CodeGen: Remove implicit iterator conversions from MBB.cpp
[oota-llvm.git] / lib / CodeGen / TargetInstrInfo.cpp
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineInstrBuilder.h"
17 #include "llvm/CodeGen/MachineMemOperand.h"
18 #include "llvm/CodeGen/MachineRegisterInfo.h"
19 #include "llvm/CodeGen/PseudoSourceValue.h"
20 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
21 #include "llvm/CodeGen/StackMaps.h"
22 #include "llvm/CodeGen/TargetSchedule.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/MC/MCAsmInfo.h"
25 #include "llvm/MC/MCInstrItineraries.h"
26 #include "llvm/Support/CommandLine.h"
27 #include "llvm/Support/ErrorHandling.h"
28 #include "llvm/Support/raw_ostream.h"
29 #include "llvm/Target/TargetFrameLowering.h"
30 #include "llvm/Target/TargetLowering.h"
31 #include "llvm/Target/TargetMachine.h"
32 #include "llvm/Target/TargetRegisterInfo.h"
33 #include <cctype>
34 using namespace llvm;
35
36 static cl::opt<bool> DisableHazardRecognizer(
37   "disable-sched-hazard", cl::Hidden, cl::init(false),
38   cl::desc("Disable hazard detection during preRA scheduling"));
39
40 TargetInstrInfo::~TargetInstrInfo() {
41 }
42
43 const TargetRegisterClass*
44 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
45                              const TargetRegisterInfo *TRI,
46                              const MachineFunction &MF) const {
47   if (OpNum >= MCID.getNumOperands())
48     return nullptr;
49
50   short RegClass = MCID.OpInfo[OpNum].RegClass;
51   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
52     return TRI->getPointerRegClass(MF, RegClass);
53
54   // Instructions like INSERT_SUBREG do not have fixed register classes.
55   if (RegClass < 0)
56     return nullptr;
57
58   // Otherwise just look it up normally.
59   return TRI->getRegClass(RegClass);
60 }
61
62 /// insertNoop - Insert a noop into the instruction stream at the specified
63 /// point.
64 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
65                                  MachineBasicBlock::iterator MI) const {
66   llvm_unreachable("Target didn't implement insertNoop!");
67 }
68
69 /// Measure the specified inline asm to determine an approximation of its
70 /// length.
71 /// Comments (which run till the next SeparatorString or newline) do not
72 /// count as an instruction.
73 /// Any other non-whitespace text is considered an instruction, with
74 /// multiple instructions separated by SeparatorString or newlines.
75 /// Variable-length instructions are not handled here; this function
76 /// may be overloaded in the target code to do that.
77 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
78                                              const MCAsmInfo &MAI) const {
79
80
81   // Count the number of instructions in the asm.
82   bool atInsnStart = true;
83   unsigned Length = 0;
84   for (; *Str; ++Str) {
85     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
86                                 strlen(MAI.getSeparatorString())) == 0)
87       atInsnStart = true;
88     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
89       Length += MAI.getMaxInstLength();
90       atInsnStart = false;
91     }
92     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
93                                strlen(MAI.getCommentString())) == 0)
94       atInsnStart = false;
95   }
96
97   return Length;
98 }
99
100 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
101 /// after it, replacing it with an unconditional branch to NewDest.
102 void
103 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
104                                          MachineBasicBlock *NewDest) const {
105   MachineBasicBlock *MBB = Tail->getParent();
106
107   // Remove all the old successors of MBB from the CFG.
108   while (!MBB->succ_empty())
109     MBB->removeSuccessor(MBB->succ_begin());
110
111   // Remove all the dead instructions from the end of MBB.
112   MBB->erase(Tail, MBB->end());
113
114   // If MBB isn't immediately before MBB, insert a branch to it.
115   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
116     InsertBranch(*MBB, NewDest, nullptr, SmallVector<MachineOperand, 0>(),
117                  Tail->getDebugLoc());
118   MBB->addSuccessor(NewDest);
119 }
120
121 MachineInstr *TargetInstrInfo::commuteInstructionImpl(MachineInstr *MI,
122                                                       bool NewMI,
123                                                       unsigned Idx1,
124                                                       unsigned Idx2) const {
125   const MCInstrDesc &MCID = MI->getDesc();
126   bool HasDef = MCID.getNumDefs();
127   if (HasDef && !MI->getOperand(0).isReg())
128     // No idea how to commute this instruction. Target should implement its own.
129     return nullptr;
130
131   unsigned CommutableOpIdx1 = Idx1; (void)CommutableOpIdx1;
132   unsigned CommutableOpIdx2 = Idx2; (void)CommutableOpIdx2;
133   assert(findCommutedOpIndices(MI, CommutableOpIdx1, CommutableOpIdx2) &&
134          CommutableOpIdx1 == Idx1 && CommutableOpIdx2 == Idx2 &&
135          "TargetInstrInfo::CommuteInstructionImpl(): not commutable operands.");
136   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
137          "This only knows how to commute register operands so far");
138
139   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
140   unsigned Reg1 = MI->getOperand(Idx1).getReg();
141   unsigned Reg2 = MI->getOperand(Idx2).getReg();
142   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
143   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
144   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
145   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
146   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
147   bool Reg1IsUndef = MI->getOperand(Idx1).isUndef();
148   bool Reg2IsUndef = MI->getOperand(Idx2).isUndef();
149   bool Reg1IsInternal = MI->getOperand(Idx1).isInternalRead();
150   bool Reg2IsInternal = MI->getOperand(Idx2).isInternalRead();
151   // If destination is tied to either of the commuted source register, then
152   // it must be updated.
153   if (HasDef && Reg0 == Reg1 &&
154       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
155     Reg2IsKill = false;
156     Reg0 = Reg2;
157     SubReg0 = SubReg2;
158   } else if (HasDef && Reg0 == Reg2 &&
159              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
160     Reg1IsKill = false;
161     Reg0 = Reg1;
162     SubReg0 = SubReg1;
163   }
164
165   if (NewMI) {
166     // Create a new instruction.
