Revert r236546, "propagate IR-level fast-math-flags to DAG nodes (NFC)"
[oota-llvm.git] / lib / CodeGen / TargetLoweringBase.cpp
1 //===-- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements the TargetLoweringBase class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetLowering.h"
15 #include "llvm/ADT/BitVector.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/Triple.h"
18 #include "llvm/CodeGen/Analysis.h"
19 #include "llvm/CodeGen/MachineFrameInfo.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineJumpTableInfo.h"
23 #include "llvm/CodeGen/StackMaps.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Mangler.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCContext.h"
30 #include "llvm/MC/MCExpr.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/ErrorHandling.h"
33 #include "llvm/Support/MathExtras.h"
34 #include "llvm/Target/TargetLoweringObjectFile.h"
35 #include "llvm/Target/TargetMachine.h"
36 #include "llvm/Target/TargetRegisterInfo.h"
37 #include "llvm/Target/TargetSubtargetInfo.h"
38 #include <cctype>
39 using namespace llvm;
40
41 /// InitLibcallNames - Set default libcall names.
42 ///
43 static void InitLibcallNames(const char **Names, const Triple &TT) {
44   Names[RTLIB::SHL_I16] = "__ashlhi3";
45   Names[RTLIB::SHL_I32] = "__ashlsi3";
46   Names[RTLIB::SHL_I64] = "__ashldi3";
47   Names[RTLIB::SHL_I128] = "__ashlti3";
48   Names[RTLIB::SRL_I16] = "__lshrhi3";
49   Names[RTLIB::SRL_I32] = "__lshrsi3";
50   Names[RTLIB::SRL_I64] = "__lshrdi3";
51   Names[RTLIB::SRL_I128] = "__lshrti3";
52   Names[RTLIB::SRA_I16] = "__ashrhi3";
53   Names[RTLIB::SRA_I32] = "__ashrsi3";
54   Names[RTLIB::SRA_I64] = "__ashrdi3";
55   Names[RTLIB::SRA_I128] = "__ashrti3";
56   Names[RTLIB::MUL_I8] = "__mulqi3";
57   Names[RTLIB::MUL_I16] = "__mulhi3";
58   Names[RTLIB::MUL_I32] = "__mulsi3";
59   Names[RTLIB::MUL_I64] = "__muldi3";
60   Names[RTLIB::MUL_I128] = "__multi3";
61   Names[RTLIB::MULO_I32] = "__mulosi4";
62   Names[RTLIB::MULO_I64] = "__mulodi4";
63   Names[RTLIB::MULO_I128] = "__muloti4";
64   Names[RTLIB::SDIV_I8] = "__divqi3";
65   Names[RTLIB::SDIV_I16] = "__divhi3";
66   Names[RTLIB::SDIV_I32] = "__divsi3";
67   Names[RTLIB::SDIV_I64] = "__divdi3";
68   Names[RTLIB::SDIV_I128] = "__divti3";
69   Names[RTLIB::UDIV_I8] = "__udivqi3";
70   Names[RTLIB::UDIV_I16] = "__udivhi3";
71   Names[RTLIB::UDIV_I32] = "__udivsi3";
72   Names[RTLIB::UDIV_I64] = "__udivdi3";
73   Names[RTLIB::UDIV_I128] = "__udivti3";
74   Names[RTLIB::SREM_I8] = "__modqi3";
75   Names[RTLIB::SREM_I16] = "__modhi3";
76   Names[RTLIB::SREM_I32] = "__modsi3";
77   Names[RTLIB::SREM_I64] = "__moddi3";
78   Names[RTLIB::SREM_I128] = "__modti3";
79   Names[RTLIB::UREM_I8] = "__umodqi3";
80   Names[RTLIB::UREM_I16] = "__umodhi3";
81   Names[RTLIB::UREM_I32] = "__umodsi3";
82   Names[RTLIB::UREM_I64] = "__umoddi3";
83   Names[RTLIB::UREM_I128] = "__umodti3";
84
85   // These are generally not available.
86   Names[RTLIB::SDIVREM_I8] = nullptr;
87   Names[RTLIB::SDIVREM_I16] = nullptr;
88   Names[RTLIB::SDIVREM_I32] = nullptr;
89   Names[RTLIB::SDIVREM_I64] = nullptr;
90   Names[RTLIB::SDIVREM_I128] = nullptr;
91   Names[RTLIB::UDIVREM_I8] = nullptr;
92   Names[RTLIB::UDIVREM_I16] = nullptr;
93   Names[RTLIB::UDIVREM_I32] = nullptr;
94   Names[RTLIB::UDIVREM_I64] = nullptr;
95   Names[RTLIB::UDIVREM_I128] = nullptr;
96
97   Names[RTLIB::NEG_I32] = "__negsi2";
98   Names[RTLIB::NEG_I64] = "__negdi2";
99   Names[RTLIB::ADD_F32] = "__addsf3";
100   Names[RTLIB::ADD_F64] = "__adddf3";
101   Names[RTLIB::ADD_F80] = "__addxf3";
102   Names[RTLIB::ADD_F128] = "__addtf3";
103   Names[RTLIB::ADD_PPCF128] = "__gcc_qadd";
104   Names[RTLIB::SUB_F32] = "__subsf3";
105   Names[RTLIB::SUB_F64] = "__subdf3";
106   Names[RTLIB::SUB_F80] = "__subxf3";
107   Names[RTLIB::SUB_F128] = "__subtf3";
108   Names[RTLIB::SUB_PPCF128] = "__gcc_qsub";
109   Names[RTLIB::MUL_F32] = "__mulsf3";
110   Names[RTLIB::MUL_F64] = "__muldf3";
111   Names[RTLIB::MUL_F80] = "__mulxf3";
112   Names[RTLIB::MUL_F128] = "__multf3";
113   Names[RTLIB::MUL_PPCF128] = "__gcc_qmul";
114   Names[RTLIB::DIV_F32] = "__divsf3";
115   Names[RTLIB::DIV_F64] = "__divdf3";
116   Names[RTLIB::DIV_F80] = "__divxf3";
117   Names[RTLIB::DIV_F128] = "__divtf3";
118   Names[RTLIB::DIV_PPCF128] = "__gcc_qdiv";
119   Names[RTLIB::REM_F32] = "fmodf";
120   Names[RTLIB::REM_F64] = "fmod";
121   Names[RTLIB::REM_F80] = "fmodl";
122   Names[RTLIB::REM_F128] = "fmodl";
123   Names[RTLIB::REM_PPCF128] = "fmodl";
124   Names[RTLIB::FMA_F32] = "fmaf";
125   Names[RTLIB::FMA_F64] = "fma";
126   Names[RTLIB::FMA_F80] = "fmal";
127   Names[RTLIB::FMA_F128] = "fmal";
128   Names[RTLIB::FMA_PPCF128] = "fmal";
129   Names[RTLIB::POWI_F32] = "__powisf2";
130   Names[RTLIB::POWI_F64] = "__powidf2";
131   Names[RTLIB::POWI_F80] = "__powixf2";
132   Names[RTLIB::POWI_F128] = "__powitf2";
133   Names[RTLIB::POWI_PPCF128] = "__powitf2";
134   Names[RTLIB::SQRT_F32] = "sqrtf";
135   Names[RTLIB::SQRT_F64] = "sqrt";
136   Names[RTLIB::SQRT_F80] = "sqrtl";
137   Names[RTLIB::SQRT_F128] = "sqrtl";
138   Names[RTLIB::SQRT_PPCF128] = "sqrtl";
139   Names[RTLIB::LOG_F32] = "logf";
140   Names[RTLIB::LOG_F64] = "log";
141   Names[RTLIB::LOG_F80] = "logl";
142   Names[RTLIB::LOG_F128] = "logl";
143   Names[RTLIB::LOG_PPCF128] = "logl";
144   Names[RTLIB::LOG2_F32] = "log2f";
145   Names[RTLIB::LOG2_F64] = "log2";
146   Names[RTLIB::LOG2_F80] = "log2l";
147   Names[RTLIB::LOG2_F128] = "log2l";
148   Names[RTLIB::LOG2_PPCF128] = "log2l";
149   Names[RTLIB::LOG10_F32] = "log10f";
150   Names[RTLIB::LOG10_F64] = "log10";
151   Names[RTLIB::LOG10_F80] = "log10l";
152   Names[RTLIB::LOG10_F128] = "log10l";
153   Names[RTLIB::LOG10_PPCF128] = "log10l";
154   Names[RTLIB::EXP_F32] = "expf";
155   Names[RTLIB::EXP_F64] = "exp";
156   Names[RTLIB::EXP_F80] = "expl";
157   Names[RTLIB::EXP_F128] = "expl";
158   Names[RTLIB::EXP_PPCF128] = "expl";
159   Names[RTLIB::EXP2_F32] = "exp2f";
160   Names[RTLIB::EXP2_F64] = "exp2";
161   Names[RTLIB::EXP2_F80] = "exp2l";
162   Names[RTLIB::EXP2_F128] = "exp2l";
163   Names[RTLIB::EXP2_PPCF128] = "exp2l";
164   Names[RTLIB::SIN_F32] = "sinf";
165   Names[RTLIB::SIN_F64] = "sin";
166   Names[RTLIB::SIN_F80] = "sinl";
167   Names[RTLIB::SIN_F128] = "sinl";
168   Names[RTLIB::SIN_PPCF128] = "sinl";
169   Names[RTLIB::COS_F32] = "cosf";
170   Names[RTLIB::COS_F64] = "cos";
171   Names[RTLIB::COS_F80] = "cosl";
172   Names[RTLIB::COS_F128] = "cosl";
