Machine Model: Add MicroOpBufferSize and resource BufferSize.
[oota-llvm.git] / lib / CodeGen / TargetInstrInfo.cpp
1 //===-- TargetInstrInfo.cpp - Target Instruction Information --------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the TargetInstrInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Target/TargetInstrInfo.h"
15 #include "llvm/CodeGen/MachineFrameInfo.h"
16 #include "llvm/CodeGen/MachineMemOperand.h"
17 #include "llvm/CodeGen/MachineRegisterInfo.h"
18 #include "llvm/CodeGen/PseudoSourceValue.h"
19 #include "llvm/CodeGen/ScoreboardHazardRecognizer.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/Support/CommandLine.h"
23 #include "llvm/Support/ErrorHandling.h"
24 #include "llvm/Support/raw_ostream.h"
25 #include "llvm/Target/TargetLowering.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 #include <cctype>
29 using namespace llvm;
30
31 static cl::opt<bool> DisableHazardRecognizer(
32   "disable-sched-hazard", cl::Hidden, cl::init(false),
33   cl::desc("Disable hazard detection during preRA scheduling"));
34
35 TargetInstrInfo::~TargetInstrInfo() {
36 }
37
38 const TargetRegisterClass*
39 TargetInstrInfo::getRegClass(const MCInstrDesc &MCID, unsigned OpNum,
40                              const TargetRegisterInfo *TRI,
41                              const MachineFunction &MF) const {
42   if (OpNum >= MCID.getNumOperands())
43     return 0;
44
45   short RegClass = MCID.OpInfo[OpNum].RegClass;
46   if (MCID.OpInfo[OpNum].isLookupPtrRegClass())
47     return TRI->getPointerRegClass(MF, RegClass);
48
49   // Instructions like INSERT_SUBREG do not have fixed register classes.
50   if (RegClass < 0)
51     return 0;
52
53   // Otherwise just look it up normally.
54   return TRI->getRegClass(RegClass);
55 }
56
57 /// insertNoop - Insert a noop into the instruction stream at the specified
58 /// point.
59 void TargetInstrInfo::insertNoop(MachineBasicBlock &MBB,
60                                  MachineBasicBlock::iterator MI) const {
61   llvm_unreachable("Target didn't implement insertNoop!");
62 }
63
64 /// Measure the specified inline asm to determine an approximation of its
65 /// length.
66 /// Comments (which run till the next SeparatorString or newline) do not
67 /// count as an instruction.
68 /// Any other non-whitespace text is considered an instruction, with
69 /// multiple instructions separated by SeparatorString or newlines.
70 /// Variable-length instructions are not handled here; this function
71 /// may be overloaded in the target code to do that.
72 unsigned TargetInstrInfo::getInlineAsmLength(const char *Str,
73                                              const MCAsmInfo &MAI) const {
74
75
76   // Count the number of instructions in the asm.
77   bool atInsnStart = true;
78   unsigned Length = 0;
79   for (; *Str; ++Str) {
80     if (*Str == '\n' || strncmp(Str, MAI.getSeparatorString(),
81                                 strlen(MAI.getSeparatorString())) == 0)
82       atInsnStart = true;
83     if (atInsnStart && !std::isspace(static_cast<unsigned char>(*Str))) {
84       Length += MAI.getMaxInstLength();
85       atInsnStart = false;
86     }
87     if (atInsnStart && strncmp(Str, MAI.getCommentString(),
88                                strlen(MAI.getCommentString())) == 0)
89       atInsnStart = false;
90   }
91
92   return Length;
93 }
94
95 /// ReplaceTailWithBranchTo - Delete the instruction OldInst and everything
96 /// after it, replacing it with an unconditional branch to NewDest.
97 void
98 TargetInstrInfo::ReplaceTailWithBranchTo(MachineBasicBlock::iterator Tail,
99                                          MachineBasicBlock *NewDest) const {
100   MachineBasicBlock *MBB = Tail->getParent();
101
102   // Remove all the old successors of MBB from the CFG.
103   while (!MBB->succ_empty())
104     MBB->removeSuccessor(MBB->succ_begin());
105
106   // Remove all the dead instructions from the end of MBB.
107   MBB->erase(Tail, MBB->end());
108
109   // If MBB isn't immediately before MBB, insert a branch to it.
