710
711 TargetLoweringBase::~TargetLoweringBase() {
712   delete &TLOF;
713 }
714
715 void TargetLoweringBase::initActions() {
716   // All operations default to being supported.
717   memset(OpActions, 0, sizeof(OpActions));
718   memset(LoadExtActions, 0, sizeof(LoadExtActions));
719   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
720   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
721   memset(CondCodeActions, 0, sizeof(CondCodeActions));
722   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
723   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
724
725   // Set default actions for various operations.
726   for (unsigned VT = 0; VT != (unsigned)MVT::LAST_VALUETYPE; ++VT) {
727     // Default all indexed load / store to expand.
728     for (unsigned IM = (unsigned)ISD::PRE_INC;
729          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
730       setIndexedLoadAction(IM, (MVT::SimpleValueType)VT, Expand);
731       setIndexedStoreAction(IM, (MVT::SimpleValueType)VT, Expand);
732     }
733
734     // Most backends expect to see the node which just returns the value loaded.
735     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS,
736                        (MVT::SimpleValueType)VT, Expand);
737
738     // These operations default to expand.
739     setOperationAction(ISD::FGETSIGN, (MVT::SimpleValueType)VT, Expand);
740     setOperationAction(ISD::CONCAT_VECTORS, (MVT::SimpleValueType)VT, Expand);
741
742     // These library functions default to expand.
743     setOperationAction(ISD::FROUND, (MVT::SimpleValueType)VT, Expand);
744
745     // These operations default to expand for vector types.
746     if (VT >= MVT::FIRST_VECTOR_VALUETYPE &&
747         VT <= MVT::LAST_VECTOR_VALUETYPE) {
748       setOperationAction(ISD::FCOPYSIGN, (MVT::SimpleValueType)VT, Expand);
749       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG,
750                          (MVT::SimpleValueType)VT, Expand);
751     }
752   }
753
754   // Most targets ignore the @llvm.prefetch intrinsic.
755   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
756
757   // ConstantFP nodes default to expand.  Targets can either change this to
758   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
759   // to optimize expansions for certain constants.
760   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
761   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
762   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
763   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
764   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
765
766   // These library functions default to expand.
767   setOperationAction(ISD::FLOG ,  MVT::f16, Expand);
768   setOperationAction(ISD::FLOG2,  MVT::f16, Expand);
769   setOperationAction(ISD::FLOG10, MVT::f16, Expand);
770   setOperationAction(ISD::FEXP ,  MVT::f16, Expand);
771   setOperationAction(ISD::FEXP2,  MVT::f16, Expand);
772   setOperationAction(ISD::FFLOOR, MVT::f16, Expand);
773   setOperationAction(ISD::FNEARBYINT, MVT::f16, Expand);
774   setOperationAction(ISD::FCEIL,  MVT::f16, Expand);
775   setOperationAction(ISD::FRINT,  MVT::f16, Expand);
776   setOperationAction(ISD::FTRUNC, MVT::f16, Expand);
777   setOperationAction(ISD::FROUND, MVT::f16, Expand);
778   setOperationAction(ISD::FLOG ,  MVT::f32, Expand);
779   setOperationAction(ISD::FLOG2,  MVT::f32, Expand);
780   setOperationAction(ISD::FLOG10, MVT::f32, Expand);
781   setOperationAction(ISD::FEXP ,  MVT::f32, Expand);
782   setOperationAction(ISD::FEXP2,  MVT::f32, Expand);
783   setOperationAction(ISD::FFLOOR, MVT::f32, Expand);
784   setOperationAction(ISD::FNEARBYINT, MVT::f32, Expand);
785   setOperationAction(ISD::FCEIL,  MVT::f32, Expand);