173   Names[RTLIB::COS_PPCF128] = "cosl";
174   Names[RTLIB::POW_F32] = "powf";
175   Names[RTLIB::POW_F64] = "pow";
176   Names[RTLIB::POW_F80] = "powl";
177   Names[RTLIB::POW_F128] = "powl";
178   Names[RTLIB::POW_PPCF128] = "powl";
179   Names[RTLIB::CEIL_F32] = "ceilf";
180   Names[RTLIB::CEIL_F64] = "ceil";
181   Names[RTLIB::CEIL_F80] = "ceill";
182   Names[RTLIB::CEIL_F128] = "ceill";
183   Names[RTLIB::CEIL_PPCF128] = "ceill";
184   Names[RTLIB::TRUNC_F32] = "truncf";
185   Names[RTLIB::TRUNC_F64] = "trunc";
186   Names[RTLIB::TRUNC_F80] = "truncl";
187   Names[RTLIB::TRUNC_F128] = "truncl";
188   Names[RTLIB::TRUNC_PPCF128] = "truncl";
189   Names[RTLIB::RINT_F32] = "rintf";
190   Names[RTLIB::RINT_F64] = "rint";
191   Names[RTLIB::RINT_F80] = "rintl";
192   Names[RTLIB::RINT_F128] = "rintl";
193   Names[RTLIB::RINT_PPCF128] = "rintl";
194   Names[RTLIB::NEARBYINT_F32] = "nearbyintf";
195   Names[RTLIB::NEARBYINT_F64] = "nearbyint";
196   Names[RTLIB::NEARBYINT_F80] = "nearbyintl";
197   Names[RTLIB::NEARBYINT_F128] = "nearbyintl";
198   Names[RTLIB::NEARBYINT_PPCF128] = "nearbyintl";
199   Names[RTLIB::ROUND_F32] = "roundf";
200   Names[RTLIB::ROUND_F64] = "round";
201   Names[RTLIB::ROUND_F80] = "roundl";
202   Names[RTLIB::ROUND_F128] = "roundl";
203   Names[RTLIB::ROUND_PPCF128] = "roundl";
204   Names[RTLIB::FLOOR_F32] = "floorf";
205   Names[RTLIB::FLOOR_F64] = "floor";
206   Names[RTLIB::FLOOR_F80] = "floorl";
207   Names[RTLIB::FLOOR_F128] = "floorl";
208   Names[RTLIB::FLOOR_PPCF128] = "floorl";
209   Names[RTLIB::FMIN_F32] = "fminf";
210   Names[RTLIB::FMIN_F64] = "fmin";
211   Names[RTLIB::FMIN_F80] = "fminl";
212   Names[RTLIB::FMIN_F128] = "fminl";
213   Names[RTLIB::FMIN_PPCF128] = "fminl";
214   Names[RTLIB::FMAX_F32] = "fmaxf";
215   Names[RTLIB::FMAX_F64] = "fmax";
216   Names[RTLIB::FMAX_F80] = "fmaxl";
217   Names[RTLIB::FMAX_F128] = "fmaxl";
218   Names[RTLIB::FMAX_PPCF128] = "fmaxl";
219   Names[RTLIB::ROUND_F32] = "roundf";
220   Names[RTLIB::ROUND_F64] = "round";
221   Names[RTLIB::ROUND_F80] = "roundl";
222   Names[RTLIB::ROUND_F128] = "roundl";
223   Names[RTLIB::ROUND_PPCF128] = "roundl";
224   Names[RTLIB::COPYSIGN_F32] = "copysignf";
225   Names[RTLIB::COPYSIGN_F64] = "copysign";
226   Names[RTLIB::COPYSIGN_F80] = "copysignl";
227   Names[RTLIB::COPYSIGN_F128] = "copysignl";
228   Names[RTLIB::COPYSIGN_PPCF128] = "copysignl";
229   Names[RTLIB::FPEXT_F64_F128] = "__extenddftf2";
230   Names[RTLIB::FPEXT_F32_F128] = "__extendsftf2";
231   Names[RTLIB::FPEXT_F32_F64] = "__extendsfdf2";
232   Names[RTLIB::FPEXT_F16_F32] = "__gnu_h2f_ieee";
233   Names[RTLIB::FPROUND_F32_F16] = "__gnu_f2h_ieee";
234   Names[RTLIB::FPROUND_F64_F16] = "__truncdfhf2";
235   Names[RTLIB::FPROUND_F80_F16] = "__truncxfhf2";
236   Names[RTLIB::FPROUND_F128_F16] = "__trunctfhf2";
237   Names[RTLIB::FPROUND_PPCF128_F16] = "__trunctfhf2";
238   Names[RTLIB::FPROUND_F64_F32] = "__truncdfsf2";
239   Names[RTLIB::FPROUND_F80_F32] = "__truncxfsf2";
240   Names[RTLIB::FPROUND_F128_F32] = "__trunctfsf2";
241   Names[RTLIB::FPROUND_PPCF128_F32] = "__trunctfsf2";
242   Names[RTLIB::FPROUND_F80_F64] = "__truncxfdf2";
243   Names[RTLIB::FPROUND_F128_F64] = "__trunctfdf2";
244   Names[RTLIB::FPROUND_PPCF128_F64] = "__trunctfdf2";
245   Names[RTLIB::FPTOSINT_F32_I8] = "__fixsfqi";
246   Names[RTLIB::FPTOSINT_F32_I16] = "__fixsfhi";
247   Names[RTLIB::FPTOSINT_F32_I32] = "__fixsfsi";
248   Names[RTLIB::FPTOSINT_F32_I64] = "__fixsfdi";
249   Names[RTLIB::FPTOSINT_F32_I128] = "__fixsfti";
250   Names[RTLIB::FPTOSINT_F64_I8] = "__fixdfqi";
251   Names[RTLIB::FPTOSINT_F64_I16] = "__fixdfhi";
252   Names[RTLIB::FPTOSINT_F64_I32] = "__fixdfsi";
253   Names[RTLIB::FPTOSINT_F64_I64] = "__fixdfdi";
254   Names[RTLIB::FPTOSINT_F64_I128] = "__fixdfti";
255   Names[RTLIB::FPTOSINT_F80_I32] = "__fixxfsi";
256   Names[RTLIB::FPTOSINT_F80_I64] = "__fixxfdi";
257   Names[RTLIB::FPTOSINT_F80_I128] = "__fixxfti";
258   Names[RTLIB::FPTOSINT_F128_I32] = "__fixtfsi";
259   Names[RTLIB::FPTOSINT_F128_I64] = "__fixtfdi";
260   Names[RTLIB::FPTOSINT_F128_I128] = "__fixtfti";
261   Names[RTLIB::FPTOSINT_PPCF128_I32] = "__fixtfsi";
262   Names[RTLIB::FPTOSINT_PPCF128_I64] = "__fixtfdi";
263   Names[RTLIB::FPTOSINT_PPCF128_I128] = "__fixtfti";
264   Names[RTLIB::FPTOUINT_F32_I8] = "__fixunssfqi";
265   Names[RTLIB::FPTOUINT_F32_I16] = "__fixunssfhi";
266   Names[RTLIB::FPTOUINT_F32_I32] = "__fixunssfsi";
267   Names[RTLIB::FPTOUINT_F32_I64] = "__fixunssfdi";
268   Names[RTLIB::FPTOUINT_F32_I128] = "__fixunssfti";
269   Names[RTLIB::FPTOUINT_F64_I8] = "__fixunsdfqi";
270   Names[RTLIB::FPTOUINT_F64_I16] = "__fixunsdfhi";
271   Names[RTLIB::FPTOUINT_F64_I32] = "__fixunsdfsi";
272   Names[RTLIB::FPTOUINT_F64_I64] = "__fixunsdfdi";
273   Names[RTLIB::FPTOUINT_F64_I128] = "__fixunsdfti";
274   Names[RTLIB::FPTOUINT_F80_I32] = "__fixunsxfsi";
275   Names[RTLIB::FPTOUINT_F80_I64] = "__fixunsxfdi";
276   Names[RTLIB::FPTOUINT_F80_I128] = "__fixunsxfti";
277   Names[RTLIB::FPTOUINT_F128_I32] = "__fixunstfsi";
278   Names[RTLIB::FPTOUINT_F128_I64] = "__fixunstfdi";
279   Names[RTLIB::FPTOUINT_F128_I128] = "__fixunstfti";
280   Names[RTLIB::FPTOUINT_PPCF128_I32] = "__fixunstfsi";
281   Names[RTLIB::FPTOUINT_PPCF128_I64] = "__fixunstfdi";
282   Names[RTLIB::FPTOUINT_PPCF128_I128] = "__fixunstfti";
283   Names[RTLIB::SINTTOFP_I32_F32] = "__floatsisf";
284   Names[RTLIB::SINTTOFP_I32_F64] = "__floatsidf";
285   Names[RTLIB::SINTTOFP_I32_F80] = "__floatsixf";
286   Names[RTLIB::SINTTOFP_I32_F128] = "__floatsitf";
287   Names[RTLIB::SINTTOFP_I32_PPCF128] = "__floatsitf";
288   Names[RTLIB::SINTTOFP_I64_F32] = "__floatdisf";
289   Names[RTLIB::SINTTOFP_I64_F64] = "__floatdidf";
290   Names[RTLIB::SINTTOFP_I64_F80] = "__floatdixf";
291   Names[RTLIB::SINTTOFP_I64_F128] = "__floatditf";
292   Names[RTLIB::SINTTOFP_I64_PPCF128] = "__floatditf";
293   Names[RTLIB::SINTTOFP_I128_F32] = "__floattisf";
294   Names[RTLIB::SINTTOFP_I128_F64] = "__floattidf";
295   Names[RTLIB::SINTTOFP_I128_F80] = "__floattixf";
296   Names[RTLIB::SINTTOFP_I128_F128] = "__floattitf";
297   Names[RTLIB::SINTTOFP_I128_PPCF128] = "__floattitf";
298   Names[RTLIB::UINTTOFP_I32_F32] = "__floatunsisf";
299   Names[RTLIB::UINTTOFP_I32_F64] = "__floatunsidf";
300   Names[RTLIB::UINTTOFP_I32_F80] = "__floatunsixf";
301   Names[RTLIB::UINTTOFP_I32_F128] = "__floatunsitf";
302   Names[RTLIB::UINTTOFP_I32_PPCF128] = "__floatunsitf";