110   if (++MachineFunction::iterator(MBB) != MachineFunction::iterator(NewDest))
111     InsertBranch(*MBB, NewDest, 0, SmallVector<MachineOperand, 0>(),
112                  Tail->getDebugLoc());
113   MBB->addSuccessor(NewDest);
114 }
115
116 // commuteInstruction - The default implementation of this method just exchanges
117 // the two operands returned by findCommutedOpIndices.
118 MachineInstr *TargetInstrInfo::commuteInstruction(MachineInstr *MI,
119                                                   bool NewMI) const {
120   const MCInstrDesc &MCID = MI->getDesc();
121   bool HasDef = MCID.getNumDefs();
122   if (HasDef && !MI->getOperand(0).isReg())
123     // No idea how to commute this instruction. Target should implement its own.
124     return 0;
125   unsigned Idx1, Idx2;
126   if (!findCommutedOpIndices(MI, Idx1, Idx2)) {
127     std::string msg;
128     raw_string_ostream Msg(msg);
129     Msg << "Don't know how to commute: " << *MI;
130     report_fatal_error(Msg.str());
131   }
132
133   assert(MI->getOperand(Idx1).isReg() && MI->getOperand(Idx2).isReg() &&
134          "This only knows how to commute register operands so far");
135   unsigned Reg0 = HasDef ? MI->getOperand(0).getReg() : 0;
136   unsigned Reg1 = MI->getOperand(Idx1).getReg();
137   unsigned Reg2 = MI->getOperand(Idx2).getReg();
138   unsigned SubReg0 = HasDef ? MI->getOperand(0).getSubReg() : 0;
139   unsigned SubReg1 = MI->getOperand(Idx1).getSubReg();
140   unsigned SubReg2 = MI->getOperand(Idx2).getSubReg();
141   bool Reg1IsKill = MI->getOperand(Idx1).isKill();
142   bool Reg2IsKill = MI->getOperand(Idx2).isKill();
143   // If destination is tied to either of the commuted source register, then
144   // it must be updated.
145   if (HasDef && Reg0 == Reg1 &&
146       MI->getDesc().getOperandConstraint(Idx1, MCOI::TIED_TO) == 0) {
147     Reg2IsKill = false;
148     Reg0 = Reg2;
149     SubReg0 = SubReg2;
150   } else if (HasDef && Reg0 == Reg2 &&
151              MI->getDesc().getOperandConstraint(Idx2, MCOI::TIED_TO) == 0) {
152     Reg1IsKill = false;
153     Reg0 = Reg1;
154     SubReg0 = SubReg1;
155   }
156
157   if (NewMI) {
158     // Create a new instruction.
159     MachineFunction &MF = *MI->getParent()->getParent();
160     MI = MF.CloneMachineInstr(MI);
161   }
162
163   if (HasDef) {
164     MI->getOperand(0).setReg(Reg0);
165     MI->getOperand(0).setSubReg(SubReg0);
166   }
167   MI->getOperand(Idx2).setReg(Reg1);
168   MI->getOperand(Idx1).setReg(Reg2);
169   MI->getOperand(Idx2).setSubReg(SubReg1);
170   MI->getOperand(Idx1).setSubReg(SubReg2);
171   MI->getOperand(Idx2).setIsKill(Reg1IsKill);
172   MI->getOperand(Idx1).setIsKill(Reg2IsKill);
173   return MI;
174 }
175
176 /// findCommutedOpIndices - If specified MI is commutable, return the two
177 /// operand indices that would swap value. Return true if the instruction
178 /// is not in a form which this routine understands.
179 bool TargetInstrInfo::findCommutedOpIndices(MachineInstr *MI,
180                                             unsigned &SrcOpIdx1,
181                                             unsigned &SrcOpIdx2) const {
182   assert(!MI->isBundle() &&
183          "TargetInstrInfo::findCommutedOpIndices() can't handle bundles");
184
185   const MCInstrDesc &MCID = MI->getDesc();
186   if (!MCID.isCommutable())
187     return false;
188   // This assumes v0 = op v1, v2 and commuting would swap v1 and v2. If this
189   // is not true, then the target must implement this.
190   SrcOpIdx1 = MCID.getNumDefs();
191   SrcOpIdx2 = SrcOpIdx1 + 1;
192   if (!MI->getOperand(SrcOpIdx1).isReg() ||
193       !MI->getOperand(SrcOpIdx2).isReg())
194     // No idea.