786   setOperationAction(ISD::FRINT,  MVT::f32, Expand);
787   setOperationAction(ISD::FTRUNC, MVT::f32, Expand);
788   setOperationAction(ISD::FROUND, MVT::f32, Expand);
789   setOperationAction(ISD::FLOG ,  MVT::f64, Expand);
790   setOperationAction(ISD::FLOG2,  MVT::f64, Expand);
791   setOperationAction(ISD::FLOG10, MVT::f64, Expand);
792   setOperationAction(ISD::FEXP ,  MVT::f64, Expand);
793   setOperationAction(ISD::FEXP2,  MVT::f64, Expand);
794   setOperationAction(ISD::FFLOOR, MVT::f64, Expand);
795   setOperationAction(ISD::FNEARBYINT, MVT::f64, Expand);
796   setOperationAction(ISD::FCEIL,  MVT::f64, Expand);
797   setOperationAction(ISD::FRINT,  MVT::f64, Expand);
798   setOperationAction(ISD::FTRUNC, MVT::f64, Expand);
799   setOperationAction(ISD::FROUND, MVT::f64, Expand);
800   setOperationAction(ISD::FLOG ,  MVT::f128, Expand);
801   setOperationAction(ISD::FLOG2,  MVT::f128, Expand);
802   setOperationAction(ISD::FLOG10, MVT::f128, Expand);
803   setOperationAction(ISD::FEXP ,  MVT::f128, Expand);
804   setOperationAction(ISD::FEXP2,  MVT::f128, Expand);
805   setOperationAction(ISD::FFLOOR, MVT::f128, Expand);
806   setOperationAction(ISD::FNEARBYINT, MVT::f128, Expand);
807   setOperationAction(ISD::FCEIL,  MVT::f128, Expand);
808   setOperationAction(ISD::FRINT,  MVT::f128, Expand);
809   setOperationAction(ISD::FTRUNC, MVT::f128, Expand);
810   setOperationAction(ISD::FROUND, MVT::f128, Expand);
811
812   // Default ISD::TRAP to expand (which turns it into abort).
813   setOperationAction(ISD::TRAP, MVT::Other, Expand);
814
815   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
816   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
817   //
818   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
819 }
820
821 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
822   return MVT::getIntegerVT(getPointerSizeInBits(AS));
823 }
824
825 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
826   return DL->getPointerSizeInBits(AS);
827 }
828
829 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
830   assert(Ty->isPointerTy());
831   return getPointerSizeInBits(Ty->getPointerAddressSpace());
832 }
833
834 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
835   return MVT::getIntegerVT(8*DL->getPointerSize(0));
836 }
837
838 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
839   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
840   if (LHSTy.isVector())
841     return LHSTy;
842   return getScalarShiftAmountTy(LHSTy);
843 }
844
845 /// canOpTrap - Returns true if the operation can trap for the value type.
846 /// VT must be a legal type.
847 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
848   assert(isTypeLegal(VT));
849   switch (Op) {
850   default:
851     return false;
852   case ISD::FDIV:
853   case ISD::FREM:
854   case ISD::SDIV:
855   case ISD::UDIV:
856   case ISD::SREM:
857   case ISD::UREM:
858     return true;
859   }
860 }
861
862
863 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
864                                           unsigned &NumIntermediates,
865                                           MVT &RegisterVT,
866                                           TargetLoweringBase *TLI) {
867   // Figure out the right, legal destination reg to copy into.
868   unsigned NumElts = VT.getVectorNumElements();
869   MVT EltTy = VT.getVectorElementType();
870
871   unsigned NumVectorRegs = 1;
872
873   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
874   // could break down into LHS/RHS like LegalizeDAG does.
875   if (!isPowerOf2_32(NumElts)) {
876     NumVectorRegs = NumElts;
877     NumElts = 1;
878   }
879
880   // Divide the input until we get to a supported size.  This will always
881   // end with a scalar if the target doesn't support vectors.