303   Names[RTLIB::UINTTOFP_I64_F32] = "__floatundisf";
304   Names[RTLIB::UINTTOFP_I64_F64] = "__floatundidf";
305   Names[RTLIB::UINTTOFP_I64_F80] = "__floatundixf";
306   Names[RTLIB::UINTTOFP_I64_F128] = "__floatunditf";
307   Names[RTLIB::UINTTOFP_I64_PPCF128] = "__floatunditf";
308   Names[RTLIB::UINTTOFP_I128_F32] = "__floatuntisf";
309   Names[RTLIB::UINTTOFP_I128_F64] = "__floatuntidf";
310   Names[RTLIB::UINTTOFP_I128_F80] = "__floatuntixf";
311   Names[RTLIB::UINTTOFP_I128_F128] = "__floatuntitf";
312   Names[RTLIB::UINTTOFP_I128_PPCF128] = "__floatuntitf";
313   Names[RTLIB::OEQ_F32] = "__eqsf2";
314   Names[RTLIB::OEQ_F64] = "__eqdf2";
315   Names[RTLIB::OEQ_F128] = "__eqtf2";
316   Names[RTLIB::UNE_F32] = "__nesf2";
317   Names[RTLIB::UNE_F64] = "__nedf2";
318   Names[RTLIB::UNE_F128] = "__netf2";
319   Names[RTLIB::OGE_F32] = "__gesf2";
320   Names[RTLIB::OGE_F64] = "__gedf2";
321   Names[RTLIB::OGE_F128] = "__getf2";
322   Names[RTLIB::OLT_F32] = "__ltsf2";
323   Names[RTLIB::OLT_F64] = "__ltdf2";
324   Names[RTLIB::OLT_F128] = "__lttf2";
325   Names[RTLIB::OLE_F32] = "__lesf2";
326   Names[RTLIB::OLE_F64] = "__ledf2";
327   Names[RTLIB::OLE_F128] = "__letf2";
328   Names[RTLIB::OGT_F32] = "__gtsf2";
329   Names[RTLIB::OGT_F64] = "__gtdf2";
330   Names[RTLIB::OGT_F128] = "__gttf2";
331   Names[RTLIB::UO_F32] = "__unordsf2";
332   Names[RTLIB::UO_F64] = "__unorddf2";
333   Names[RTLIB::UO_F128] = "__unordtf2";
334   Names[RTLIB::O_F32] = "__unordsf2";
335   Names[RTLIB::O_F64] = "__unorddf2";
336   Names[RTLIB::O_F128] = "__unordtf2";
337   Names[RTLIB::MEMCPY] = "memcpy";
338   Names[RTLIB::MEMMOVE] = "memmove";
339   Names[RTLIB::MEMSET] = "memset";
340   Names[RTLIB::UNWIND_RESUME] = "_Unwind_Resume";
341   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_1] = "__sync_val_compare_and_swap_1";
342   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_2] = "__sync_val_compare_and_swap_2";
343   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_4] = "__sync_val_compare_and_swap_4";
344   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_8] = "__sync_val_compare_and_swap_8";
345   Names[RTLIB::SYNC_VAL_COMPARE_AND_SWAP_16] = "__sync_val_compare_and_swap_16";
346   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_1] = "__sync_lock_test_and_set_1";
347   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_2] = "__sync_lock_test_and_set_2";
348   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_4] = "__sync_lock_test_and_set_4";
349   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_8] = "__sync_lock_test_and_set_8";
350   Names[RTLIB::SYNC_LOCK_TEST_AND_SET_16] = "__sync_lock_test_and_set_16";
351   Names[RTLIB::SYNC_FETCH_AND_ADD_1] = "__sync_fetch_and_add_1";
352   Names[RTLIB::SYNC_FETCH_AND_ADD_2] = "__sync_fetch_and_add_2";
353   Names[RTLIB::SYNC_FETCH_AND_ADD_4] = "__sync_fetch_and_add_4";
354   Names[RTLIB::SYNC_FETCH_AND_ADD_8] = "__sync_fetch_and_add_8";
355   Names[RTLIB::SYNC_FETCH_AND_ADD_16] = "__sync_fetch_and_add_16";
356   Names[RTLIB::SYNC_FETCH_AND_SUB_1] = "__sync_fetch_and_sub_1";
357   Names[RTLIB::SYNC_FETCH_AND_SUB_2] = "__sync_fetch_and_sub_2";
358   Names[RTLIB::SYNC_FETCH_AND_SUB_4] = "__sync_fetch_and_sub_4";
359   Names[RTLIB::SYNC_FETCH_AND_SUB_8] = "__sync_fetch_and_sub_8";
360   Names[RTLIB::SYNC_FETCH_AND_SUB_16] = "__sync_fetch_and_sub_16";
361   Names[RTLIB::SYNC_FETCH_AND_AND_1] = "__sync_fetch_and_and_1";
362   Names[RTLIB::SYNC_FETCH_AND_AND_2] = "__sync_fetch_and_and_2";
363   Names[RTLIB::SYNC_FETCH_AND_AND_4] = "__sync_fetch_and_and_4";
364   Names[RTLIB::SYNC_FETCH_AND_AND_8] = "__sync_fetch_and_and_8";
365   Names[RTLIB::SYNC_FETCH_AND_AND_16] = "__sync_fetch_and_and_16";
366   Names[RTLIB::SYNC_FETCH_AND_OR_1] = "__sync_fetch_and_or_1";
367   Names[RTLIB::SYNC_FETCH_AND_OR_2] = "__sync_fetch_and_or_2";
368   Names[RTLIB::SYNC_FETCH_AND_OR_4] = "__sync_fetch_and_or_4";
369   Names[RTLIB::SYNC_FETCH_AND_OR_8] = "__sync_fetch_and_or_8";
370   Names[RTLIB::SYNC_FETCH_AND_OR_16] = "__sync_fetch_and_or_16";
371   Names[RTLIB::SYNC_FETCH_AND_XOR_1] = "__sync_fetch_and_xor_1";
372   Names[RTLIB::SYNC_FETCH_AND_XOR_2] = "__sync_fetch_and_xor_2";
373   Names[RTLIB::SYNC_FETCH_AND_XOR_4] = "__sync_fetch_and_xor_4";
374   Names[RTLIB::SYNC_FETCH_AND_XOR_8] = "__sync_fetch_and_xor_8";
375   Names[RTLIB::SYNC_FETCH_AND_XOR_16] = "__sync_fetch_and_xor_16";
376   Names[RTLIB::SYNC_FETCH_AND_NAND_1] = "__sync_fetch_and_nand_1";
377   Names[RTLIB::SYNC_FETCH_AND_NAND_2] = "__sync_fetch_and_nand_2";
378   Names[RTLIB::SYNC_FETCH_AND_NAND_4] = "__sync_fetch_and_nand_4";
379   Names[RTLIB::SYNC_FETCH_AND_NAND_8] = "__sync_fetch_and_nand_8";
380   Names[RTLIB::SYNC_FETCH_AND_NAND_16] = "__sync_fetch_and_nand_16";
381   Names[RTLIB::SYNC_FETCH_AND_MAX_1] = "__sync_fetch_and_max_1";
382   Names[RTLIB::SYNC_FETCH_AND_MAX_2] = "__sync_fetch_and_max_2";
383   Names[RTLIB::SYNC_FETCH_AND_MAX_4] = "__sync_fetch_and_max_4";
384   Names[RTLIB::SYNC_FETCH_AND_MAX_8] = "__sync_fetch_and_max_8";
385   Names[RTLIB::SYNC_FETCH_AND_MAX_16] = "__sync_fetch_and_max_16";
386   Names[RTLIB::SYNC_FETCH_AND_UMAX_1] = "__sync_fetch_and_umax_1";
387   Names[RTLIB::SYNC_FETCH_AND_UMAX_2] = "__sync_fetch_and_umax_2";
388   Names[RTLIB::SYNC_FETCH_AND_UMAX_4] = "__sync_fetch_and_umax_4";
389   Names[RTLIB::SYNC_FETCH_AND_UMAX_8] = "__sync_fetch_and_umax_8";
390   Names[RTLIB::SYNC_FETCH_AND_UMAX_16] = "__sync_fetch_and_umax_16";
391   Names[RTLIB::SYNC_FETCH_AND_MIN_1] = "__sync_fetch_and_min_1";
392   Names[RTLIB::SYNC_FETCH_AND_MIN_2] = "__sync_fetch_and_min_2";
393   Names[RTLIB::SYNC_FETCH_AND_MIN_4] = "__sync_fetch_and_min_4";
394   Names[RTLIB::SYNC_FETCH_AND_MIN_8] = "__sync_fetch_and_min_8";
395   Names[RTLIB::SYNC_FETCH_AND_MIN_16] = "__sync_fetch_and_min_16";
396   Names[RTLIB::SYNC_FETCH_AND_UMIN_1] = "__sync_fetch_and_umin_1";
397   Names[RTLIB::SYNC_FETCH_AND_UMIN_2] = "__sync_fetch_and_umin_2";
398   Names[RTLIB::SYNC_FETCH_AND_UMIN_4] = "__sync_fetch_and_umin_4";
399   Names[RTLIB::SYNC_FETCH_AND_UMIN_8] = "__sync_fetch_and_umin_8";
400   Names[RTLIB::SYNC_FETCH_AND_UMIN_16] = "__sync_fetch_and_umin_16";
401   
402   if (TT.getEnvironment() == Triple::GNU) {
403     Names[RTLIB::SINCOS_F32] = "sincosf";
404     Names[RTLIB::SINCOS_F64] = "sincos";
405     Names[RTLIB::SINCOS_F80] = "sincosl";
406     Names[RTLIB::SINCOS_F128] = "sincosl";
407     Names[RTLIB::SINCOS_PPCF128] = "sincosl";
408   } else {
409     // These are generally not available.