195     return false;
196   return true;
197 }
198
199
200 bool
201 TargetInstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
202   if (!MI->isTerminator()) return false;
203
204   // Conditional branch is a special case.
205   if (MI->isBranch() && !MI->isBarrier())
206     return true;
207   if (!MI->isPredicable())
208     return true;
209   return !isPredicated(MI);
210 }
211
212
213 bool TargetInstrInfo::PredicateInstruction(MachineInstr *MI,
214                             const SmallVectorImpl<MachineOperand> &Pred) const {
215   bool MadeChange = false;
216
217   assert(!MI->isBundle() &&
218          "TargetInstrInfo::PredicateInstruction() can't handle bundles");
219
220   const MCInstrDesc &MCID = MI->getDesc();
221   if (!MI->isPredicable())
222     return false;
223
224   for (unsigned j = 0, i = 0, e = MI->getNumOperands(); i != e; ++i) {
225     if (MCID.OpInfo[i].isPredicate()) {
226       MachineOperand &MO = MI->getOperand(i);
227       if (MO.isReg()) {
228         MO.setReg(Pred[j].getReg());
229         MadeChange = true;
230       } else if (MO.isImm()) {
231         MO.setImm(Pred[j].getImm());
232         MadeChange = true;
233       } else if (MO.isMBB()) {
234         MO.setMBB(Pred[j].getMBB());
235         MadeChange = true;
236       }
237       ++j;
238     }
239   }
240   return MadeChange;
241 }
242
243 bool TargetInstrInfo::hasLoadFromStackSlot(const MachineInstr *MI,
244                                            const MachineMemOperand *&MMO,
245                                            int &FrameIndex) const {
246   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
247          oe = MI->memoperands_end();
248        o != oe;
249        ++o) {
250     if ((*o)->isLoad() && (*o)->getValue())
251       if (const FixedStackPseudoSourceValue *Value =
252           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
253         FrameIndex = Value->getFrameIndex();
254         MMO = *o;
255         return true;
256       }
257   }
258   return false;
259 }
260
261 bool TargetInstrInfo::hasStoreToStackSlot(const MachineInstr *MI,
262                                           const MachineMemOperand *&MMO,
263                                           int &FrameIndex) const {
264   for (MachineInstr::mmo_iterator o = MI->memoperands_begin(),
265          oe = MI->memoperands_end();
266        o != oe;
267        ++o) {
268     if ((*o)->isStore() && (*o)->getValue())
269       if (const FixedStackPseudoSourceValue *Value =
270           dyn_cast<const FixedStackPseudoSourceValue>((*o)->getValue())) {
271         FrameIndex = Value->getFrameIndex();
272         MMO = *o;
273         return true;
274       }
275   }
276   return false;
277 }
278
279 void TargetInstrInfo::reMaterialize(MachineBasicBlock &MBB,
280                                     MachineBasicBlock::iterator I,
281                                     unsigned DestReg,
282                                     unsigned SubIdx,
283                                     const MachineInstr *Orig,
284                                     const TargetRegisterInfo &TRI) const {
285   MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
286   MI->substituteRegister(MI->getOperand(0).getReg(), DestReg, SubIdx, TRI);
287   MBB.insert(I, MI);
288 }
289
290 bool
291 TargetInstrInfo::produceSameValue(const MachineInstr *MI0,
292                                   const MachineInstr *MI1,
293                                   const MachineRegisterInfo *MRI) const {
294   return MI0->isIdenticalTo(MI1, MachineInstr::IgnoreVRegDefs);
295 }
296
297 MachineInstr *TargetInstrInfo::duplicate(MachineInstr *Orig,
298                                          MachineFunction &MF) const {
299   assert(!Orig->isNotDuplicable() &&
300          "Instruction cannot be duplicated");
301   return MF.CloneMachineInstr(Orig);
302 }
303
304 // If the COPY instruction in MI can be folded to a stack operation, return
305 // the register class to use.