167     MachineFunction &MF = *MI->getParent()->getParent();
168     MI = MF.CloneMachineInstr(MI);
169   }
170
171   if (HasDef) {
172     MI->getOperand(0).setReg(Reg0);
173     MI->getOperand(0).setSubReg(SubReg0);
174   }
175   MI->getOperand(Idx2).setReg(Reg1);
176   MI->getOperand(Idx1).setReg(Reg2);
177   MI->getOperand(Idx2).setSubReg(SubReg1);
178   MI->getOperand(Idx1).setSubReg(SubReg2);
179   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
180   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
181   MI->getOperand(Idx2).setIsUndef(Reg1IsUndef);
182   MI->getOperand(Idx1).setIsUndef(Reg2IsUndef);
183   MI->getOperand(Idx2).setIsInternalRead(Reg1IsInternal);
184   MI->getOperand(Idx1).setIsInternalRead(Reg2IsInternal);
185   return MI;
186 }
187
188 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
189                                                   bool NewMI,
190                                                   unsigned OpIdx1,
191                                                   unsigned OpIdx2) const {
192   // If OpIdx1 or OpIdx2 is not specified, then this method is free to choose
193   // any commutable operand, which is done in findCommutedOpIndices() method
194   // called below.
195   if ((OpIdx1 == CommuteAnyOperandIndex || OpIdx2 == CommuteAnyOperandIndex) &&
196       !findCommutedOpIndices(MI, OpIdx1, OpIdx2)) {
197     assert(MI->isCommutable() &&
198            "Precondition violation: MI must be commutable.");
199     return nullptr;
200   }
201   return commuteInstructionImpl(MI, NewMI, OpIdx1, OpIdx2);
202 }
203
204 bool TargetInstrInfo::fixCommutedOpIndices(unsigned &ResultIdx1,
205                                            unsigned &ResultIdx2,
206                                            unsigned CommutableOpIdx1,
207                                            unsigned CommutableOpIdx2) {
208   if (ResultIdx1 == CommuteAnyOperandIndex &&
209       ResultIdx2 == CommuteAnyOperandIndex) {
210     ResultIdx1 = CommutableOpIdx1;
211     ResultIdx2 = CommutableOpIdx2;
212   } else if (ResultIdx1 == CommuteAnyOperandIndex) {
213     if (ResultIdx2 == CommutableOpIdx1)
214       ResultIdx1 = CommutableOpIdx2;
215     else if (ResultIdx2 == CommutableOpIdx2)
216       ResultIdx1 = CommutableOpIdx1;
217     else
218       return false;
219   } else if (ResultIdx2 == CommuteAnyOperandIndex) {
220     if (ResultIdx1 == CommutableOpIdx1)
221       ResultIdx2 = CommutableOpIdx2;
222     else if (ResultIdx1 == CommutableOpIdx2)
223       ResultIdx2 = CommutableOpIdx1;
224     else
225       return false;
226   } else
227     // Check that the result operand indices match the given commutable
228     // operand indices.
229     return (ResultIdx1 == CommutableOpIdx1 && ResultIdx2 == CommutableOpIdx2) ||
230            (ResultIdx1 == CommutableOpIdx2 && ResultIdx2 == CommutableOpIdx1);
231
232   return true;
233 }
234
235 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
236                                             unsigned &SrcOpIdx1,
237                                             unsigned &SrcOpIdx2) const {
238   assert(!MI->isBundle() &&
239          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
240
241   const MCInstrDesc &MCID = MI->getDesc();
242   if (!MCID.isCommutable())
243     return false;
244
245   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
246   // is not true, then the target must implement this.
247   unsigned CommutableOpIdx1 = MCID.getNumDefs();
248   unsigned CommutableOpIdx2 = CommutableOpIdx1 + 1;
249   if (!fixCommutedOpIndices(SrcOpIdx1, SrcOpIdx2,
250                             CommutableOpIdx1, CommutableOpIdx2))
251     return false;
252
253   if (!MI->getOperand(SrcOpIdx1).isReg() ||
254       !MI->getOperand(SrcOpIdx2).isReg())
255     // No idea.
256     return false;
257   return true;
258 }
259
260 bool
261 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
262   if (!MI->isTerminator()) return false;
263
264   // Conditional branch is a special case.
265   if (MI->isBranch() && !MI->isBarrier())
266     return true;
267   if (!MI->isPredicable())
268     return true;
269   return !isPredicated(MI);
270 }
271
272 bool TargetInstrInfo::PredicateInstruction(
273     MachineInstr *MI, ArrayRef<MachineOperand> Pred) const {
274   bool MadeChange = false;
275
276   assert(!MI->isBundle() &&
277          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
278
279   const MCInstrDesc &MCID = MI->getDesc();
280   if (!MI->isPredicable())
281     return false;
282
283   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
284     if (MCID.OpInfo[i].isPredicate()) {
285       MachineOperand &MO = MI->getOperand(i);
286       if (MO.isReg()) {
287         MO.setReg(Pred[j].getReg());
288         MadeChange = true;
289       } else if (MO.isImm()) {
290         MO.setImm(Pred[j].getImm());
291         MadeChange = true;
292       } else if (MO.isMBB()) {
293         MO.setMBB(Pred[j].getMBB());
294         MadeChange = true;
295       }
296       ++j;
297     }
298   }
299   return MadeChange;
300 }
301
302 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
303                                            const MachineMemOperand *&MMO,
304                                            int &FrameIndex) const {
305   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
306          oe = MI->memoperands_end();
307        o != oe;
308        ++o) {
309     if ((*o)->isLoad()) {
310       if (const FixedStackPseudoSourceValue *Value =
311           dyn_cast_or_null<FixedStackPseudoSourceValue>(
312               (*o)->getPseudoValue())) {
313         FrameIndex = Value->getFrameIndex();
314         MMO = *o;
315         return true;
316       }
317     }
318   }
319   return false;
320 }
321
322 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
323                                           const MachineMemOperand *&MMO,
324                                           int &FrameIndex) const {
325   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
326          oe = MI->memoperands_end();
327        o != oe;
328        ++o) {
329     if ((*o)->isStore()) {
330       if (const FixedStackPseudoSourceValue *Value =
331           dyn_cast_or_null<FixedStackPseudoSourceValue>(
332               (*o)->getPseudoValue())) {
333         FrameIndex = Value->getFrameIndex();
334         MMO = *o;
335         return true;
336       }
337     }
338   }
339   return false;
340 }
341
342 bool TargetInstrInfo::getStackSlotRange(const TargetRegisterClass *RC,
343                                         unsigned SubIdx, unsigned &Size,
344                                         unsigned &Offset,
345                                         const MachineFunction &MF) const {
346   if (!SubIdx) {
347     Size = RC->getSize();
348     Offset = 0;
349     return true;
350   }
351   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
352   unsigned BitSize = TRI->getSubRegIdxSize(SubIdx);
353   // Convert bit size to byte size to be consistent with
354   // MCRegisterClass::getSize().