410     Names[RTLIB::SINCOS_F32] = nullptr;
411     Names[RTLIB::SINCOS_F64] = nullptr;
412     Names[RTLIB::SINCOS_F80] = nullptr;
413     Names[RTLIB::SINCOS_F128] = nullptr;
414     Names[RTLIB::SINCOS_PPCF128] = nullptr;
415   }
416
417   if (!TT.isOSOpenBSD()) {
418     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = "__stack_chk_fail";
419   } else {
420     // These are generally not available.
421     Names[RTLIB::STACKPROTECTOR_CHECK_FAIL] = nullptr;
422   }
423 }
424
425 /// InitLibcallCallingConvs - Set default libcall CallingConvs.
426 ///
427 static void InitLibcallCallingConvs(CallingConv::ID *CCs) {
428   for (int i = 0; i < RTLIB::UNKNOWN_LIBCALL; ++i) {
429     CCs[i] = CallingConv::C;
430   }
431 }
432
433 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
434 /// UNKNOWN_LIBCALL if there is none.
435 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
436   if (OpVT == MVT::f16) {
437     if (RetVT == MVT::f32)
438       return FPEXT_F16_F32;
439   } else if (OpVT == MVT::f32) {
440     if (RetVT == MVT::f64)
441       return FPEXT_F32_F64;
442     if (RetVT == MVT::f128)
443       return FPEXT_F32_F128;
444   } else if (OpVT == MVT::f64) {
445     if (RetVT == MVT::f128)
446       return FPEXT_F64_F128;
447   }
448
449   return UNKNOWN_LIBCALL;
450 }
451
452 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
453 /// UNKNOWN_LIBCALL if there is none.
454 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
455   if (RetVT == MVT::f16) {
456     if (OpVT == MVT::f32)
457       return FPROUND_F32_F16;
458     if (OpVT == MVT::f64)
459       return FPROUND_F64_F16;
460     if (OpVT == MVT::f80)
461       return FPROUND_F80_F16;
462     if (OpVT == MVT::f128)
463       return FPROUND_F128_F16;
464     if (OpVT == MVT::ppcf128)
465       return FPROUND_PPCF128_F16;
466   } else if (RetVT == MVT::f32) {
467     if (OpVT == MVT::f64)
468       return FPROUND_F64_F32;
469     if (OpVT == MVT::f80)
470       return FPROUND_F80_F32;
471     if (OpVT == MVT::f128)
472       return FPROUND_F128_F32;
473     if (OpVT == MVT::ppcf128)
474       return FPROUND_PPCF128_F32;
475   } else if (RetVT == MVT::f64) {
476     if (OpVT == MVT::f80)
477       return FPROUND_F80_F64;
478     if (OpVT == MVT::f128)
479       return FPROUND_F128_F64;
480     if (OpVT == MVT::ppcf128)
481       return FPROUND_PPCF128_F64;
482   }
483
484   return UNKNOWN_LIBCALL;
485 }
486
487 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
488 /// UNKNOWN_LIBCALL if there is none.
489 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
490   if (OpVT == MVT::f32) {
491     if (RetVT == MVT::i8)
492       return FPTOSINT_F32_I8;
493     if (RetVT == MVT::i16)
494       return FPTOSINT_F32_I16;
495     if (RetVT == MVT::i32)
496       return FPTOSINT_F32_I32;
497     if (RetVT == MVT::i64)
498       return FPTOSINT_F32_I64;
499     if (RetVT == MVT::i128)
500       return FPTOSINT_F32_I128;
501   } else if (OpVT == MVT::f64) {
502     if (RetVT == MVT::i8)
503       return FPTOSINT_F64_I8;
504     if (RetVT == MVT::i16)
505       return FPTOSINT_F64_I16;
506     if (RetVT == MVT::i32)
507       return FPTOSINT_F64_I32;
508     if (RetVT == MVT::i64)
509       return FPTOSINT_F64_I64;
510     if (RetVT == MVT::i128)
511       return FPTOSINT_F64_I128;
512   } else if (OpVT == MVT::f80) {
513     if (RetVT == MVT::i32)
514       return FPTOSINT_F80_I32;
515     if (RetVT == MVT::i64)
516       return FPTOSINT_F80_I64;
517     if (RetVT == MVT::i128)
518       return FPTOSINT_F80_I128;
519   } else if (OpVT == MVT::f128) {
520     if (RetVT == MVT::i32)
521       return FPTOSINT_F128_I32;
522     if (RetVT == MVT::i64)
523       return FPTOSINT_F128_I64;
524     if (RetVT == MVT::i128)
525       return FPTOSINT_F128_I128;
526   } else if (OpVT == MVT::ppcf128) {
527     if (RetVT == MVT::i32)
528       return FPTOSINT_PPCF128_I32;
529     if (RetVT == MVT::i64)
530       return FPTOSINT_PPCF128_I64;
531     if (RetVT == MVT::i128)
532       return FPTOSINT_PPCF128_I128;
533   }
534   return UNKNOWN_LIBCALL;
535 }
536
537 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
538 /// UNKNOWN_LIBCALL if there is none.
539 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
540   if (OpVT == MVT::f32) {
541     if (RetVT == MVT::i8)
542       return FPTOUINT_F32_I8;
543     if (RetVT == MVT::i16)
544       return FPTOUINT_F32_I16;
545     if (RetVT == MVT::i32)
546       return FPTOUINT_F32_I32;
547     if (RetVT == MVT::i64)
548       return FPTOUINT_F32_I64;
549     if (RetVT == MVT::i128)
550       return FPTOUINT_F32_I128;
551   } else if (OpVT == MVT::f64) {
552     if (RetVT == MVT::i8)
553       return FPTOUINT_F64_I8;
554     if (RetVT == MVT::i16)
555       return FPTOUINT_F64_I16;
556     if (RetVT == MVT::i32)
557       return FPTOUINT_F64_I32;
558     if (RetVT == MVT::i64)
559       return FPTOUINT_F64_I64;
560     if (RetVT == MVT::i128)
561       return FPTOUINT_F64_I128;
562   } else if (OpVT == MVT::f80) {
563     if (RetVT == MVT::i32)
564       return FPTOUINT_F80_I32;
565     if (RetVT == MVT::i64)
566       return FPTOUINT_F80_I64;
567     if (RetVT == MVT::i128)
568       return FPTOUINT_F80_I128;
569   } else if (OpVT == MVT::f128) {
570     if (RetVT == MVT::i32)
571       return FPTOUINT_F128_I32;
572     if (RetVT == MVT::i64)
573       return FPTOUINT_F128_I64;
574     if (RetVT == MVT::i128)
575       return FPTOUINT_F128_I128;
576   } else if (OpVT == MVT::ppcf128) {
577     if (RetVT == MVT::i32)
578       return FPTOUINT_PPCF128_I32;
579     if (RetVT == MVT::i64)
580       return FPTOUINT_PPCF128_I64;
581     if (RetVT == MVT::i128)
582       return FPTOUINT_PPCF128_I128;
583   }
584   return UNKNOWN_LIBCALL;
585 }
586
587 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
588 /// UNKNOWN_LIBCALL if there is none.
589 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
590   if (OpVT == MVT::i32) {
591     if (RetVT == MVT::f32)
592       return SINTTOFP_I32_F32;
593     if (RetVT == MVT::f64)
594       return SINTTOFP_I32_F64;
595     if (RetVT == MVT::f80)
596       return SINTTOFP_I32_F80;
597     if (RetVT == MVT::f128)
598       return SINTTOFP_I32_F128;
599     if (RetVT == MVT::ppcf128)
600       return SINTTOFP_I32_PPCF128;
601   } else if (OpVT == MVT::i64) {
602     if (RetVT == MVT::f32)
603       return SINTTOFP_I64_F32;
604     if (RetVT == MVT::f64)
605       return SINTTOFP_I64_F64;
606     if (RetVT == MVT::f80)
607       return SINTTOFP_I64_F80;
608     if (RetVT == MVT::f128)
609       return SINTTOFP_I64_F128;
610     if (RetVT == MVT::ppcf128)
611       return SINTTOFP_I64_PPCF128;
612   } else if (OpVT == MVT::i128) {
613     if (RetVT == MVT::f32)
614       return SINTTOFP_I128_F32;
615     if (RetVT == MVT::f64)
616       return SINTTOFP_I128_F64;
617     if (RetVT == MVT::f80)
618       return SINTTOFP_I128_F80;
619     if (RetVT == MVT::f128)
620       return SINTTOFP_I128_F128;
621     if (RetVT == MVT::ppcf128)
622       return SINTTOFP_I128_PPCF128;
623   }
624   return UNKNOWN_LIBCALL;
625 }
626
627 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
628 /// UNKNOWN_LIBCALL if there is none.