306 static const TargetRegisterClass *canFoldCopy(const MachineInstr *MI,
307                                               unsigned FoldIdx) {
308   assert(MI->isCopy() && "MI must be a COPY instruction");
309   if (MI->getNumOperands() != 2)
310     return 0;
311   assert(FoldIdx<2 && "FoldIdx refers no nonexistent operand");
312
313   const MachineOperand &FoldOp = MI->getOperand(FoldIdx);
314   const MachineOperand &LiveOp = MI->getOperand(1-FoldIdx);
315
316   if (FoldOp.getSubReg() || LiveOp.getSubReg())
317     return 0;
318
319   unsigned FoldReg = FoldOp.getReg();
320   unsigned LiveReg = LiveOp.getReg();
321
322   assert(TargetRegisterInfo::isVirtualRegister(FoldReg) &&
323          "Cannot fold physregs");
324
325   const MachineRegisterInfo &MRI = MI->getParent()->getParent()->getRegInfo();
326   const TargetRegisterClass *RC = MRI.getRegClass(FoldReg);
327
328   if (TargetRegisterInfo::isPhysicalRegister(LiveOp.getReg()))
329     return RC->contains(LiveOp.getReg()) ? RC : 0;
330
331   if (RC->hasSubClassEq(MRI.getRegClass(LiveReg)))
332     return RC;
333
334   // FIXME: Allow folding when register classes are memory compatible.
335   return 0;
336 }
337
338 bool TargetInstrInfo::
339 canFoldMemoryOperand(const MachineInstr *MI,
340                      const SmallVectorImpl<unsigned> &Ops) const {
341   return MI->isCopy() && Ops.size() == 1 && canFoldCopy(MI, Ops[0]);
342 }
343
344 /// foldMemoryOperand - Attempt to fold a load or store of the specified stack
345 /// slot into the specified machine instruction for the specified operand(s).
346 /// If this is possible, a new instruction is returned with the specified
347 /// operand folded, otherwise NULL is returned. The client is responsible for
348 /// removing the old instruction and adding the new one in the instruction
349 /// stream.
350 MachineInstr*
351 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
352                                    const SmallVectorImpl<unsigned> &Ops,
353                                    int FI) const {
354   unsigned Flags = 0;
355   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
356     if (MI->getOperand(Ops[i]).isDef())
357       Flags |= MachineMemOperand::MOStore;
358     else
359       Flags |= MachineMemOperand::MOLoad;
360
361   MachineBasicBlock *MBB = MI->getParent();
362   assert(MBB && "foldMemoryOperand needs an inserted instruction");
363   MachineFunction &MF = *MBB->getParent();
364
365   // Ask the target to do the actual folding.
366   if (MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, FI)) {
367     // Add a memory operand, foldMemoryOperandImpl doesn't do that.
368     assert((!(Flags & MachineMemOperand::MOStore) ||
369             NewMI->mayStore()) &&
370            "Folded a def to a non-store!");
371     assert((!(Flags & MachineMemOperand::MOLoad) ||
372             NewMI->mayLoad()) &&
373            "Folded a use to a non-load!");
374     const MachineFrameInfo &MFI = *MF.getFrameInfo();
375     assert(MFI.getObjectOffset(FI) != -1);
376     MachineMemOperand *MMO =
377       MF.getMachineMemOperand(MachinePointerInfo::getFixedStack(FI),
378                               Flags, MFI.getObjectSize(FI),
379                               MFI.getObjectAlignment(FI));
380     NewMI->addMemOperand(MF, MMO);
381
382     // FIXME: change foldMemoryOperandImpl semantics to also insert NewMI.
383     return MBB->insert(MI, NewMI);
384   }
385
386   // Straight COPY may fold as load/store.
387   if (!MI->isCopy() || Ops.size() != 1)
388     return 0;
389
390   const TargetRegisterClass *RC = canFoldCopy(MI, Ops[0]);
391   if (!RC)
392     return 0;
393
394   const MachineOperand &MO = MI->getOperand(1-Ops[0]);
395   MachineBasicBlock::iterator Pos = MI;
396   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
397
398   if (Flags == MachineMemOperand::MOStore)
399     storeRegToStackSlot(*MBB, Pos, MO.getReg(), MO.isKill(), FI, RC, TRI);
400   else
401     loadRegFromStackSlot(*MBB, Pos, MO.getReg(), FI, RC, TRI);
402   return --Pos;
403 }
404
405 /// foldMemoryOperand - Same as the previous version except it allows folding
406 /// of any load and store from / to any address, not just from a specific
407 /// stack slot.