355   if (BitSize % 8)
356     return false;
357
358   int BitOffset = TRI->getSubRegIdxOffset(SubIdx);
359   if (BitOffset < 0 || BitOffset % 8)
360     return false;
361
362   Size = BitSize /= 8;
363   Offset = (unsigned)BitOffset / 8;
364
365   assert(RC->getSize() >= (Offset + Size) && "bad subregister range");
366
367   if (!MF.getDataLayout().isLittleEndian()) {
368     Offset = RC->getSize() - (Offset + Size);
369   }
370   return true;
371 }
372
373 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
374                                     MachineBasicBlock::iterator I,
375                                     unsigned DestReg,
376                                     unsigned SubIdx,
377                                     const MachineInstr *Orig,
378                                     const TargetRegisterInfo &TRI) const {
379   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
380   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
381   MBB.insert(I, MI);
382 }
383
384 bool
385 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
386                                   const MachineInstr *MI1,
387                                   const MachineRegisterInfo *MRI) const {
388   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
389 }
390
391 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
392                                          MachineFunction &MF) const {
393   assert(!Orig->isNotDuplicable() &&
394          "Instruction cannot be duplicated");
395   return MF.CloneMachineInstr(Orig);
396 }
397
398 // If the COPY instruction in MI can be folded to a stack operation, return
399 // the register class to use.
400 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
401                                               unsigned FoldIdx) {
402   assert(MI->isCopy() && "MI must be a COPY instruction");
403   if (MI->getNumOperands() != 2)
404     return nullptr;
405   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
406
407   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
408   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
409
410   if (FoldOp.getSubReg() || LiveOp.getSubReg())
411     return nullptr;
412
413   unsigned FoldReg = FoldOp.getReg();
414   unsigned LiveReg = LiveOp.getReg();
415
416   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
417          "Cannot fold physregs");
418
419   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
420   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
421
422   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
423     return RC->contains(LiveOp.getReg()) ? RC : nullptr;
424
425   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
426     return RC;
427
428   // FIXME: Allow folding when register classes are memory compatible.
429   return nullptr;
430 }
431
432 void TargetInstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
433   llvm_unreachable("Not a MachO target");
434 }
435
436 static MachineInstr *foldPatchpoint(MachineFunction &MF, MachineInstr *MI,
437                                     ArrayRef<unsigned> Ops, int FrameIndex,
438                                     const TargetInstrInfo &TII) {
439   unsigned StartIdx = 0;
440   switch (MI->getOpcode()) {
441   case TargetOpcode::STACKMAP:
442     StartIdx = 2; // Skip ID, nShadowBytes.
443     break;
444   case TargetOpcode::PATCHPOINT: {
445     // For PatchPoint, the call args are not foldable.
446     PatchPointOpers opers(MI);
447     StartIdx = opers.getVarIdx();
448     break;
449   }
450   default:
451     llvm_unreachable("unexpected stackmap opcode");
452   }
453
454   // Return false if any operands requested for folding are not foldable (not
455   // part of the stackmap's live values).
456   for (unsigned Op : Ops) {
457     if (Op < StartIdx)
458       return nullptr;
459   }
460
461   MachineInstr *NewMI =
462     MF.CreateMachineInstr(TII.get(MI->getOpcode()), MI->getDebugLoc(), true);
463   MachineInstrBuilder MIB(MF, NewMI);
464
465   // No need to fold return, the meta data, and function arguments
466   for (unsigned i = 0; i < StartIdx; ++i)
467     MIB.addOperand(MI->getOperand(i));
468
469   for (unsigned i = StartIdx; i < MI->getNumOperands(); ++i) {
470     MachineOperand &MO = MI->getOperand(i);
471     if (std::find(Ops.begin(), Ops.end(), i) != Ops.end()) {
472       unsigned SpillSize;
473       unsigned SpillOffset;
474       // Compute the spill slot size and offset.
475       const TargetRegisterClass *RC =
476         MF.getRegInfo().getRegClass(MO.getReg());
477       bool Valid =
478           TII.getStackSlotRange(RC, MO.getSubReg(), SpillSize, SpillOffset, MF);
479       if (!Valid)
480         report_fatal_error("cannot spill patchpoint subregister operand");
481       MIB.addImm(StackMaps::IndirectMemRefOp);
482       MIB.addImm(SpillSize);
483       MIB.addFrameIndex(FrameIndex);
484       MIB.addImm(SpillOffset);
485     }
486     else
487       MIB.addOperand(MO);
488   }
489   return NewMI;
490 }
491
492 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
493 /// slot into the specified machine instruction for the specified operand(s).