629 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
630   if (OpVT == MVT::i32) {
631     if (RetVT == MVT::f32)
632       return UINTTOFP_I32_F32;
633     if (RetVT == MVT::f64)
634       return UINTTOFP_I32_F64;
635     if (RetVT == MVT::f80)
636       return UINTTOFP_I32_F80;
637     if (RetVT == MVT::f128)
638       return UINTTOFP_I32_F128;
639     if (RetVT == MVT::ppcf128)
640       return UINTTOFP_I32_PPCF128;
641   } else if (OpVT == MVT::i64) {
642     if (RetVT == MVT::f32)
643       return UINTTOFP_I64_F32;
644     if (RetVT == MVT::f64)
645       return UINTTOFP_I64_F64;
646     if (RetVT == MVT::f80)
647       return UINTTOFP_I64_F80;
648     if (RetVT == MVT::f128)
649       return UINTTOFP_I64_F128;
650     if (RetVT == MVT::ppcf128)
651       return UINTTOFP_I64_PPCF128;
652   } else if (OpVT == MVT::i128) {
653     if (RetVT == MVT::f32)
654       return UINTTOFP_I128_F32;
655     if (RetVT == MVT::f64)
656       return UINTTOFP_I128_F64;
657     if (RetVT == MVT::f80)
658       return UINTTOFP_I128_F80;
659     if (RetVT == MVT::f128)
660       return UINTTOFP_I128_F128;
661     if (RetVT == MVT::ppcf128)
662       return UINTTOFP_I128_PPCF128;
663   }
664   return UNKNOWN_LIBCALL;
665 }
666
667 RTLIB::Libcall RTLIB::getATOMIC(unsigned Opc, MVT VT) {
668 #define OP_TO_LIBCALL(Name, Enum)                                              \
669   case Name:                                                                   \
670     switch (VT.SimpleTy) {                                                     \
671     default:                                                                   \
672       return UNKNOWN_LIBCALL;                                                  \
673     case MVT::i8:                                                              \
674       return Enum##_1;                                                         \
675     case MVT::i16:                                                             \
676       return Enum##_2;                                                         \
677     case MVT::i32:                                                             \
678       return Enum##_4;                                                         \
679     case MVT::i64:                                                             \
680       return Enum##_8;                                                         \
681     case MVT::i128:                                                            \
682       return Enum##_16;                                                        \
683     }
684
685   switch (Opc) {
686     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
687     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
688     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
689     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
690     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
691     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
692     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
693     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
694     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
695     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
696     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
697     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
698   }
699
700 #undef OP_TO_LIBCALL
701
702   return UNKNOWN_LIBCALL;
703 }
704
705 /// InitCmpLibcallCCs - Set default comparison libcall CC.
706 ///
707 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
708   memset(CCs, ISD::SETCC_INVALID, sizeof(ISD::CondCode)*RTLIB::UNKNOWN_LIBCALL);
709   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
710   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
711   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
712   CCs[RTLIB::UNE_F32] = ISD::SETNE;
713   CCs[RTLIB::UNE_F64] = ISD::SETNE;
714   CCs[RTLIB::UNE_F128] = ISD::SETNE;
715   CCs[RTLIB::OGE_F32] = ISD::SETGE;
716   CCs[RTLIB::OGE_F64] = ISD::SETGE;
717   CCs[RTLIB::OGE_F128] = ISD::SETGE;
718   CCs[RTLIB::OLT_F32] = ISD::SETLT;
719   CCs[RTLIB::OLT_F64] = ISD::SETLT;
720   CCs[RTLIB::OLT_F128] = ISD::SETLT;
721   CCs[RTLIB::OLE_F32] = ISD::SETLE;
722   CCs[RTLIB::OLE_F64] = ISD::SETLE;
723   CCs[RTLIB::OLE_F128] = ISD::SETLE;
724   CCs[RTLIB::OGT_F32] = ISD::SETGT;
725   CCs[RTLIB::OGT_F64] = ISD::SETGT;
726   CCs[RTLIB::OGT_F128] = ISD::SETGT;
727   CCs[RTLIB::UO_F32] = ISD::SETNE;
728   CCs[RTLIB::UO_F64] = ISD::SETNE;
729   CCs[RTLIB::UO_F128] = ISD::SETNE;
730   CCs[RTLIB::O_F32] = ISD::SETEQ;
731   CCs[RTLIB::O_F64] = ISD::SETEQ;
732   CCs[RTLIB::O_F128] = ISD::SETEQ;
733 }
734
735 /// NOTE: The TargetMachine owns TLOF.
736 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
737   initActions();
738
739   // Perform these initializations only once.
740   IsLittleEndian = getDataLayout()->isLittleEndian();
741   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
742   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
743     = MaxStoresPerMemmoveOptSize = 4;
744   UseUnderscoreSetJmp = false;
745   UseUnderscoreLongJmp = false;
746   SelectIsExpensive = false;
747   HasMultipleConditionRegisters = false;
748   HasExtractBitsInsn = false;
749   IntDivIsCheap = false;
750   FsqrtIsCheap = false;
751   Pow2SDivIsCheap = false;
752   JumpIsExpensive = false;
753   PredictableSelectIsExpensive = false;
754   MaskAndBranchFoldingIsLegal = false;
755   EnableExtLdPromotion = false;
756   HasFloatingPointExceptions = true;
757   StackPointerRegisterToSaveRestore = 0;
758   ExceptionPointerRegister = 0;
759   ExceptionSelectorRegister = 0;
760   BooleanContents = UndefinedBooleanContent;
761   BooleanFloatContents = UndefinedBooleanContent;
762   BooleanVectorContents = UndefinedBooleanContent;
763   SchedPreferenceInfo = Sched::ILP;
764   JumpBufSize = 0;
765   JumpBufAlignment = 0;
766   MinFunctionAlignment = 0;
767   PrefFunctionAlignment = 0;
768   PrefLoopAlignment = 0;
769   MinStackArgumentAlignment = 1;
770   InsertFencesForAtomic = false;
771   MinimumJumpTableEntries = 4;
772
773   InitLibcallNames(LibcallRoutineNames, Triple(TM.getTargetTriple()));
774   InitCmpLibcallCCs(CmpLibcallCCs);
775   InitLibcallCallingConvs(LibcallCallingConvs);
776 }
777
778 void TargetLoweringBase::initActions() {
779   // All operations default to being supported.
780   memset(OpActions, 0, sizeof(OpActions));
781   memset(LoadExtActions, 0, sizeof(LoadExtActions));
782   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
783   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
784   memset(CondCodeActions, 0, sizeof(CondCodeActions));
785   memset(RegClassForVT, 0,MVT::LAST_VALUETYPE*sizeof(TargetRegisterClass*));
786   memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
787
788   // Set default actions for various operations.
789   for (MVT VT : MVT::all_valuetypes()) {
790     // Default all indexed load / store to expand.
791     for (unsigned IM = (unsigned)ISD::PRE_INC;
792          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
793       setIndexedLoadAction(IM, VT, Expand);
794       setIndexedStoreAction(IM, VT, Expand);
795     }
796
797     // Most backends expect to see the node which just returns the value loaded.
798     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
799
800     // These operations default to expand.
801     setOperationAction(ISD::FGETSIGN, VT, Expand);
802     setOperationAction(ISD::CONCAT_VECTORS, VT, Expand);
803     setOperationAction(ISD::FMINNUM, VT, Expand);
804     setOperationAction(ISD::FMAXNUM, VT, Expand);
805     setOperationAction(ISD::FMAD, VT, Expand);
806
807     // Overflow operations default to expand
808     setOperationAction(ISD::SADDO, VT, Expand);
809     setOperationAction(ISD::SSUBO, VT, Expand);
810     setOperationAction(ISD::UADDO, VT, Expand);
811     setOperationAction(ISD::USUBO, VT, Expand);
812     setOperationAction(ISD::SMULO, VT, Expand);
813     setOperationAction(ISD::UMULO, VT, Expand);
814
815     // These library functions default to expand.
816     setOperationAction(ISD::FROUND, VT, Expand);
817
818     // These operations default to expand for vector types.
819     if (VT.isVector()) {
820       setOperationAction(ISD::FCOPYSIGN, VT, Expand);
821       setOperationAction(ISD::ANY_EXTEND_VECTOR_INREG, VT, Expand);
822       setOperationAction(ISD::SIGN_EXTEND_VECTOR_INREG, VT, Expand);
823       setOperationAction(ISD::ZERO_EXTEND_VECTOR_INREG, VT, Expand);
824     }
825   }
826
827   // Most targets ignore the @llvm.prefetch intrinsic.
828   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
829
830   // ConstantFP nodes default to expand.  Targets can either change this to
831   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
832   // to optimize expansions for certain constants.
833   setOperationAction(ISD::ConstantFP, MVT::f16, Expand);
834   setOperationAction(ISD::ConstantFP, MVT::f32, Expand);
835   setOperationAction(ISD::ConstantFP, MVT::f64, Expand);
836   setOperationAction(ISD::ConstantFP, MVT::f80, Expand);
837   setOperationAction(ISD::ConstantFP, MVT::f128, Expand);
838
839   // These library functions default to expand.
840   for (MVT VT : {MVT::f32, MVT::f64, MVT::f128}) {
841     setOperationAction(ISD::FLOG ,      VT, Expand);
842     setOperationAction(ISD::FLOG2,      VT, Expand);
843     setOperationAction(ISD::FLOG10,     VT, Expand);
844     setOperationAction(ISD::FEXP ,      VT, Expand);
845     setOperationAction(ISD::FEXP2,      VT, Expand);
846     setOperationAction(ISD::FFLOOR,     VT, Expand);
847     setOperationAction(ISD::FMINNUM,    VT, Expand);
848     setOperationAction(ISD::FMAXNUM,    VT, Expand);
849     setOperationAction(ISD::FNEARBYINT, VT, Expand);
850     setOperationAction(ISD::FCEIL,      VT, Expand);
851     setOperationAction(ISD::FRINT,      VT, Expand);
852     setOperationAction(ISD::FTRUNC,     VT, Expand);
853     setOperationAction(ISD::FROUND,     VT, Expand);
854   }
855
856   // Default ISD::TRAP to expand (which turns it into abort).
857   setOperationAction(ISD::TRAP, MVT::Other, Expand);
858
859   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
860   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
861   //
862   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
863 }
864
865 MVT TargetLoweringBase::getPointerTy(uint32_t AS) const {
866   return MVT::getIntegerVT(getPointerSizeInBits(AS));
867 }
868
869 unsigned TargetLoweringBase::getPointerSizeInBits(uint32_t AS) const {
870   return getDataLayout()->getPointerSizeInBits(AS);
871 }
872
873 unsigned TargetLoweringBase::getPointerTypeSizeInBits(Type *Ty) const {
874   assert(Ty->isPointerTy());
875   return getPointerSizeInBits(Ty->getPointerAddressSpace());
876 }
877
878 MVT TargetLoweringBase::getScalarShiftAmountTy(EVT LHSTy) const {
879   return MVT::getIntegerVT(8 * getDataLayout()->getPointerSize(0));
880 }
881
882 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy) const {
883   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
884   if (LHSTy.isVector())
885     return LHSTy;
886   return getScalarShiftAmountTy(LHSTy);
887 }
888
889 /// canOpTrap - Returns true if the operation can trap for the value type.