408 MachineInstr*
409 TargetInstrInfo::foldMemoryOperand(MachineBasicBlock::iterator MI,
410                                    const SmallVectorImpl<unsigned> &Ops,
411                                    MachineInstr* LoadMI) const {
412   assert(LoadMI->canFoldAsLoad() && "LoadMI isn't foldable!");
413 #ifndef NDEBUG
414   for (unsigned i = 0, e = Ops.size(); i != e; ++i)
415     assert(MI->getOperand(Ops[i]).isUse() && "Folding load into def!");
416 #endif
417   MachineBasicBlock &MBB = *MI->getParent();
418   MachineFunction &MF = *MBB.getParent();
419
420   // Ask the target to do the actual folding.
421   MachineInstr *NewMI = foldMemoryOperandImpl(MF, MI, Ops, LoadMI);
422   if (!NewMI) return 0;
423
424   NewMI = MBB.insert(MI, NewMI);
425
426   // Copy the memoperands from the load to the folded instruction.
427   NewMI->setMemRefs(LoadMI->memoperands_begin(),
428                     LoadMI->memoperands_end());
429
430   return NewMI;
431 }
432
433 bool TargetInstrInfo::
434 isReallyTriviallyReMaterializableGeneric(const MachineInstr *MI,
435                                          AliasAnalysis *AA) const {
436   const MachineFunction &MF = *MI->getParent()->getParent();
437   const MachineRegisterInfo &MRI = MF.getRegInfo();
438   const TargetMachine &TM = MF.getTarget();
439   const TargetInstrInfo &TII = *TM.getInstrInfo();
440
441   // Remat clients assume operand 0 is the defined register.
442   if (!MI->getNumOperands() || !MI->getOperand(0).isReg())
443     return false;
444   unsigned DefReg = MI->getOperand(0).getReg();
445
446   // A sub-register definition can only be rematerialized if the instruction
447   // doesn't read the other parts of the register.  Otherwise it is really a
448   // read-modify-write operation on the full virtual register which cannot be
449   // moved safely.
450   if (TargetRegisterInfo::isVirtualRegister(DefReg) &&
451       MI->getOperand(0).getSubReg() && MI->readsVirtualRegister(DefReg))
452     return false;
453
454   // A load from a fixed stack slot can be rematerialized. This may be
455   // redundant with subsequent checks, but it's target-independent,
456   // simple, and a common case.
457   int FrameIdx = 0;
458   if (TII.isLoadFromStackSlot(MI, FrameIdx) &&
459       MF.getFrameInfo()->isImmutableObjectIndex(FrameIdx))
460     return true;
461
462   // Avoid instructions obviously unsafe for remat.
463   if (MI->isNotDuplicable() || MI->mayStore() ||
464       MI->hasUnmodeledSideEffects())
465     return false;
466
467   // Don't remat inline asm. We have no idea how expensive it is
468   // even if it's side effect free.
469   if (MI->isInlineAsm())
470     return false;
471
472   // Avoid instructions which load from potentially varying memory.
473   if (MI->mayLoad() && !MI->isInvariantLoad(AA))
474     return false;
475
476   // If any of the registers accessed are non-constant, conservatively assume
477   // the instruction is not rematerializable.
478   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
479     const MachineOperand &MO = MI->getOperand(i);
480     if (!MO.isReg()) continue;
481     unsigned Reg = MO.getReg();
482     if (Reg == 0)
483       continue;
484
485     // Check for a well-behaved physical register.
486     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
487       if (MO.isUse()) {
488         // If the physreg has no defs anywhere, it's just an ambient register
489         // and we can freely move its uses. Alternatively, if it's allocatable,
490         // it could get allocated to something with a def during allocation.
491         if (!MRI.isConstantPhysReg(Reg, MF))
492           return false;
493       } else {
494         // A physreg def. We can't remat it.
495         return false;
496       }
497       continue;
498     }
499
500     // Only allow one virtual-register def.  There may be multiple defs of the
501     // same virtual register, though.
502     if (MO.isDef() && Reg != DefReg)
503       return false;
504
505     // Don't allow any virtual-register uses. Rematting an instruction with
506     // virtual register uses would length the live ranges of the uses, which
507     // is not necessarily a good idea, certainly not "trivial".
508     if (MO.isUse())
509       return false;
510   }
511
512   // Everything checked out.
513   return true;
514 }
515
516 /// isSchedulingBoundary - Test if the given instruction should be
517 /// considered a scheduling boundary. This primarily includes labels
518 /// and terminators.