494 /// If this is possible, a new instruction is returned with the specified
495 /// operand folded, otherwise NULL is returned. The client is responsible for
496 /// removing the old instruction and adding the new one in the instruction
497 /// stream.
498 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
499                                                  ArrayRef<unsigned> Ops,
500                                                  int FI) const {
501   unsigned Flags = 0;
502   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
503     if (MI->getOperand(Ops[i]).isDef())
504       Flags |= MachineMemOperand::MOStore;
505     else
506       Flags |= MachineMemOperand::MOLoad;
507
508   MachineBasicBlock *MBB = MI->getParent();
509   assert(MBB && "foldMemoryOperand needs an inserted instruction");
510   MachineFunction &MF = *MBB->getParent();
511
512   MachineInstr *NewMI = nullptr;
513
514   if (MI->getOpcode() == TargetOpcode::STACKMAP ||
515       MI->getOpcode() == TargetOpcode::PATCHPOINT) {
516     // Fold stackmap/patchpoint.
517     NewMI = foldPatchpoint(MF, MI, Ops, FI, *this);
518     if (NewMI)
519       MBB->insert(MI, NewMI);
520   } else {
521     // Ask the target to do the actual folding.
522     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, FI);
523   }
524
525   if (NewMI) {
526     NewMI->setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
527     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
528     assert((!(Flags & MachineMemOperand::MOStore) ||
529             NewMI->mayStore()) &&
530            "Folded a def to a non-store!");
531     assert((!(Flags & MachineMemOperand::MOLoad) ||
532             NewMI->mayLoad()) &&
533            "Folded a use to a non-load!");
534     const MachineFrameInfo &MFI = *MF.getFrameInfo();
535     assert(MFI.getObjectOffset(FI) != -1);
536     MachineMemOperand *MMO = MF.getMachineMemOperand(
537         MachinePointerInfo::getFixedStack(MF, FI), Flags, MFI.getObjectSize(FI),
538         MFI.getObjectAlignment(FI));
539     NewMI->addMemOperand(MF, MMO);
540
541     return NewMI;
542   }
543
544   // Straight COPY may fold as load/store.
545   if (!MI->isCopy() || Ops.size() != 1)
546     return nullptr;
547
548   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
549   if (!RC)
550     return nullptr;
551
552   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
553   MachineBasicBlock::iterator Pos = MI;
554   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
555
556   if (Flags == MachineMemOperand::MOStore)
557     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
558   else
559     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
560   return --Pos;
561 }
562
563 bool TargetInstrInfo::hasReassociableOperands(
564     const MachineInstr &Inst, const MachineBasicBlock *MBB) const {
565   const MachineOperand &Op1 = Inst.getOperand(1);
566   const MachineOperand &Op2 = Inst.getOperand(2);
567   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
568
569   // We need virtual register definitions for the operands that we will
570   // reassociate.
571   MachineInstr *MI1 = nullptr;
572   MachineInstr *MI2 = nullptr;
573   if (Op1.isReg() && TargetRegisterInfo::isVirtualRegister(Op1.getReg()))
574     MI1 = MRI.getUniqueVRegDef(Op1.getReg());
575   if (Op2.isReg() && TargetRegisterInfo::isVirtualRegister(Op2.getReg()))
576     MI2 = MRI.getUniqueVRegDef(Op2.getReg());
577
578   // And they need to be in the trace (otherwise, they won't have a depth).
579   if (MI1 && MI2 && MI1->getParent() == MBB && MI2->getParent() == MBB)
580     return true;
581
582   return false;
583 }
584
585 bool TargetInstrInfo::hasReassociableSibling(const MachineInstr &Inst,
586                                              bool &Commuted) const {
587   const MachineBasicBlock *MBB = Inst.getParent();
588   const MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
589   MachineInstr *MI1 = MRI.getUniqueVRegDef(Inst.getOperand(1).getReg());
590   MachineInstr *MI2 = MRI.getUniqueVRegDef(Inst.getOperand(2).getReg());
591   unsigned AssocOpcode = Inst.getOpcode();
592
593   // If only one operand has the same opcode and it's the second source operand,
594   // the operands must be commuted.
595   Commuted = MI1->getOpcode() != AssocOpcode && MI2->getOpcode() == AssocOpcode;
596   if (Commuted)
597     std::swap(MI1, MI2);
598
599   // 1. The previous instruction must be the same type as Inst.
600   // 2. The previous instruction must have virtual register definitions for its
601   //    operands in the same basic block as Inst.
602   // 3. The previous instruction's result must only be used by Inst.
603   if (MI1->getOpcode() == AssocOpcode && hasReassociableOperands(*MI1, MBB) &&
604       MRI.hasOneNonDBGUse(MI1->getOperand(0).getReg()))
605     return true;
606
607   return false;
608 }
609
610 // 1. The operation must be associative and commutative.
611 // 2. The instruction must have virtual register definitions for its
612 //    operands in the same basic block.
613 // 3. The instruction must have a reassociable sibling.
614 bool TargetInstrInfo::isReassociationCandidate(const MachineInstr &Inst,
615                                                bool &Commuted) const {
616   if (isAssociativeAndCommutative(Inst) &&
617       hasReassociableOperands(Inst, Inst.getParent()) &&
618       hasReassociableSibling(Inst, Commuted))
619     return true;
620
621   return false;
622 }
623
624 // The concept of the reassociation pass is that these operations can benefit
625 // from this kind of transformation:
626 //
627 // A = ? op ?
628 // B = A op X (Prev)
629 // C = B op Y (Root)
630 // -->
631 // A = ? op ?
632 // B = X op Y
633 // C = A op B
634 //
635 // breaking the dependency between A and B, allowing them to be executed in
636 // parallel (or back-to-back in a pipeline) instead of depending on each other.
637
638 // FIXME: This has the potential to be expensive (compile time) while not
639 // improving the code at all. Some ways to limit the overhead:
640 // 1. Track successful transforms; bail out if hit rate gets too low.