890 /// VT must be a legal type.
891 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
892   assert(isTypeLegal(VT));
893   switch (Op) {
894   default:
895     return false;
896   case ISD::FDIV:
897   case ISD::FREM:
898   case ISD::SDIV:
899   case ISD::UDIV:
900   case ISD::SREM:
901   case ISD::UREM:
902     return true;
903   }
904 }
905
906 TargetLoweringBase::LegalizeKind
907 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
908   // If this is a simple type, use the ComputeRegisterProp mechanism.
909   if (VT.isSimple()) {
910     MVT SVT = VT.getSimpleVT();
911     assert((unsigned)SVT.SimpleTy < array_lengthof(TransformToType));
912     MVT NVT = TransformToType[SVT.SimpleTy];
913     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
914
915     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
916             ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger) &&
917            "Promote may not follow Expand or Promote");
918
919     if (LA == TypeSplitVector)
920       return LegalizeKind(LA,
921                           EVT::getVectorVT(Context, SVT.getVectorElementType(),
922                                            SVT.getVectorNumElements() / 2));
923     if (LA == TypeScalarizeVector)
924       return LegalizeKind(LA, SVT.getVectorElementType());
925     return LegalizeKind(LA, NVT);
926   }
927
928   // Handle Extended Scalar Types.
929   if (!VT.isVector()) {
930     assert(VT.isInteger() && "Float types must be simple");
931     unsigned BitSize = VT.getSizeInBits();
932     // First promote to a power-of-two size, then expand if necessary.
933     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
934       EVT NVT = VT.getRoundIntegerType(Context);
935       assert(NVT != VT && "Unable to round integer VT");
936       LegalizeKind NextStep = getTypeConversion(Context, NVT);
937       // Avoid multi-step promotion.
938       if (NextStep.first == TypePromoteInteger)
939         return NextStep;
940       // Return rounded integer type.
941       return LegalizeKind(TypePromoteInteger, NVT);
942     }
943
944     return LegalizeKind(TypeExpandInteger,
945                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
946   }
947
948   // Handle vector types.
949   unsigned NumElts = VT.getVectorNumElements();
950   EVT EltVT = VT.getVectorElementType();
951
952   // Vectors with only one element are always scalarized.
953   if (NumElts == 1)
954     return LegalizeKind(TypeScalarizeVector, EltVT);
955
956   // Try to widen vector elements until the element type is a power of two and
957   // promote it to a legal type later on, for example:
958   // <3 x i8> -> <4 x i8> -> <4 x i32>
959   if (EltVT.isInteger()) {
960     // Vectors with a number of elements that is not a power of two are always
961     // widened, for example <3 x i8> -> <4 x i8>.
962     if (!VT.isPow2VectorType()) {
963       NumElts = (unsigned)NextPowerOf2(NumElts);
964       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
965       return LegalizeKind(TypeWidenVector, NVT);
966     }
967
968     // Examine the element type.
969     LegalizeKind LK = getTypeConversion(Context, EltVT);
970
971     // If type is to be expanded, split the vector.
972     //  <4 x i140> -> <2 x i140>
973     if (LK.first == TypeExpandInteger)
974       return LegalizeKind(TypeSplitVector,
975                           EVT::getVectorVT(Context, EltVT, NumElts / 2));
976
977     // Promote the integer element types until a legal vector type is found
978     // or until the element integer type is too big. If a legal type was not
979     // found, fallback to the usual mechanism of widening/splitting the
980     // vector.
981     EVT OldEltVT = EltVT;
982     while (1) {
983       // Increase the bitwidth of the element to the next pow-of-two
984       // (which is greater than 8 bits).
985       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
986                   .getRoundIntegerType(Context);
987
988       // Stop trying when getting a non-simple element type.
989       // Note that vector elements may be greater than legal vector element
990       // types. Example: X86 XMM registers hold 64bit element on 32bit
991       // systems.
992       if (!EltVT.isSimple())
993         break;
994
995       // Build a new vector type and check if it is legal.
996       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
997       // Found a legal promoted vector type.
998       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
999         return LegalizeKind(TypePromoteInteger,
1000                             EVT::getVectorVT(Context, EltVT, NumElts));
1001     }
1002
1003     // Reset the type to the unexpanded type if we did not find a legal vector
1004     // type with a promoted vector element type.
1005     EltVT = OldEltVT;
1006   }
1007
1008   // Try to widen the vector until a legal type is found.
1009   // If there is no wider legal type, split the vector.
1010   while (1) {
1011     // Round up to the next power of 2.
1012     NumElts = (unsigned)NextPowerOf2(NumElts);
1013
1014     // If there is no simple vector type with this many elements then there
1015     // cannot be a larger legal vector type.  Note that this assumes that
1016     // there are no skipped intermediate vector types in the simple types.
1017     if (!EltVT.isSimple())
1018       break;
1019     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1020     if (LargerVector == MVT())
1021       break;
1022
1023     // If this type is legal then widen the vector.
1024     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1025       return LegalizeKind(TypeWidenVector, LargerVector);
1026   }
1027
1028   // Widen odd vectors to next power of two.
1029   if (!VT.isPow2VectorType()) {
1030     EVT NVT = VT.getPow2VectorType(Context);
1031     return LegalizeKind(TypeWidenVector, NVT);
1032   }
1033
1034   // Vectors with illegal element types are expanded.
1035   EVT NVT = EVT::getVectorVT(Context, EltVT, VT.getVectorNumElements() / 2);
1036   return LegalizeKind(TypeSplitVector, NVT);
1037 }
1038
1039 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1040                                           unsigned &NumIntermediates,
1041                                           MVT &RegisterVT,
1042                                           TargetLoweringBase *TLI) {
1043   // Figure out the right, legal destination reg to copy into.
1044   unsigned NumElts = VT.getVectorNumElements();
1045   MVT EltTy = VT.getVectorElementType();
1046
1047   unsigned NumVectorRegs = 1;
1048
1049   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1050   // could break down into LHS/RHS like LegalizeDAG does.
1051   if (!isPowerOf2_32(NumElts)) {
1052     NumVectorRegs = NumElts;
1053     NumElts = 1;
1054   }
1055
1056   // Divide the input until we get to a supported size.  This will always
1057   // end with a scalar if the target doesn't support vectors.
1058   while (NumElts > 1 && !TLI->isTypeLegal(MVT::getVectorVT(EltTy, NumElts))) {
1059     NumElts >>= 1;
1060     NumVectorRegs <<= 1;
1061   }
1062
1063   NumIntermediates = NumVectorRegs;
1064
1065   MVT NewVT = MVT::getVectorVT(EltTy, NumElts);
1066   if (!TLI->isTypeLegal(NewVT))
1067     NewVT = EltTy;
1068   IntermediateVT = NewVT;
1069
1070   unsigned NewVTSize = NewVT.getSizeInBits();
1071
1072   // Convert sizes such as i33 to i64.
1073   if (!isPowerOf2_32(NewVTSize))
1074     NewVTSize = NextPowerOf2(NewVTSize);
1075
1076   MVT DestVT = TLI->getRegisterType(NewVT);
1077   RegisterVT = DestVT;
1078   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1079     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1080
1081   // Otherwise, promotion or legal types use the same number of registers as
1082   // the vector decimated to the appropriate level.
1083   return NumVectorRegs;
1084 }
1085
1086 /// isLegalRC - Return true if the value types that can be represented by the
1087 /// specified register class are all legal.
1088 bool TargetLoweringBase::isLegalRC(const TargetRegisterClass *RC) const {
1089   for (TargetRegisterClass::vt_iterator I = RC->vt_begin(), E = RC->vt_end();
1090        I != E; ++I) {
1091     if (isTypeLegal(*I))
1092       return true;
1093   }
1094   return false;
1095 }
1096
1097 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1098 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1099 MachineBasicBlock*
1100 TargetLoweringBase::emitPatchPoint(MachineInstr *MI,
1101                                    MachineBasicBlock *MBB) const {
1102   MachineFunction &MF = *MI->getParent()->getParent();
1103
1104   // MI changes inside this loop as we grow operands.
1105   for(unsigned OperIdx = 0; OperIdx != MI->getNumOperands(); ++OperIdx) {
1106     MachineOperand &MO = MI->getOperand(OperIdx);
1107     if (!MO.isFI())
1108       continue;
1109
1110     // foldMemoryOperand builds a new MI after replacing a single FI operand
1111     // with the canonical set of five x86 addressing-mode operands.
1112     int FI = MO.getIndex();
1113     MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1114
1115     // Copy operands before the frame-index.
1116     for (unsigned i = 0; i < OperIdx; ++i)
1117       MIB.addOperand(MI->getOperand(i));
1118     // Add frame index operands: direct-mem-ref tag, #FI, offset.
1119     MIB.addImm(StackMaps::DirectMemRefOp);
1120     MIB.addOperand(MI->getOperand(OperIdx));
1121     MIB.addImm(0);
1122     // Copy the operands after the frame index.
1123     for (unsigned i = OperIdx + 1; i != MI->getNumOperands(); ++i)
1124       MIB.addOperand(MI->getOperand(i));
1125
1126     // Inherit previous memory operands.
1127     MIB->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
1128     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1129
1130     // Add a new memory operand for this FI.
