[Modules] Remove potential ODR violations by sinking the DEBUG_TYPE
[oota-llvm.git] / lib / CodeGen / StackProtector.cpp
1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass inserts stack protectors into functions which need them. A variable
11 // with a random value in it is stored onto the stack before the local variables
12 // are allocated. Upon exiting the block, the stored value is checked. If it's
13 // changed, then there was some sort of violation and the program aborts.
14 //
15 //===----------------------------------------------------------------------===//
16
17 #include "llvm/CodeGen/StackProtector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ValueTracking.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/IR/Attributes.h"
24 #include "llvm/IR/Constants.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/DerivedTypes.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalValue.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instructions.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/Module.h"
35 #include "llvm/Support/CommandLine.h"
36 #include <cstdlib>
37 using namespace llvm;
38
39 #define DEBUG_TYPE "stack-protector"
40
41 STATISTIC(NumFunProtected, "Number of functions protected");
42 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
43                         " taken.");
44
45 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
46                                           cl::init(true), cl::Hidden);
47
48 char StackProtector::ID = 0;
49 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
50                 false, true)
51
52 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
53   return new StackProtector(TM);
54 }
55
56 StackProtector::SSPLayoutKind
57 StackProtector::getSSPLayout(const AllocaInst *AI) const {
58   return AI ? Layout.lookup(AI) : SSPLK_None;
59 }
60
61 void StackProtector::adjustForColoring(const AllocaInst *From,
62                                        const AllocaInst *To) {
63   // When coloring replaces one alloca with another, transfer the SSPLayoutKind
64   // tag from the remapped to the target alloca. The remapped alloca should
65   // have a size smaller than or equal to the replacement alloca.
66   SSPLayoutMap::iterator I = Layout.find(From);
67   if (I != Layout.end()) {
68     SSPLayoutKind Kind = I->second;
69     Layout.erase(I);
70
71     // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
72     // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
73     // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
74     I = Layout.find(To);
75     if (I == Layout.end())
76       Layout.insert(std::make_pair(To, Kind));
77     else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
78       I->second = Kind;
79   }
80 }
81
82 bool StackProtector::runOnFunction(Function &Fn) {
83   F = &Fn;
84   M = F->getParent();
85   DominatorTreeWrapperPass *DTWP =
86       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
87   DT = DTWP ? &DTWP->getDomTree() : nullptr;
88   TLI = TM->getTargetLowering();
89
90   Attribute Attr = Fn.getAttributes().getAttribute(
91       AttributeSet::FunctionIndex, "stack-protector-buffer-size");
92   if (Attr.isStringAttribute() &&
93       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
94       return false; // Invalid integer string
95
96   if (!RequiresStackProtector())
97     return false;
98
99   ++NumFunProtected;
100   return InsertStackProtectors();
101 }
102
103 /// \param [out] IsLarge is set to true if a protectable array is found and
104 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
105 /// multiple arrays, this gets set if any of them is large.
106 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
107                                               bool Strong,
108                                               bool InStruct) const {
109   if (!Ty)
110     return false;
111   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
112     if (!AT->getElementType()->isIntegerTy(8)) {
113       // If we're on a non-Darwin platform or we're inside of a structure, don't
114       // add stack protectors unless the array is a character array.
115       // However, in strong mode any array, regardless of type and size,
116       // triggers a protector.
117       if (!Strong && (InStruct || !Trip.isOSDarwin()))
118         return false;
119     }
120
121     // If an array has more than SSPBufferSize bytes of allocated space, then we
122     // emit stack protectors.
123     if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) {
124       IsLarge = true;
125       return true;
126     }
127
128     if (Strong)
129       // Require a protector for all arrays in strong mode
130       return true;
131   }
132
133   const StructType *ST = dyn_cast<StructType>(Ty);
134   if (!ST)
135     return false;
136
137   bool NeedsProtector = false;
138   for (StructType::element_iterator I = ST->element_begin(),
139                                     E = ST->element_end();
140        I != E; ++I)
141     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
142       // If the element is a protectable array and is large (>= SSPBufferSize)
143       // then we are done.  If the protectable array is not large, then
144       // keep looking in case a subsequent element is a large array.