882   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
883     NumElts >>= 1;
884     NumVectorRegs <<= 1;
885   }
886
887   NumIntermediates = NumVectorRegs;
888
889   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
890   if (!TLI->isTypeLegal(NewVT))
891     NewVT = EltTy;
892   IntermediateVT = NewVT;
893
894   unsigned NewVTSize = NewVT.getSizeInBits();
895
896   // Convert sizes such as i33 to i64.
897   if (!isPowerOf2_32(NewVTSize))
898     NewVTSize = NextPowerOf2(NewVTSize);
899
900   MVT DestVT = TLI->getRegisterType(NewVT);
901   RegisterVT = DestVT;
902   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
903     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
904
905   // Otherwise, promotion or legal types use the same number of registers as
906   // the vector decimated to the appropriate level.
907   return NumVectorRegs;
908 }
909
910 /// isLegalRC - Return true if the value types that can be represented by the
911 /// specified register class are all legal.
912 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
913   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
914        I != E; ++I) {
915     if (isTypeLegal(*I))
916       return true;
917   }
918   return false;
919 }
920
921 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
922 /// sequence of memory operands that is recognized by PrologEpilogInserter.
923 MachineBasicBlock*
924 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
925                                    MachineBasicBlock *MBB) const {
926   MachineFunction &MF = *MI->getParent()->getParent();
927
928   // MI changes inside this loop as we grow operands.
929   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
930     MachineOperand &MO = MI->getOperand(OperIdx);
931     if (!MO.isFI())
932       continue;
933
934     // foldMemoryOperand builds a new MI after replacing a single FI operand
935     // with the canonical set of five x86 addressing-mode operands.
936     int FI = MO.getIndex();
937     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
938
939     // Copy operands before the frame-index.
940     for (unsigned i = 0; i < OperIdx; ++i)
941       MIB.addOperand(MI->getOperand(i));
942     // Add frame index operands: direct-mem-ref tag, #FI, offset.
943     MIB.addImm(StackMaps::DirectMemRefOp);
944     MIB.addOperand(MI->getOperand(OperIdx));
945     MIB.addImm(0);
946     // Copy the operands after the frame index.
947     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
948       MIB.addOperand(MI->getOperand(i));
949
950     // Inherit previous memory operands.
951     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
952     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
953
954     // Add a new memory operand for this FI.
955     const MachineFrameInfo &MFI = *MF.getFrameInfo();
956     assert(MFI.getObjectOffset(FI) != -1);
957     MachineMemOperand *MMO =
958       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
959                               MachineMemOperand::MOLoad,
960                               TM.getDataLayout()->getPointerSize(),
961                               MFI.getObjectAlignment(FI));
962     MIB->addMemOperand(MF, MMO);
963
964     // Replace the instruction and update the operand index.
965     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
966     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
967     MI->eraseFromParent();
968     MI = MIB;
969   }
970   return MBB;
971 }
972
973 /// findRepresentativeClass - Return the largest legal super-reg register class
974 /// of the register class for the specified type and its associated "cost".
975 std::pair<const TargetRegisterClass*, uint8_t>
976 TargetLoweringBase::findRepresentativeClass(MVT VT) const {
977   const TargetRegisterInfo *TRI = getTargetMachine().getRegisterInfo();
978   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
979   if (!RC)
980     return std::make_pair(RC, 0);
981
982   // Compute the set of all super-register classes.
983   BitVector SuperRegRC(TRI->getNumRegClasses());
984   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
985     SuperRegRC.setBitsInMask(RCI.getMask());
986
987   // Find the first legal register class with the largest spill size.
988   const TargetRegisterClass *BestRC = RC;
989   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
990     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
991     // We want the largest possible spill size.
992     if (SuperRC->getSize() <= BestRC->getSize())
993       continue;
994     if (!isLegalRC(SuperRC))
995       continue;
996     BestRC = SuperRC;
997   }
998   return std::make_pair(BestRC, 1);
999 }
1000
1001 /// computeRegisterProperties - Once all of the register classes are added,
1002 /// this allows us to compute derived properties we expose.