1131     const MachineFrameInfo &MFI = *MF.getFrameInfo();
1132     assert(MFI.getObjectOffset(FI) != -1);
1133
1134     unsigned Flags = MachineMemOperand::MOLoad;
1135     if (MI->getOpcode() == TargetOpcode::STATEPOINT) {
1136       Flags |= MachineMemOperand::MOStore;
1137       Flags |= MachineMemOperand::MOVolatile;
1138     }
1139     MachineMemOperand *MMO = MF.getMachineMemOperand(
1140         MachinePointerInfo::getFixedStack(FI), Flags,
1141         TM.getDataLayout()->getPointerSize(), MFI.getObjectAlignment(FI));
1142     MIB->addMemOperand(MF, MMO);
1143
1144     // Replace the instruction and update the operand index.
1145     MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1146     OperIdx += (MIB->getNumOperands() - MI->getNumOperands()) - 1;
1147     MI->eraseFromParent();
1148     MI = MIB;
1149   }
1150   return MBB;
1151 }
1152
1153 /// findRepresentativeClass - Return the largest legal super-reg register class
1154 /// of the register class for the specified type and its associated "cost".
1155 // This function is in TargetLowering because it uses RegClassForVT which would
1156 // need to be moved to TargetRegisterInfo and would necessitate moving
1157 // isTypeLegal over as well - a massive change that would just require
1158 // TargetLowering having a TargetRegisterInfo class member that it would use.
1159 std::pair<const TargetRegisterClass *, uint8_t>
1160 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1161                                             MVT VT) const {
1162   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1163   if (!RC)
1164     return std::make_pair(RC, 0);
1165
1166   // Compute the set of all super-register classes.
1167   BitVector SuperRegRC(TRI->getNumRegClasses());
1168   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1169     SuperRegRC.setBitsInMask(RCI.getMask());
1170
1171   // Find the first legal register class with the largest spill size.
1172   const TargetRegisterClass *BestRC = RC;
1173   for (int i = SuperRegRC.find_first(); i >= 0; i = SuperRegRC.find_next(i)) {
1174     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1175     // We want the largest possible spill size.
1176     if (SuperRC->getSize() <= BestRC->getSize())
1177       continue;
1178     if (!isLegalRC(SuperRC))
1179       continue;
1180     BestRC = SuperRC;
1181   }
1182   return std::make_pair(BestRC, 1);
1183 }
1184
1185 /// computeRegisterProperties - Once all of the register classes are added,
1186 /// this allows us to compute derived properties we expose.
1187 void TargetLoweringBase::computeRegisterProperties(
1188     const TargetRegisterInfo *TRI) {
1189   static_assert(MVT::LAST_VALUETYPE <= MVT::MAX_ALLOWED_VALUETYPE,
1190                 "Too many value types for ValueTypeActions to hold!");
1191
1192   // Everything defaults to needing one register.
1193   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1194     NumRegistersForVT[i] = 1;
1195     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1196   }
1197   // ...except isVoid, which doesn't need any registers.
1198   NumRegistersForVT[MVT::isVoid] = 0;
1199
1200   // Find the largest integer register class.
1201   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1202   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1203     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1204
1205   // Every integer value type larger than this largest register takes twice as
1206   // many registers to represent as the previous ValueType.
1207   for (unsigned ExpandedReg = LargestIntReg + 1;
1208        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1209     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1210     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1211     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1212     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1213                                    TypeExpandInteger);
1214   }
1215
1216   // Inspect all of the ValueType's smaller than the largest integer
1217   // register to see which ones need promotion.
1218   unsigned LegalIntReg = LargestIntReg;
1219   for (unsigned IntReg = LargestIntReg - 1;
1220        IntReg >= (unsigned)MVT::i1; --IntReg) {
1221     MVT IVT = (MVT::SimpleValueType)IntReg;
1222     if (isTypeLegal(IVT)) {
1223       LegalIntReg = IntReg;
1224     } else {
1225       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1226         (const MVT::SimpleValueType)LegalIntReg;
1227       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1228     }
1229   }
1230
1231   // ppcf128 type is really two f64's.
1232   if (!isTypeLegal(MVT::ppcf128)) {
1233     NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1234     RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1235     TransformToType[MVT::ppcf128] = MVT::f64;
1236     ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1237   }
1238
1239   // Decide how to handle f128. If the target does not have native f128 support,
1240   // expand it to i128 and we will be generating soft float library calls.
1241   if (!isTypeLegal(MVT::f128)) {
1242     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1243     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1244     TransformToType[MVT::f128] = MVT::i128;
1245     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1246   }
1247
1248   // Decide how to handle f64. If the target does not have native f64 support,
1249   // expand it to i64 and we will be generating soft float library calls.
1250   if (!isTypeLegal(MVT::f64)) {
1251     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1252     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1253     TransformToType[MVT::f64] = MVT::i64;
1254     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1255   }
1256
1257   // Decide how to handle f32. If the target does not have native f32 support,
1258   // expand it to i32 and we will be generating soft float library calls.
1259   if (!isTypeLegal(MVT::f32)) {
1260     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1261     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1262     TransformToType[MVT::f32] = MVT::i32;
1263     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1264   }
1265
1266   if (!isTypeLegal(MVT::f16)) {
1267     // If the target has native f32 support, promote f16 operations to f32.  If
1268     // f32 is not supported, generate soft float library calls.
1269     if (isTypeLegal(MVT::f32)) {
1270       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1271       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1272       TransformToType[MVT::f16] = MVT::f32;
1273       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1274     } else {
1275       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1276       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1277       TransformToType[MVT::f16] = MVT::i16;
1278       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftenFloat);
1279     }
1280   }
1281
1282   // Loop over all of the vector value types to see which need transformations.
1283   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1284        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1285     MVT VT = (MVT::SimpleValueType) i;
1286     if (isTypeLegal(VT))
1287       continue;
1288
1289     MVT EltVT = VT.getVectorElementType();
1290     unsigned NElts = VT.getVectorNumElements();
1291     bool IsLegalWiderType = false;
1292     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1293     switch (PreferredAction) {
1294     case TypePromoteInteger: {
1295       // Try to promote the elements of integer vectors. If no legal
1296       // promotion was found, fall through to the widen-vector method.
1297       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1298         MVT SVT = (MVT::SimpleValueType) nVT;
1299         // Promote vectors of integers to vectors with the same number
1300         // of elements, with a wider element type.
1301         if (SVT.getVectorElementType().getSizeInBits() > EltVT.getSizeInBits()
1302             && SVT.getVectorNumElements() == NElts && isTypeLegal(SVT)
1303             && SVT.getScalarType().isInteger()) {
1304           TransformToType[i] = SVT;
1305           RegisterTypeForVT[i] = SVT;
1306           NumRegistersForVT[i] = 1;
1307           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1308           IsLegalWiderType = true;
1309           break;
1310         }
1311       }
1312       if (IsLegalWiderType)
1313         break;
1314     }
1315     case TypeWidenVector: {
1316       // Try to widen the vector.
1317       for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1318         MVT SVT = (MVT::SimpleValueType) nVT;
1319         if (SVT.getVectorElementType() == EltVT
1320             && SVT.getVectorNumElements() > NElts && isTypeLegal(SVT)) {
1321           TransformToType[i] = SVT;
1322           RegisterTypeForVT[i] = SVT;
1323           NumRegistersForVT[i] = 1;
1324           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1325           IsLegalWiderType = true;
1326           break;
1327         }
1328       }
1329       if (IsLegalWiderType)
1330         break;
1331     }
1332     case TypeSplitVector:
1333     case TypeScalarizeVector: {
1334       MVT IntermediateVT;
1335       MVT RegisterVT;
1336       unsigned NumIntermediates;
1337       NumRegistersForVT[i] = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1338           NumIntermediates, RegisterVT, this);
1339       RegisterTypeForVT[i] = RegisterVT;
1340
1341       MVT NVT = VT.getPow2VectorType();
1342       if (NVT == VT) {
1343         // Type is already a power of 2.  The default action is to split.
1344         TransformToType[i] = MVT::Other;
1345         if (PreferredAction == TypeScalarizeVector)
1346           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1347         else if (PreferredAction == TypeSplitVector)
1348           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1349         else
1350           // Set type action according to the number of elements.
1351           ValueTypeActions.setTypeAction(VT, NElts == 1 ? TypeScalarizeVector
1352                                                         : TypeSplitVector);
1353       } else {
1354         TransformToType[i] = NVT;
1355         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1356       }
1357       break;
1358     }
1359     default:
1360       llvm_unreachable("Unknown vector legalization action!");
1361     }
1362   }
1363
1364   // Determine the 'representative' register class for each value type.
1365   // An representative register class is the largest (meaning one which is
1366   // not a sub-register class / subreg register class) legal register class for
1367   // a group of value types. For example, on i386, i8, i16, and i32
1368   // representative would be GR32; while on x86_64 it's GR64.
1369   for (unsigned i = 0; i != MVT::LAST_VALUETYPE; ++i) {
1370     const TargetRegisterClass* RRC;
1371     uint8_t Cost;
1372     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1373     RepRegClassForVT[i] = RRC;
1374     RepRegClassCostForVT[i] = Cost;
1375   }
1376 }
1377
1378 EVT TargetLoweringBase::getSetCCResultType(LLVMContext &, EVT VT) const {
1379   assert(!VT.isVector() && "No default SetCC type for vectors!");
1380   return getPointerTy(0).SimpleTy;
1381 }
1382
1383 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1384   return MVT::i32; // return the default value
1385 }
1386
1387 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1388 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1389 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1390 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1391 ///
1392 /// This method returns the number of registers needed, and the VT for each
1393 /// register.  It also returns the VT and quantity of the intermediate values
1394 /// before they are promoted/expanded.
1395 ///
1396 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1397                                                 EVT &IntermediateVT,
1398                                                 unsigned &NumIntermediates,
1399                                                 MVT &RegisterVT) const {
1400   unsigned NumElts = VT.getVectorNumElements();
1401
1402   // If there is a wider vector type with the same element type as this one,
1403   // or a promoted vector type that has the same number of elements which
1404   // are wider, then we should convert to that legal vector type.