641 // 2. Only enable at -O3 or some other non-default optimization level.
642 // 3. Pre-screen pattern candidates here: if an operand of the previous
643 //    instruction is known to not increase the critical path, then don't match
644 //    that pattern.
645 bool TargetInstrInfo::getMachineCombinerPatterns(
646     MachineInstr &Root,
647     SmallVectorImpl<MachineCombinerPattern::MC_PATTERN> &Patterns) const {
648
649   bool Commute;
650   if (isReassociationCandidate(Root, Commute)) {
651     // We found a sequence of instructions that may be suitable for a
652     // reassociation of operands to increase ILP. Specify each commutation
653     // possibility for the Prev instruction in the sequence and let the
654     // machine combiner decide if changing the operands is worthwhile.
655     if (Commute) {
656       Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_YB);
657       Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_YB);
658     } else {
659       Patterns.push_back(MachineCombinerPattern::MC_REASSOC_AX_BY);
660       Patterns.push_back(MachineCombinerPattern::MC_REASSOC_XA_BY);
661     }
662     return true;
663   }
664
665   return false;
666 }
667
668 /// Attempt the reassociation transformation to reduce critical path length.
669 /// See the above comments before getMachineCombinerPatterns().
670 void TargetInstrInfo::reassociateOps(
671     MachineInstr &Root, MachineInstr &Prev,
672     MachineCombinerPattern::MC_PATTERN Pattern,
673     SmallVectorImpl<MachineInstr *> &InsInstrs,
674     SmallVectorImpl<MachineInstr *> &DelInstrs,
675     DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const {
676   MachineFunction *MF = Root.getParent()->getParent();
677   MachineRegisterInfo &MRI = MF->getRegInfo();
678   const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
679   const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
680   const TargetRegisterClass *RC = Root.getRegClassConstraint(0, TII, TRI);
681
682   // This array encodes the operand index for each parameter because the
683   // operands may be commuted. Each row corresponds to a pattern value,
684   // and each column specifies the index of A, B, X, Y.
685   unsigned OpIdx[4][4] = {
686     { 1, 1, 2, 2 },
687     { 1, 2, 2, 1 },
688     { 2, 1, 1, 2 },
689     { 2, 2, 1, 1 }
690   };
691
692   MachineOperand &OpA = Prev.getOperand(OpIdx[Pattern][0]);
693   MachineOperand &OpB = Root.getOperand(OpIdx[Pattern][1]);
694   MachineOperand &OpX = Prev.getOperand(OpIdx[Pattern][2]);
695   MachineOperand &OpY = Root.getOperand(OpIdx[Pattern][3]);
696   MachineOperand &OpC = Root.getOperand(0);
697
698   unsigned RegA = OpA.getReg();
699   unsigned RegB = OpB.getReg();
700   unsigned RegX = OpX.getReg();
701   unsigned RegY = OpY.getReg();
702   unsigned RegC = OpC.getReg();
703
704   if (TargetRegisterInfo::isVirtualRegister(RegA))
705     MRI.constrainRegClass(RegA, RC);
706   if (TargetRegisterInfo::isVirtualRegister(RegB))
707     MRI.constrainRegClass(RegB, RC);
708   if (TargetRegisterInfo::isVirtualRegister(RegX))
709     MRI.constrainRegClass(RegX, RC);
710   if (TargetRegisterInfo::isVirtualRegister(RegY))
711     MRI.constrainRegClass(RegY, RC);
712   if (TargetRegisterInfo::isVirtualRegister(RegC))
713     MRI.constrainRegClass(RegC, RC);
714
715   // Create a new virtual register for the result of (X op Y) instead of
716   // recycling RegB because the MachineCombiner's computation of the critical
717   // path requires a new register definition rather than an existing one.
718   unsigned NewVR = MRI.createVirtualRegister(RC);
719   InstrIdxForVirtReg.insert(std::make_pair(NewVR, 0));
720
721   unsigned Opcode = Root.getOpcode();
722   bool KillA = OpA.isKill();
723   bool KillX = OpX.isKill();
724   bool KillY = OpY.isKill();
725
726   // Create new instructions for insertion.
727   MachineInstrBuilder MIB1 =
728       BuildMI(*MF, Prev.getDebugLoc(), TII->get(Opcode), NewVR)
729           .addReg(RegX, getKillRegState(KillX))
730           .addReg(RegY, getKillRegState(KillY));
731   MachineInstrBuilder MIB2 =
732       BuildMI(*MF, Root.getDebugLoc(), TII->get(Opcode), RegC)
733           .addReg(RegA, getKillRegState(KillA))
734           .addReg(NewVR, getKillRegState(true));
735
736   setSpecialOperandAttr(Root, Prev, *MIB1, *MIB2);
737
738   // Record new instructions for insertion and old instructions for deletion.
739   InsInstrs.push_back(MIB1);
740   InsInstrs.push_back(MIB2);
741   DelInstrs.push_back(&Prev);
742   DelInstrs.push_back(&Root);
743 }
744
745 void TargetInstrInfo::genAlternativeCodeSequence(
746     MachineInstr &Root, MachineCombinerPattern::MC_PATTERN Pattern,
747     SmallVectorImpl<MachineInstr *> &InsInstrs,
748     SmallVectorImpl<MachineInstr *> &DelInstrs,
749     DenseMap<unsigned, unsigned> &InstIdxForVirtReg) const {
750   MachineRegisterInfo &MRI = Root.getParent()->getParent()->getRegInfo();
751
752   // Select the previous instruction in the sequence based on the input pattern.