1003 void TargetLoweringBase::computeRegisterProperties() {
1004   assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE &&
1005          "Too many value types for ValueTypeActions to hold!");
1006
1007   // Everything defaults to needing one register.
1008   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1009     NumRegistersForVT[i] = 1;
1010     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1011   }
1012   // ...except isVoid, which doesn't need any registers.
1013   NumRegistersForVT[MVT::isVoid] = 0;
1014
1015   // Find the largest integer register class.
1016   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1017   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1018     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1019
1020   // Every integer value type larger than this largest register takes twice as
1021   // many registers to represent as the previous ValueType.
1022   for (unsigned ExpandedReg = LargestIntReg + 1;
1023        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1024     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1025     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1026     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1027     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1028                                    TypeExpandInteger);
1029   }
1030
1031   // Inspect all of the ValueType's smaller than the largest integer
1032   // register to see which ones need promotion.
1033   unsigned LegalIntReg = LargestIntReg;
1034   for (unsigned IntReg = LargestIntReg - 1;
1035        IntReg >= (unsigned)MVT::i1; --IntReg) {
1036     MVT IVT = (MVT::SimpleValueType)IntReg;
1037     if (isTypeLegal(IVT)) {
1038       LegalIntReg = IntReg;
1039     } else {
1040       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1041         (const MVT::SimpleValueType)LegalIntReg;
1042       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1043     }
1044   }
1045
1046   // ppcf128 type is really two f64's.
1047   if (!isTypeLegal(MVT::ppcf128)) {
1048     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1049     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1050     TransformToType[MVT::ppcf128] = MVT::f64;
1051     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1052   }
1053
1054   // Decide how to handle f128. If the target does not have native f128 support,
1055   // expand it to i128 and we will be generating soft float library calls.
1056   if (!isTypeLegal(MVT::f128)) {
1057     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1058     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1059     TransformToType[MVT::f128] = MVT::i128;
1060     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1061   }
1062
1063   // Decide how to handle f64. If the target does not have native f64 support,
1064   // expand it to i64 and we will be generating soft float library calls.
1065   if (!isTypeLegal(MVT::f64)) {
1066     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1067     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1068     TransformToType[MVT::f64] = MVT::i64;
1069     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1070   }
1071
1072   // Decide how to handle f32. If the target does not have native support for
1073   // f32, promote it to f64 if it is legal. Otherwise, expand it to i32.
1074   if (!isTypeLegal(MVT::f32)) {
1075     if (isTypeLegal(MVT::f64)) {
1076       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::f64];
1077       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::f64];
1078       TransformToType[MVT::f32] = MVT::f64;
1079       ValueTypeActions.setTypeAction(MVT::f32, TypePromoteInteger);
1080     } else {
1081       NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1082       RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1083       TransformToType[MVT::f32] = MVT::i32;
1084       ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1085     }
1086   }
1087
1088   // Loop over all of the vector value types to see which need transformations.
1089   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1090        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1091     MVT VT = (MVT::SimpleValueType) i;
1092     if (isTypeLegal(VT))
1093       continue;
1094
1095     MVT EltVT = VT.getVectorElementType();
1096     unsigned NElts = VT.getVectorNumElements();
1097     bool IsLegalWiderType = false;
1098     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1099     switch (PreferredAction) {
1100     case TypePromoteInteger: {
1101       // Try to promote the elements of integer vectors. If no legal
1102       // promotion was found, fall through to the widen-vector method.
1103       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1104         MVT SVT = (MVT::SimpleValueType) nVT;
1105         // Promote vectors of integers to vectors with the same number
1106         // of elements, with a wider element type.
1107         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1108             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
1109             && SVT.getScalarType().isInteger()) {
1110           TransformToType[i] = SVT;
1111           RegisterTypeForVT[i] = SVT;
1112           NumRegistersForVT[i] = 1;
1113           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1114           IsLegalWiderType = true;
1115           break;
1116         }
1117       }
1118       if (IsLegalWiderType)
1119         break;
1120     }
1121     case TypeWidenVector: {
1122       // Try to widen the vector.