519 bool TargetInstrInfo::isSchedulingBoundary(const MachineInstr *MI,
520                                            const MachineBasicBlock *MBB,
521                                            const MachineFunction &MF) const {
522   // Terminators and labels can't be scheduled around.
523   if (MI->isTerminator() || MI->isLabel())
524     return true;
525
526   // Don't attempt to schedule around any instruction that defines
527   // a stack-oriented pointer, as it's unlikely to be profitable. This
528   // saves compile time, because it doesn't require every single
529   // stack slot reference to depend on the instruction that does the
530   // modification.
531   const TargetLowering &TLI = *MF.getTarget().getTargetLowering();
532   const TargetRegisterInfo *TRI = MF.getTarget().getRegisterInfo();
533   if (MI->modifiesRegister(TLI.getStackPointerRegisterToSaveRestore(), TRI))
534     return true;
535
536   return false;
537 }
538
539 // Provide a global flag for disabling the PreRA hazard recognizer that targets
540 // may choose to honor.
541 bool TargetInstrInfo::usePreRAHazardRecognizer() const {
542   return !DisableHazardRecognizer;
543 }
544
545 // Default implementation of CreateTargetRAHazardRecognizer.
546 ScheduleHazardRecognizer *TargetInstrInfo::
547 CreateTargetHazardRecognizer(const TargetMachine *TM,
548                              const ScheduleDAG *DAG) const {
549   // Dummy hazard recognizer allows all instructions to issue.
550   return new ScheduleHazardRecognizer();
551 }
552
553 // Default implementation of CreateTargetMIHazardRecognizer.
554 ScheduleHazardRecognizer *TargetInstrInfo::
555 CreateTargetMIHazardRecognizer(const InstrItineraryData *II,
556                                const ScheduleDAG *DAG) const {
557   return (ScheduleHazardRecognizer *)
558     new ScoreboardHazardRecognizer(II, DAG, "misched");
559 }
560
561 // Default implementation of CreateTargetPostRAHazardRecognizer.
562 ScheduleHazardRecognizer *TargetInstrInfo::
563 CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
564                                    const ScheduleDAG *DAG) const {
565   return (ScheduleHazardRecognizer *)
566     new ScoreboardHazardRecognizer(II, DAG, "post-RA-sched");
567 }
568
569 //===----------------------------------------------------------------------===//
570 //  SelectionDAG latency interface.
571 //===----------------------------------------------------------------------===//
572
573 int
574 TargetInstrInfo::getOperandLatency(const InstrItineraryData *ItinData,
575                                    SDNode *DefNode, unsigned DefIdx,
576                                    SDNode *UseNode, unsigned UseIdx) const {
577   if (!ItinData || ItinData->isEmpty())
578     return -1;
579
580   if (!DefNode->isMachineOpcode())
581     return -1;
582
583   unsigned DefClass = get(DefNode->getMachineOpcode()).getSchedClass();
584   if (!UseNode->isMachineOpcode())
585     return ItinData->getOperandCycle(DefClass, DefIdx);
586   unsigned UseClass = get(UseNode->getMachineOpcode()).getSchedClass();
587   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
588 }
589
590 int TargetInstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
591                                      SDNode *N) const {
592   if (!ItinData || ItinData->isEmpty())
593     return 1;
594
595   if (!N->isMachineOpcode())
596     return 1;
597
598   return ItinData->getStageLatency(get(N->getMachineOpcode()).getSchedClass());
599 }
600
601 //===----------------------------------------------------------------------===//
602 //  MachineInstr latency interface.
603 //===----------------------------------------------------------------------===//
604
605 unsigned
606 TargetInstrInfo::getNumMicroOps(const InstrItineraryData *ItinData,
607                                 const MachineInstr *MI) const {
608   if (!ItinData || ItinData->isEmpty())
609     return 1;
610
611   unsigned Class = MI->getDesc().getSchedClass();
612   int UOps = ItinData->Itineraries[Class].NumMicroOps;
613   if (UOps >= 0)
614     return UOps;
615
616   // The # of u-ops is dynamically determined. The specific target should
617   // override this function to return the right number.
618   return 1;
619 }
620
621 /// Return the default expected latency for a def based on it's opcode.