753   MachineInstr *Prev = nullptr;
754   switch (Pattern) {
755   case MachineCombinerPattern::MC_REASSOC_AX_BY:
756   case MachineCombinerPattern::MC_REASSOC_XA_BY:
757     Prev = MRI.getUniqueVRegDef(Root.getOperand(1).getReg());
758     break;
759   case MachineCombinerPattern::MC_REASSOC_AX_YB:
760   case MachineCombinerPattern::MC_REASSOC_XA_YB:
761     Prev = MRI.getUniqueVRegDef(Root.getOperand(2).getReg());
762     break;
763   default:
764     break;
765   }
766
767   assert(Prev && "Unknown pattern for machine combiner");
768
769   reassociateOps(Root, *Prev, Pattern, InsInstrs, DelInstrs, InstIdxForVirtReg);
770   return;
771 }
772
773 /// foldMemoryOperand - Same as the previous version except it allows folding
774 /// of any load and store from / to any address, not just from a specific
775 /// stack slot.
776 MachineInstr *TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
777                                                  ArrayRef<unsigned> Ops,
778                                                  MachineInstr *LoadMI) const {
779   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
780 #ifndef NDEBUG
781   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
782     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
783 #endif
784   MachineBasicBlock &MBB = *MI->getParent();
785   MachineFunction &MF = *MBB.getParent();
786
787   // Ask the target to do the actual folding.
788   MachineInstr *NewMI = nullptr;
789   int FrameIndex = 0;
790
791   if ((MI->getOpcode() == TargetOpcode::STACKMAP ||
792        MI->getOpcode() == TargetOpcode::PATCHPOINT) &&
793       isLoadFromStackSlot(LoadMI, FrameIndex)) {
794     // Fold stackmap/patchpoint.
795     NewMI = foldPatchpoint(MF, MI, Ops, FrameIndex, *this);
796     if (NewMI)
797       NewMI = MBB.insert(MI, NewMI);
798   } else {
799     // Ask the target to do the actual folding.
800     NewMI = foldMemoryOperandImpl(MF, MI, Ops, MI, LoadMI);
801   }
802
803   if (!NewMI) return nullptr;
804
805   // Copy the memoperands from the load to the folded instruction.
806   if (MI->memoperands_empty()) {
807     NewMI->setMemRefs(LoadMI->memoperands_begin(),
808                       LoadMI->memoperands_end());
809   }
810   else {
811     // Handle the rare case of folding multiple loads.
812     NewMI->setMemRefs(MI->memoperands_begin(),
813                       MI->memoperands_end());
814     for (MachineInstr::mmo_iterator I = LoadMI->memoperands_begin(),
815            E = LoadMI->memoperands_end(); I != E; ++I) {
816       NewMI->addMemOperand(MF, *I);
817     }
818   }
819   return NewMI;
820 }
821
822 bool TargetInstrInfo::
823 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
824                                          AliasAnalysis *AA) const {
825   const MachineFunction &MF = *MI->getParent()->getParent();
826   const MachineRegisterInfo &MRI = MF.getRegInfo();
827
828   // Remat clients assume operand 0 is the defined register.
829   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
830     return false;
831   unsigned DefReg = MI->getOperand(0).getReg();
832
833   // A sub-register definition can only be rematerialized if the instruction
834   // doesn't read the other parts of the register.  Otherwise it is really a
835   // read-modify-write operation on the full virtual register which cannot be
836   // moved safely.
837   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
838       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
839     return false;
840
841   // A load from a fixed stack slot can be rematerialized. This may be
842   // redundant with subsequent checks, but it's target-independent,
843   // simple, and a common case.
844   int FrameIdx = 0;
845   if (isLoadFromStackSlot(MI, FrameIdx) &&
846       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
847     return true;
848
849   // Avoid instructions obviously unsafe for remat.
850   if (MI->isNotDuplicable() || MI->mayStore() ||
851       MI->hasUnmodeledSideEffects())
852     return false;
853
854   // Don't remat inline asm. We have no idea how expensive it is
855   // even if it's side effect free.
856   if (MI->isInlineAsm())
857     return false;
858
859   // Avoid instructions which load from potentially varying memory.
860   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
861     return false;
862
863   // If any of the registers accessed are non-constant, conservatively assume
864   // the instruction is not rematerializable.
865   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
866     const MachineOperand &MO = MI->getOperand(i);
867     if (!MO.isReg()) continue;
868     unsigned Reg = MO.getReg();
869     if (Reg == 0)
870       continue;
871
872     // Check for a well-behaved physical register.
873     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
874       if (MO.isUse()) {
875         // If the physreg has no defs anywhere, it's just an ambient register
876         // and we can freely move its uses. Alternatively, if it's allocatable,
877         // it could get allocated to something with a def during allocation.
878         if (!MRI.isConstantPhysReg(Reg, MF))
879           return false;
880       } else {
881         // A physreg def. We can't remat it.
882         return false;
883       }
884       continue;
885     }
886
887     // Only allow one virtual-register def.  There may be multiple defs of the
888     // same virtual register, though.
889     if (MO.isDef() && Reg != DefReg)
890       return false;
891
892     // Don't allow any virtual-register uses. Rematting an instruction with
893     // virtual register uses would length the live ranges of the uses, which
894     // is not necessarily a good idea, certainly not "trivial".
895     if (MO.isUse())
896       return false;
897   }
898
899   // Everything checked out.
900   return true;
901 }
902
903 int TargetInstrInfo::getSPAdjust(const MachineInstr *MI) const {
904   const MachineFunction *MF = MI->getParent()->getParent();
905   const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
906   bool StackGrowsDown =
907     TFI->getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
908
909   unsigned FrameSetupOpcode = getCallFrameSetupOpcode();
910   unsigned FrameDestroyOpcode = getCallFrameDestroyOpcode();
911
912   if (MI->getOpcode() != FrameSetupOpcode &&
913       MI->getOpcode() != FrameDestroyOpcode)
914     return 0;
915  
916   int SPAdj = MI->getOperand(0).getImm();
917   SPAdj = TFI->alignSPAdjust(SPAdj);
918
919   if ((!StackGrowsDown && MI->getOpcode() == FrameSetupOpcode) ||
920        (StackGrowsDown && MI->getOpcode() == FrameDestroyOpcode))
921     SPAdj = -SPAdj;
922
923   return SPAdj;
924 }
925
926 /// isSchedulingBoundary - Test if the given instruction should be
927 /// considered a scheduling boundary. This primarily includes labels
928 /// and terminators.