145       if (IsLarge)
146         return true;
147       NeedsProtector = true;
148     }
149
150   return NeedsProtector;
151 }
152
153 bool StackProtector::HasAddressTaken(const Instruction *AI) {
154   for (const User *U : AI->users()) {
155     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
156       if (AI == SI->getValueOperand())
157         return true;
158     } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
159       if (AI == SI->getOperand(0))
160         return true;
161     } else if (isa<CallInst>(U)) {
162       return true;
163     } else if (isa<InvokeInst>(U)) {
164       return true;
165     } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
166       if (HasAddressTaken(SI))
167         return true;
168     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
169       // Keep track of what PHI nodes we have already visited to ensure
170       // they are only visited once.
171       if (VisitedPHIs.insert(PN))
172         if (HasAddressTaken(PN))
173           return true;
174     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
175       if (HasAddressTaken(GEP))
176         return true;
177     } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
178       if (HasAddressTaken(BI))
179         return true;
180     }
181   }
182   return false;
183 }
184
185 /// \brief Check whether or not this function needs a stack protector based
186 /// upon the stack protector level.
187 ///
188 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
189 /// The standard heuristic which will add a guard variable to functions that
190 /// call alloca with a either a variable size or a size >= SSPBufferSize,
191 /// functions with character buffers larger than SSPBufferSize, and functions
192 /// with aggregates containing character buffers larger than SSPBufferSize. The
193 /// strong heuristic will add a guard variables to functions that call alloca
194 /// regardless of size, functions with any buffer regardless of type and size,
195 /// functions with aggregates that contain any buffer regardless of type and
196 /// size, and functions that contain stack-based variables that have had their
197 /// address taken.
198 bool StackProtector::RequiresStackProtector() {
199   bool Strong = false;
200   bool NeedsProtector = false;
201   if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
202                                       Attribute::StackProtectReq)) {
203     NeedsProtector = true;
204     Strong = true; // Use the same heuristic as strong to determine SSPLayout
205   } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
206                                              Attribute::StackProtectStrong))
207     Strong = true;
208   else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
209                                             Attribute::StackProtect))
210     return false;
211
212   for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) {
213     BasicBlock *BB = I;
214
215     for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE;
216          ++II) {
217       if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) {
218         if (AI->isArrayAllocation()) {
219           // SSP-Strong: Enable protectors for any call to alloca, regardless
220           // of size.
221           if (Strong)
222             return true;
223
224           if (const ConstantInt *CI =
225                   dyn_cast<ConstantInt>(AI->getArraySize())) {
226             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
227               // A call to alloca with size >= SSPBufferSize requires
228               // stack protectors.
229               Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
230               NeedsProtector = true;
231             } else if (Strong) {
232               // Require protectors for all alloca calls in strong mode.
233               Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
234               NeedsProtector = true;
235             }
236           } else {
237             // A call to alloca with a variable size requires protectors.
238             Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
239             NeedsProtector = true;
240           }
241           continue;
242         }
243
244         bool IsLarge = false;
245         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
246           Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
247                                                    : SSPLK_SmallArray));
248           NeedsProtector = true;
249           continue;
250         }
251
252         if (Strong && HasAddressTaken(AI)) {
253           ++NumAddrTaken;
254           Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
255           NeedsProtector = true;
256         }
257       }
258     }
259   }
260
261   return NeedsProtector;
262 }
263
264 static bool InstructionWillNotHaveChain(const Instruction *I) {
265   return !I->mayHaveSideEffects() && !I->mayReadFromMemory() &&
266          isSafeToSpeculativelyExecute(I);
267 }
268
269 /// Identify if RI has a previous instruction in the "Tail Position" and return
270 /// it. Otherwise return 0.
271 ///
272 /// This is based off of the code in llvm::isInTailCallPosition. The difference
273 /// is that it inverts the first part of llvm::isInTailCallPosition since
274 /// isInTailCallPosition is checking if a call is in a tail call position, and
275 /// we are searching for an unknown tail call that might be in the tail call
276 /// position. Once we find the call though, the code uses the same refactored
277 /// code, returnTypeIsEligibleForTailCall.
278 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI,
279                                        const TargetLoweringBase *TLI) {
280   // Establish a reasonable upper bound on the maximum amount of instructions we
281   // will look through to find a tail call.
282   unsigned SearchCounter = 0;
283   const unsigned MaxSearch = 4;
284   bool NoInterposingChain = true;
285
286   for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend();
287        I != E && SearchCounter < MaxSearch; ++I) {
288     Instruction *Inst = &*I;
289
290     // Skip over debug intrinsics and do not allow them to affect our MaxSearch
291     // counter.