622 unsigned TargetInstrInfo::defaultDefLatency(const MCSchedModel *SchedModel,
623                                             const MachineInstr *DefMI) const {
624   if (DefMI->isTransient())
625     return 0;
626   if (DefMI->mayLoad())
627     return SchedModel->LoadLatency;
628   if (isHighLatencyDef(DefMI->getOpcode()))
629     return SchedModel->HighLatency;
630   return 1;
631 }
632
633 unsigned TargetInstrInfo::
634 getInstrLatency(const InstrItineraryData *ItinData,
635                 const MachineInstr *MI,
636                 unsigned *PredCost) const {
637   // Default to one cycle for no itinerary. However, an "empty" itinerary may
638   // still have a MinLatency property, which getStageLatency checks.
639   if (!ItinData)
640     return MI->mayLoad() ? 2 : 1;
641
642   return ItinData->getStageLatency(MI->getDesc().getSchedClass());
643 }
644
645 bool TargetInstrInfo::hasLowDefLatency(const InstrItineraryData *ItinData,
646                                        const MachineInstr *DefMI,
647                                        unsigned DefIdx) const {
648   if (!ItinData || ItinData->isEmpty())
649     return false;
650
651   unsigned DefClass = DefMI->getDesc().getSchedClass();
652   int DefCycle = ItinData->getOperandCycle(DefClass, DefIdx);
653   return (DefCycle != -1 && DefCycle <= 1);
654 }
655
656 /// Both DefMI and UseMI must be valid.  By default, call directly to the
657 /// itinerary. This may be overriden by the target.
658 int TargetInstrInfo::
659 getOperandLatency(const InstrItineraryData *ItinData,
660                   const MachineInstr *DefMI, unsigned DefIdx,
661                   const MachineInstr *UseMI, unsigned UseIdx) const {
662   unsigned DefClass = DefMI->getDesc().getSchedClass();
663   unsigned UseClass = UseMI->getDesc().getSchedClass();
664   return ItinData->getOperandLatency(DefClass, DefIdx, UseClass, UseIdx);
665 }
666
667 /// If we can determine the operand latency from the def only, without itinerary
668 /// lookup, do so. Otherwise return -1.
669 int TargetInstrInfo::computeDefOperandLatency(
670   const InstrItineraryData *ItinData,
671   const MachineInstr *DefMI) const {
672
673   // Let the target hook getInstrLatency handle missing itineraries.
674   if (!ItinData)
675     return getInstrLatency(ItinData, DefMI);
676
677   if(ItinData->isEmpty())
678     return defaultDefLatency(ItinData->SchedModel, DefMI);
679
680   // ...operand lookup required
681   return -1;
682 }
683
684 /// computeOperandLatency - Compute and return the latency of the given data
685 /// dependent def and use when the operand indices are already known. UseMI may
686 /// be NULL for an unknown use.
687 ///
688 /// FindMin may be set to get the minimum vs. expected latency. Minimum
689 /// latency is used for scheduling groups, while expected latency is for
690 /// instruction cost and critical path.
691 ///
692 /// Depending on the subtarget's itinerary properties, this may or may not need
693 /// to call getOperandLatency(). For most subtargets, we don't need DefIdx or
694 /// UseIdx to compute min latency.
695 unsigned TargetInstrInfo::
696 computeOperandLatency(const InstrItineraryData *ItinData,
697                       const MachineInstr *DefMI, unsigned DefIdx,
698                       const MachineInstr *UseMI, unsigned UseIdx) const {
699
700   int DefLatency = computeDefOperandLatency(ItinData, DefMI);
701   if (DefLatency >= 0)
702     return DefLatency;
703
704   assert(ItinData && !ItinData->isEmpty() && "computeDefOperandLatency fail");
705
706   int OperLatency = 0;
707   if (UseMI)
708     OperLatency = getOperandLatency(ItinData, DefMI, DefIdx, UseMI, UseIdx);
709   else {
710     unsigned DefClass = DefMI->getDesc().getSchedClass();
711     OperLatency = ItinData->getOperandCycle(DefClass, DefIdx);
712   }
713   if (OperLatency >= 0)
714     return OperLatency;
715
716   // No operand latency was found.
717   unsigned InstrLatency = getInstrLatency(ItinData, DefMI);
718
719   // Expected latency is the max of the stage latency and itinerary props.
720   InstrLatency = std::max(InstrLatency,
721                           defaultDefLatency(ItinData->SchedModel, DefMI));
722   return InstrLatency;
723 }