929 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
930                                            const MachineBasicBlock *MBB,
931                                            const MachineFunction &MF) const {
932   // Terminators and labels can't be scheduled around.
933   if (MI->isTerminator() || MI->isPosition())
934     return true;
935
936   // Don't attempt to schedule around any instruction that defines
937   // a stack-oriented pointer, as it's unlikely to be profitable. This
938   // saves compile time, because it doesn't require every single
939   // stack slot reference to depend on the instruction that does the
940   // modification.
941   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
942   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
943   if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
944     return true;
945
946   return false;
947 }
948
949 // Provide a global flag for disabling the PreRA hazard recognizer that targets
950 // may choose to honor.
951 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
952   return !DisableHazardRecognizer;
953 }
954
955 // Default implementation of CreateTargetRAHazardRecognizer.
956 ScheduleHazardRecognizer *TargetInstrInfo::
957 CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
958                              const ScheduleDAG *DAG) const {
959   // Dummy hazard recognizer allows all instructions to issue.
960   return new ScheduleHazardRecognizer();
961 }
962
963 // Default implementation of CreateTargetMIHazardRecognizer.
964 ScheduleHazardRecognizer *TargetInstrInfo::
965 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
966                                const ScheduleDAG *DAG) const {
967   return (ScheduleHazardRecognizer *)
968     new ScoreboardHazardRecognizer(II, DAG, "misched");
969 }
970
971 // Default implementation of CreateTargetPostRAHazardRecognizer.
972 ScheduleHazardRecognizer *TargetInstrInfo::
973 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
974                                    const ScheduleDAG *DAG) const {
975   return (ScheduleHazardRecognizer *)
976     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
977 }
978
979 //===----------------------------------------------------------------------===//
980 //  SelectionDAG latency interface.
981 //===----------------------------------------------------------------------===//
982
983 int
984 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
985                                    SDNode *DefNode, unsigned DefIdx,
986                                    SDNode *UseNode, unsigned UseIdx) const {
987   if (!ItinData || ItinData->isEmpty())
988     return -1;
989
990   if (!DefNode->isMachineOpcode())
991     return -1;
992
993   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
994   if (!UseNode->isMachineOpcode())
995     return ItinData->getOperandCycle(DefClass, DefIdx);
996   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
997   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
998 }
999
1000 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
1001                                      SDNode *N) const {
1002   if (!ItinData || ItinData->isEmpty())
1003     return 1;
1004
1005   if (!N->isMachineOpcode())
1006     return 1;
1007
1008   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
1009 }
1010
1011 //===----------------------------------------------------------------------===//
1012 //  MachineInstr latency interface.
1013 //===----------------------------------------------------------------------===//
1014
1015 unsigned
1016 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
1017                                 const MachineInstr *MI) const {
1018   if (!ItinData || ItinData->isEmpty())
1019     return 1;
1020
1021   unsigned Class = MI->getDesc().getSchedClass();
1022   int UOps = ItinData->Itineraries[Class].NumMicroOps;
1023   if (UOps >= 0)
1024     return UOps;
1025
1026   // The # of u-ops is dynamically determined. The specific target should
1027   // override this function to return the right number.
1028   return 1;
1029 }
1030
1031 /// Return the default expected latency for a def based on it's opcode.
1032 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel &SchedModel,
1033                                             const MachineInstr *DefMI) const {
1034   if (DefMI->isTransient())
1035     return 0;
1036   if (DefMI->mayLoad())
1037     return SchedModel.LoadLatency;
1038   if (isHighLatencyDef(DefMI->getOpcode()))
1039     return SchedModel.HighLatency;
1040   return 1;
1041 }
1042
1043 unsigned TargetInstrInfo::getPredicationCost(const MachineInstr *) const {
1044   return 0;
1045 }
1046
1047 unsigned TargetInstrInfo::
1048 getInstrLatency(const InstrItineraryData *ItinData,
1049                 const MachineInstr *MI,
1050                 unsigned *PredCost) const {
1051   // Default to one cycle for no itinerary. However, an "empty" itinerary may
1052   // still have a MinLatency property, which getStageLatency checks.
1053   if (!ItinData)
1054     return MI->mayLoad() ? 2 : 1;
1055
1056   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
1057 }
1058
1059 bool TargetInstrInfo::hasLowDefLatency(const TargetSchedModel &SchedModel,
1060                                        const MachineInstr *DefMI,
1061                                        unsigned DefIdx) const {
1062   const InstrItineraryData *ItinData = SchedModel.getInstrItineraries();
1063   if (!ItinData || ItinData->isEmpty())
1064     return false;
1065
1066   unsigned DefClass = DefMI->getDesc().getSchedClass();
1067   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
1068   return (DefCycle != -1 && DefCycle <= 1);
1069 }
1070
1071 /// Both DefMI and UseMI must be valid.  By default, call directly to the
1072 /// itinerary. This may be overriden by the target.
1073 int TargetInstrInfo::
1074 getOperandLatency(const InstrItineraryData *ItinData,
1075                   const MachineInstr *DefMI, unsigned DefIdx,
1076                   const MachineInstr *UseMI, unsigned UseIdx) const {
1077   unsigned DefClass = DefMI->getDesc().getSchedClass();
1078   unsigned UseClass = UseMI->getDesc().getSchedClass();
1079   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
1080 }
1081
1082 /// If we can determine the operand latency from the def only, without itinerary
1083 /// lookup, do so. Otherwise return -1.