1405   // This handles things like <2 x float> -> <4 x float> and
1406   // <4 x i1> -> <4 x i32>.
1407   LegalizeTypeAction TA = getTypeAction(Context, VT);
1408   if (NumElts != 1 && (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1409     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1410     if (isTypeLegal(RegisterEVT)) {
1411       IntermediateVT = RegisterEVT;
1412       RegisterVT = RegisterEVT.getSimpleVT();
1413       NumIntermediates = 1;
1414       return 1;
1415     }
1416   }
1417
1418   // Figure out the right, legal destination reg to copy into.
1419   EVT EltTy = VT.getVectorElementType();
1420
1421   unsigned NumVectorRegs = 1;
1422
1423   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally we
1424   // could break down into LHS/RHS like LegalizeDAG does.
1425   if (!isPowerOf2_32(NumElts)) {
1426     NumVectorRegs = NumElts;
1427     NumElts = 1;
1428   }
1429
1430   // Divide the input until we get to a supported size.  This will always
1431   // end with a scalar if the target doesn't support vectors.
1432   while (NumElts > 1 && !isTypeLegal(
1433                                    EVT::getVectorVT(Context, EltTy, NumElts))) {
1434     NumElts >>= 1;
1435     NumVectorRegs <<= 1;
1436   }
1437
1438   NumIntermediates = NumVectorRegs;
1439
1440   EVT NewVT = EVT::getVectorVT(Context, EltTy, NumElts);
1441   if (!isTypeLegal(NewVT))
1442     NewVT = EltTy;
1443   IntermediateVT = NewVT;
1444
1445   MVT DestVT = getRegisterType(Context, NewVT);
1446   RegisterVT = DestVT;
1447   unsigned NewVTSize = NewVT.getSizeInBits();
1448
1449   // Convert sizes such as i33 to i64.
1450   if (!isPowerOf2_32(NewVTSize))
1451     NewVTSize = NextPowerOf2(NewVTSize);
1452
1453   if (EVT(DestVT).bitsLT(NewVT))   // Value is expanded, e.g. i64 -> i16.
1454     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1455
1456   // Otherwise, promotion or legal types use the same number of registers as
1457   // the vector decimated to the appropriate level.
1458   return NumVectorRegs;
1459 }
1460
1461 /// Get the EVTs and ArgFlags collections that represent the legalized return
1462 /// type of the given function.  This does not require a DAG or a return value,
1463 /// and is suitable for use before any DAGs for the function are constructed.
1464 /// TODO: Move this out of TargetLowering.cpp.
1465 void llvm::GetReturnInfo(Type* ReturnType, AttributeSet attr,
1466                          SmallVectorImpl<ISD::OutputArg> &Outs,
1467                          const TargetLowering &TLI) {
1468   SmallVector<EVT, 4> ValueVTs;
1469   ComputeValueVTs(TLI, ReturnType, ValueVTs);
1470   unsigned NumValues = ValueVTs.size();
1471   if (NumValues == 0) return;
1472
1473   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1474     EVT VT = ValueVTs[j];
1475     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1476
1477     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1478       ExtendKind = ISD::SIGN_EXTEND;
1479     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1480       ExtendKind = ISD::ZERO_EXTEND;
1481
1482     // FIXME: C calling convention requires the return type to be promoted to
1483     // at least 32-bit. But this is not necessary for non-C calling
1484     // conventions. The frontend should mark functions whose return values
1485     // require promoting with signext or zeroext attributes.
1486     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger()) {
1487       MVT MinVT = TLI.getRegisterType(ReturnType->getContext(), MVT::i32);
1488       if (VT.bitsLT(MinVT))
1489         VT = MinVT;
1490     }
1491
1492     unsigned NumParts = TLI.getNumRegisters(ReturnType->getContext(), VT);
1493     MVT PartVT = TLI.getRegisterType(ReturnType->getContext(), VT);
1494
1495     // 'inreg' on function refers to return value
1496     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1497     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::InReg))
1498       Flags.setInReg();
1499
1500     // Propagate extension type if any
1501     if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
1502       Flags.setSExt();
1503     else if (attr.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt))
1504       Flags.setZExt();
1505
1506     for (unsigned i = 0; i < NumParts; ++i)
1507       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isFixed=*/true, 0, 0));
1508   }
1509 }
1510
1511 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1512 /// function arguments in the caller parameter area.  This is the actual
1513 /// alignment, not its logarithm.
1514 unsigned TargetLoweringBase::getByValTypeAlignment(Type *Ty) const {
1515   return getDataLayout()->getABITypeAlignment(Ty);
1516 }
1517
1518 //===----------------------------------------------------------------------===//
1519 //  TargetTransformInfo Helpers
1520 //===----------------------------------------------------------------------===//
1521
1522 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1523   enum InstructionOpcodes {
1524 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1525 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1526 #include "llvm/IR/Instruction.def"
1527   };
1528   switch (static_cast<InstructionOpcodes>(Opcode)) {
1529   case Ret:            return 0;
1530   case Br:             return 0;
1531   case Switch:         return 0;
1532   case IndirectBr:     return 0;
1533   case Invoke:         return 0;
1534   case Resume:         return 0;
1535   case Unreachable:    return 0;
1536   case Add:            return ISD::ADD;
1537   case FAdd:           return ISD::FADD;
1538   case Sub:            return ISD::SUB;
1539   case FSub:           return ISD::FSUB;
1540   case Mul:            return ISD::MUL;
1541   case FMul:           return ISD::FMUL;
1542   case UDiv:           return ISD::UDIV;
1543   case SDiv:           return ISD::SDIV;
1544   case FDiv:           return ISD::FDIV;
1545   case URem:           return ISD::UREM;
1546   case SRem:           return ISD::SREM;
1547   case FRem:           return ISD::FREM;
1548   case Shl:            return ISD::SHL;
1549   case LShr:           return ISD::SRL;
1550   case AShr:           return ISD::SRA;
1551   case And:            return ISD::AND;
1552   case Or:             return ISD::OR;
1553   case Xor:            return ISD::XOR;
1554   case Alloca:         return 0;
1555   case Load:           return ISD::LOAD;
1556   case Store:          return ISD::STORE;
1557   case GetElementPtr:  return 0;
1558   case Fence:          return 0;
1559   case AtomicCmpXchg:  return 0;
1560   case AtomicRMW:      return 0;
1561   case Trunc:          return ISD::TRUNCATE;
1562   case ZExt:           return ISD::ZERO_EXTEND;
1563   case SExt:           return ISD::SIGN_EXTEND;
1564   case FPToUI:         return ISD::FP_TO_UINT;
1565   case FPToSI:         return ISD::FP_TO_SINT;
1566   case UIToFP:         return ISD::UINT_TO_FP;
1567   case SIToFP:         return ISD::SINT_TO_FP;
1568   case FPTrunc:        return ISD::FP_ROUND;
1569   case FPExt:          return ISD::FP_EXTEND;
1570   case PtrToInt:       return ISD::BITCAST;
1571   case IntToPtr:       return ISD::BITCAST;
1572   case BitCast:        return ISD::BITCAST;
1573   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1574   case ICmp:           return ISD::SETCC;
1575   case FCmp:           return ISD::SETCC;
1576   case PHI:            return 0;
1577   case Call:           return 0;
1578   case Select:         return ISD::SELECT;
1579   case UserOp1:        return 0;
1580   case UserOp2:        return 0;
1581   case VAArg:          return 0;
1582   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1583   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1584   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1585   case ExtractValue:   return ISD::MERGE_VALUES;
1586   case InsertValue:    return ISD::MERGE_VALUES;
1587   case LandingPad:     return 0;
1588   }
1589
1590   llvm_unreachable("Unknown instruction type encountered!");
1591 }
1592
1593 std::pair<unsigned, MVT>
1594 TargetLoweringBase::getTypeLegalizationCost(Type *Ty) const {
1595   LLVMContext &C = Ty->getContext();
1596   EVT MTy = getValueType(Ty);
1597
1598   unsigned Cost = 1;
1599   // We keep legalizing the type until we find a legal kind. We assume that
1600   // the only operation that costs anything is the split. After splitting
1601   // we need to handle two types.
1602   while (true) {
1603     LegalizeKind LK = getTypeConversion(C, MTy);
1604
1605     if (LK.first == TypeLegal)
1606       return std::make_pair(Cost, MTy.getSimpleVT());
1607
1608     if (LK.first == TypeSplitVector || LK.first == TypeExpandInteger)
1609       Cost *= 2;
1610
1611     // Keep legalizing the type.
1612     MTy = LK.second;
1613   }
1614 }
1615
1616 //===----------------------------------------------------------------------===//
1617 //  Loop Strength Reduction hooks
1618 //===----------------------------------------------------------------------===//
1619
1620 /// isLegalAddressingMode - Return true if the addressing mode represented
1621 /// by AM is legal for this target, for a load/store of the specified type.
1622 bool TargetLoweringBase::isLegalAddressingMode(const AddrMode &AM,
1623                                            Type *Ty) const {
1624   // The default implementation of this implements a conservative RISCy, r+r and
1625   // r+i addr mode.
1626
1627   // Allows a sign-extended 16-bit immediate field.
1628   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1629     return false;
1630
1631   // No global is ever allowed as a base.
1632   if (AM.BaseGV)
1633     return false;
1634
1635   // Only support r+r,
1636   switch (AM.Scale) {
1637   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1638     break;
1639   case 1:
1640     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1641       return false;
1642     // Otherwise we have r+r or r+i.
1643     break;
1644   case 2:
1645     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1646       return false;
1647     // Allow 2*r as r+r.
1648     break;
1649   default: // Don't allow n * r
1650     return false;
1651   }
1652
1653   return true;
1654 }