1123       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1124         MVT SVT = (MVT::SimpleValueType) nVT;
1125         if (SVT.getVectorElementType() == EltVT
1126             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1127           TransformToType[i] = SVT;
1128           RegisterTypeForVT[i] = SVT;
1129           NumRegistersForVT[i] = 1;
1130           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1131           IsLegalWiderType = true;
1132           break;
1133         }
1134       }
1135       if (IsLegalWiderType)
1136         break;
1137     }
1138     case TypeSplitVector:
1139     case TypeScalarizeVector: {
1140       MVT IntermediateVT;
1141       MVT RegisterVT;
1142       unsigned NumIntermediates;
1143       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1144           NumIntermediates, RegisterVT, this);
1145       RegisterTypeForVT[i] = RegisterVT;
1146
1147       MVT NVT = VT.getPow2VectorType();
1148       if (NVT == VT) {
1149         // Type is already a power of 2.  The default action is to split.
1150         TransformToType[i] = MVT::Other;
1151         if (PreferredAction == TypeScalarizeVector)
1152           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1153         else
1154           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1155       } else {
1156         TransformToType[i] = NVT;
1157         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1158       }
1159       break;
1160     }
1161     default:
1162       llvm_unreachable("Unknown vector legalization action!");
1163     }
1164   }
1165
1166   // Determine the 'representative' register class for each value type.
1167   // An representative register class is the largest (meaning one which is
1168   // not a sub-register class / subreg register class) legal register class for
1169   // a group of value types. For example, on i386, i8, i16, and i32
1170   // representative would be GR32; while on x86_64 it's GR64.
1171   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1172     const TargetRegisterClass* RRC;
1173     uint8_t Cost;
1174     std::tie(RRC, Cost) = findRepresentativeClass((MVT::SimpleValueType)i);
1175     RepRegClassForVT[i] = RRC;
1176     RepRegClassCostForVT[i] = Cost;
1177   }
1178 }
1179
1180 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1181   assert(!VT.isVector() && "No default SetCC type for vectors!");
1182   return getPointerTy(0).SimpleTy;
1183 }
1184
1185 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1186   return MVT::i32; // return the default value
1187 }
1188
1189 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1190 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1191 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1192 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1193 ///
1194 /// This method returns the number of registers needed, and the VT for each
1195 /// register.  It also returns the VT and quantity of the intermediate values
1196 /// before they are promoted/expanded.
1197 ///
1198 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1199                                                 EVT &IntermediateVT,
1200                                                 unsigned &NumIntermediates,
1201                                                 MVT &RegisterVT) const {
1202   unsigned NumElts = VT.getVectorNumElements();
1203
1204   // If there is a wider vector type with the same element type as this one,
1205   // or a promoted vector type that has the same number of elements which
1206   // are wider, then we should convert to that legal vector type.
1207   // This handles things like <2 x float> -> <4 x float> and
1208   // <4 x i1> -> <4 x i32>.
1209   LegalizeTypeAction TA = getTypeAction(Context, VT);
1210   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1211     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1212     if (isTypeLegal(RegisterEVT)) {
1213       IntermediateVT = RegisterEVT;
1214       RegisterVT = RegisterEVT.getSimpleVT();
1215       NumIntermediates = 1;
1216       return 1;
1217     }
1218   }
1219
1220   // Figure out the right, legal destination reg to copy into.
1221   EVT EltTy = VT.getVectorElementType();
1222
1223   unsigned NumVectorRegs = 1;
1224
1225   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1226   // could break down into LHS/RHS like LegalizeDAG does.
1227   if (!isPowerOf2_32(NumElts)) {
1228     NumVectorRegs = NumElts;
1229     NumElts = 1;
1230   }
1231
1232   // Divide the input until we get to a supported size.  This will always
1233   // end with a scalar if the target doesn't support vectors.