1084 int TargetInstrInfo::computeDefOperandLatency(
1085   const InstrItineraryData *ItinData,
1086   const MachineInstr *DefMI) const {
1087
1088   // Let the target hook getInstrLatency handle missing itineraries.
1089   if (!ItinData)
1090     return getInstrLatency(ItinData, DefMI);
1091
1092   if(ItinData->isEmpty())
1093     return defaultDefLatency(ItinData->SchedModel, DefMI);
1094
1095   // ...operand lookup required
1096   return -1;
1097 }
1098
1099 /// computeOperandLatency - Compute and return the latency of the given data
1100 /// dependent def and use when the operand indices are already known. UseMI may
1101 /// be NULL for an unknown use.
1102 ///
1103 /// FindMin may be set to get the minimum vs. expected latency. Minimum
1104 /// latency is used for scheduling groups, while expected latency is for
1105 /// instruction cost and critical path.
1106 ///
1107 /// Depending on the subtarget's itinerary properties, this may or may not need
1108 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
1109 /// UseIdx to compute min latency.
1110 unsigned TargetInstrInfo::
1111 computeOperandLatency(const InstrItineraryData *ItinData,
1112                       const MachineInstr *DefMI, unsigned DefIdx,
1113                       const MachineInstr *UseMI, unsigned UseIdx) const {
1114
1115   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
1116   if (DefLatency >= 0)
1117     return DefLatency;
1118
1119   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
1120
1121   int OperLatency = 0;
1122   if (UseMI)
1123     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
1124   else {
1125     unsigned DefClass = DefMI->getDesc().getSchedClass();
1126     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
1127   }
1128   if (OperLatency >= 0)
1129     return OperLatency;
1130
1131   // No operand latency was found.
1132   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
1133
1134   // Expected latency is the max of the stage latency and itinerary props.
1135   InstrLatency = std::max(InstrLatency,
1136                           defaultDefLatency(ItinData->SchedModel, DefMI));
1137   return InstrLatency;
1138 }
1139
1140 bool TargetInstrInfo::getRegSequenceInputs(
1141     const MachineInstr &MI, unsigned DefIdx,
1142     SmallVectorImpl<RegSubRegPairAndIdx> &InputRegs) const {
1143   assert((MI.isRegSequence() ||
1144           MI.isRegSequenceLike()) && "Instruction do not have the proper type");
1145
1146   if (!MI.isRegSequence())
1147     return getRegSequenceLikeInputs(MI, DefIdx, InputRegs);
1148
1149   // We are looking at:
1150   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1151   assert(DefIdx == 0 && "REG_SEQUENCE only has one def");
1152   for (unsigned OpIdx = 1, EndOpIdx = MI.getNumOperands(); OpIdx != EndOpIdx;
1153        OpIdx += 2) {
1154     const MachineOperand &MOReg = MI.getOperand(OpIdx);
1155     const MachineOperand &MOSubIdx = MI.getOperand(OpIdx + 1);
1156     assert(MOSubIdx.isImm() &&
1157            "One of the subindex of the reg_sequence is not an immediate");
1158     // Record Reg:SubReg, SubIdx.
1159     InputRegs.push_back(RegSubRegPairAndIdx(MOReg.getReg(), MOReg.getSubReg(),
1160                                             (unsigned)MOSubIdx.getImm()));
1161   }
1162   return true;
1163 }
1164
1165 bool TargetInstrInfo::getExtractSubregInputs(
1166     const MachineInstr &MI, unsigned DefIdx,
1167     RegSubRegPairAndIdx &InputReg) const {
1168   assert((MI.isExtractSubreg() ||
1169       MI.isExtractSubregLike()) && "Instruction do not have the proper type");
1170
1171   if (!MI.isExtractSubreg())
1172     return getExtractSubregLikeInputs(MI, DefIdx, InputReg);
1173
1174   // We are looking at:
1175   // Def = EXTRACT_SUBREG v0.sub1, sub0.
1176   assert(DefIdx == 0 && "EXTRACT_SUBREG only has one def");
1177   const MachineOperand &MOReg = MI.getOperand(1);
1178   const MachineOperand &MOSubIdx = MI.getOperand(2);
1179   assert(MOSubIdx.isImm() &&
1180          "The subindex of the extract_subreg is not an immediate");
1181
1182   InputReg.Reg = MOReg.getReg();
1183   InputReg.SubReg = MOReg.getSubReg();
1184   InputReg.SubIdx = (unsigned)MOSubIdx.getImm();
1185   return true;
1186 }
1187
1188 bool TargetInstrInfo::getInsertSubregInputs(
1189     const MachineInstr &MI, unsigned DefIdx,
1190     RegSubRegPair &BaseReg, RegSubRegPairAndIdx &InsertedReg) const {
1191   assert((MI.isInsertSubreg() ||
1192       MI.isInsertSubregLike()) && "Instruction do not have the proper type");
1193
1194   if (!MI.isInsertSubreg())
1195     return getInsertSubregLikeInputs(MI, DefIdx, BaseReg, InsertedReg);
1196
1197   // We are looking at:
1198   // Def = INSERT_SEQUENCE v0, v1, sub0.
1199   assert(DefIdx == 0 && "INSERT_SUBREG only has one def");
1200   const MachineOperand &MOBaseReg = MI.getOperand(1);
1201   const MachineOperand &MOInsertedReg = MI.getOperand(2);
1202   const MachineOperand &MOSubIdx = MI.getOperand(3);
1203   assert(MOSubIdx.isImm() &&
1204          "One of the subindex of the reg_sequence is not an immediate");
1205   BaseReg.Reg = MOBaseReg.getReg();
1206   BaseReg.SubReg = MOBaseReg.getSubReg();
1207
1208   InsertedReg.Reg = MOInsertedReg.getReg();
1209   InsertedReg.SubReg = MOInsertedReg.getSubReg();
1210   InsertedReg.SubIdx = (unsigned)MOSubIdx.getImm();
1211   return true;
1212 }