1234   while (NumElts > 1 && !isTypeLegal(
1235                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1236     NumElts >>= 1;
1237     NumVectorRegs <<= 1;
1238   }
1239
1240   NumIntermediates = NumVectorRegs;
1241
1242   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1243   if (!isTypeLegal(NewVT))
1244     NewVT = EltTy;
1245   IntermediateVT = NewVT;
1246
1247   MVT DestVT = getRegisterType(Context, NewVT);
1248   RegisterVT = DestVT;
1249   unsigned NewVTSize = NewVT.getSizeInBits();
1250
1251   // Convert sizes such as i33 to i64.
1252   if (!isPowerOf2_32(NewVTSize))
1253     NewVTSize = NextPowerOf2(NewVTSize);
1254
1255   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1256     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1257
1258   // Otherwise, promotion or legal types use the same number of registers as
1259   // the vector decimated to the appropriate level.
1260   return NumVectorRegs;
1261 }
1262
1263 /// Get the EVTs and ArgFlags collections that represent the legalized return
1264 /// type of the given function.  This does not require a DAG or a return value,
1265 /// and is suitable for use before any DAGs for the function are constructed.
1266 /// TODO: Move this out of TargetLowering.cpp.
1267 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1268                          SmallVectorImpl<ISD::OutputArg> &Outs,
1269                          const TargetLowering &TLI) {
1270   SmallVector<EVT, 4> ValueVTs;
1271   ComputeValueVTs(TLI, ReturnType, ValueVTs);
1272   unsigned NumValues = ValueVTs.size();
1273   if (NumValues == 0) return;
1274
1275   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1276     EVT VT = ValueVTs[j];
1277     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1278
1279     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1280       ExtendKind = ISD::SIGN_EXTEND;
1281     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1282       ExtendKind = ISD::ZERO_EXTEND;
1283
1284     // FIXME: C calling convention requires the return type to be promoted to
1285     // at least 32-bit. But this is not necessary for non-C calling
1286     // conventions. The frontend should mark functions whose return values
1287     // require promoting with signext or zeroext attributes.
1288     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1289       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1290       if (VT.bitsLT(MinVT))
1291         VT = MinVT;
1292     }
1293
1294     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1295     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1296
1297     // 'inreg' on function refers to return value
1298     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1299     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1300       Flags.setInReg();
1301
1302     // Propagate extension type if any
1303     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1304       Flags.setSExt();
1305     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1306       Flags.setZExt();
1307
1308     for (unsigned i = 0; i < NumParts; ++i)
1309       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1310   }
1311 }
1312
1313 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1314 /// function arguments in the caller parameter area.  This is the actual
1315 /// alignment, not its logarithm.
1316 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1317   return DL->getABITypeAlignment(Ty);
1318 }
1319
1320 //===----------------------------------------------------------------------===//
1321 //  TargetTransformInfo Helpers
1322 //===----------------------------------------------------------------------===//
1323
1324 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1325   enum InstructionOpcodes {
1326 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1327 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1328 #include "llvm/IR/Instruction.def"
1329   };
1330   switch (static_cast<InstructionOpcodes>(Opcode)) {
1331   case Ret:            return 0;
1332   case Br:             return 0;
1333   case Switch:         return 0;
1334   case IndirectBr:     return 0;
1335   case Invoke:         return 0;
1336   case Resume:         return 0;
1337   case Unreachable:    return 0;
1338   case Add:            return ISD::ADD;
1339   case FAdd:           return ISD::FADD;
1340   case Sub:            return ISD::SUB;
1341   case FSub:           return ISD::FSUB;
1342   case Mul:            return ISD::MUL;
1343   case FMul:           return ISD::FMUL;
1344   case UDiv:           return ISD::UDIV;
1345   case SDiv:           return ISD::SDIV;
1346   case FDiv:           return ISD::FDIV;
1347   case URem:           return ISD::UREM;
1348   case SRem:           return ISD::SREM;
1349   case FRem:           return ISD::FREM;
1350   case Shl:            return ISD::SHL;
1351   case LShr:           return ISD::SRL;
1352   case AShr:           return ISD::SRA;
1353   case And:            return ISD::AND;
1354   case Or:             return ISD::OR;
1355   case Xor:            return ISD::XOR;
1356   case Alloca:         return 0;
1357   case Load:           return ISD::LOAD;
1358   case Store:          return ISD::STORE;
1359   case GetElementPtr:  return 0;
1360   case Fence:          return 0;
1361   case AtomicCmpXchg:  return 0;
1362   case AtomicRMW:      return 0;
1363   case Trunc:          return ISD::TRUNCATE;
1364   case ZExt:           return ISD::ZERO_EXTEND;
1365   case SExt:           return ISD::SIGN_EXTEND;
1366   case FPToUI:         return ISD::FP_TO_UINT;
1367   case FPToSI:         return ISD::FP_TO_SINT;
1368   case UIToFP:         return ISD::UINT_TO_FP;
1369   case SIToFP:         return ISD::SINT_TO_FP;
1370   case FPTrunc:        return ISD::FP_ROUND;
1371   case FPExt:          return ISD::FP_EXTEND;
1372   case PtrToInt:       return ISD::BITCAST;
1373   case IntToPtr:       return ISD::BITCAST;
1374   case BitCast:        return ISD::BITCAST;
1375   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1376   case ICmp:           return ISD::SETCC;
1377   case FCmp:           return ISD::SETCC;
1378   case PHI:            return 0;
1379   case Call:           return 0;
1380   case Select:         return ISD::SELECT;
1381   case UserOp1:        return 0;
1382   case UserOp2:        return 0;
1383   case VAArg:          return 0;
1384   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1385   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1386   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1387   case ExtractValue:   return ISD::MERGE_VALUES;
1388   case InsertValue:    return ISD::MERGE_VALUES;
1389   case LandingPad:     return 0;
1390   }
1391
1392   llvm_unreachable("Unknown instruction type encountered!");
1393 }
1394
1395 std::pair<unsigned, MVT>
1396 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1397   LLVMContext &C = Ty->getContext();
1398   EVT MTy = getValueType(Ty);
1399
1400   unsigned Cost = 1;
1401   // We keep legalizing the type until we find a legal kind. We assume that
1402   // the only operation that costs anything is the split. After splitting
1403   // we need to handle two types.
1404   while (true) {
1405     LegalizeKind LK = getTypeConversion(C, MTy);
1406
1407     if (LK.first == TypeLegal)
1408       return std::make_pair(Cost, MTy.getSimpleVT());
1409
1410     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1411       Cost *= 2;
1412
1413     // Keep legalizing the type.
1414     MTy = LK.second;
1415   }
1416 }
1417
1418 //===----------------------------------------------------------------------===//
1419 //  Loop Strength Reduction hooks
1420 //===----------------------------------------------------------------------===//
1421
1422 /// isLegalAddressingMode - Return true if the addressing mode represented
1423 /// by AM is legal for this target, for a load/store of the specified type.
1424 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1425                                            Type *Ty) const {
1426   // The default implementation of this implements a conservative RISCy, r+r and
1427   // r+i addr mode.
1428
1429   // Allows a sign-extended 16-bit immediate field.
1430   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1431     return false;
1432
1433   // No global is ever allowed as a base.
1434   if (AM.BaseGV)
1435     return false;
1436
1437   // Only support r+r,
1438   switch (AM.Scale) {
1439   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1440     break;
1441   case 1:
1442     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1443       return false;
1444     // Otherwise we have r+r or r+i.
1445     break;
1446   case 2:
1447     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1448       return false;
1449     // Allow 2*r as r+r.
1450     break;
1451   default: // Don't allow n * r
1452     return false;
1453   }
1454
1455   return true;
1456 }