292     if (isa<DbgInfoIntrinsic>(Inst))
293       continue;
294
295     // If we find a call and the following conditions are satisifed, then we
296     // have found a tail call that satisfies at least the target independent
297     // requirements of a tail call:
298     //
299     // 1. The call site has the tail marker.
300     //
301     // 2. The call site either will not cause the creation of a chain or if a
302     // chain is necessary there are no instructions in between the callsite and
303     // the call which would create an interposing chain.
304     //
305     // 3. The return type of the function does not impede tail call
306     // optimization.
307     if (CallInst *CI = dyn_cast<CallInst>(Inst)) {
308       if (CI->isTailCall() &&
309           (InstructionWillNotHaveChain(CI) || NoInterposingChain) &&
310           returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI))
311         return CI;
312     }
313
314     // If we did not find a call see if we have an instruction that may create
315     // an interposing chain.
316     NoInterposingChain =
317         NoInterposingChain && InstructionWillNotHaveChain(Inst);
318
319     // Increment max search.
320     SearchCounter++;
321   }
322
323   return nullptr;
324 }
325
326 /// Insert code into the entry block that stores the __stack_chk_guard
327 /// variable onto the stack:
328 ///
329 ///   entry:
330 ///     StackGuardSlot = alloca i8*
331 ///     StackGuard = load __stack_chk_guard
332 ///     call void @llvm.stackprotect.create(StackGuard, StackGuardSlot)
333 ///
334 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
335 /// node.
336 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
337                            const TargetLoweringBase *TLI, const Triple &Trip,
338                            AllocaInst *&AI, Value *&StackGuardVar) {
339   bool SupportsSelectionDAGSP = false;
340   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
341   unsigned AddressSpace, Offset;
342   if (TLI->getStackCookieLocation(AddressSpace, Offset)) {
343     Constant *OffsetVal =
344         ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset);
345
346     StackGuardVar = ConstantExpr::getIntToPtr(
347         OffsetVal, PointerType::get(PtrTy, AddressSpace));
348   } else if (Trip.getOS() == llvm::Triple::OpenBSD) {
349     StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy);
350     cast<GlobalValue>(StackGuardVar)
351         ->setVisibility(GlobalValue::HiddenVisibility);
352   } else {
353     SupportsSelectionDAGSP = true;
354     StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy);
355   }
356
357   IRBuilder<> B(&F->getEntryBlock().front());
358   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
359   LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard");
360   B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI,
361                 AI);
362
363   return SupportsSelectionDAGSP;
364 }
365
366 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
367 /// function.
368 ///
369 ///  - The prologue code loads and stores the stack guard onto the stack.
370 ///  - The epilogue checks the value stored in the prologue against the original
371 ///    value. It calls __stack_chk_fail if they differ.
372 bool StackProtector::InsertStackProtectors() {
373   bool HasPrologue = false;
374   bool SupportsSelectionDAGSP =
375       EnableSelectionDAGSP && !TM->Options.EnableFastISel;
376   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
377   Value *StackGuardVar = nullptr; // The stack guard variable.
378
379   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
380     BasicBlock *BB = I++;
381     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
382     if (!RI)
383       continue;
384
385     if (!HasPrologue) {
386       HasPrologue = true;
387       SupportsSelectionDAGSP &=
388           CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar);
389     }
390
391     if (SupportsSelectionDAGSP) {
392       // Since we have a potential tail call, insert the special stack check
393       // intrinsic.
394       Instruction *InsertionPt = nullptr;
395       if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) {
396         InsertionPt = CI;
397       } else {
398         InsertionPt = RI;
399         // At this point we know that BB has a return statement so it *DOES*
400         // have a terminator.
401         assert(InsertionPt != nullptr && "BB must have a terminator instruction at "
402                                    "this point.");
403       }
404
405       Function *Intrinsic =
406           Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck);
407       CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt);
408
409     } else {
410       // If we do not support SelectionDAG based tail calls, generate IR level
411       // tail calls.
412       //
413       // For each block with a return instruction, convert this:
414       //
415       //   return:
416       //     ...
417       //     ret ...
418       //
419       // into this:
420       //
421       //   return:
422       //     ...
423       //     %1 = load __stack_chk_guard
424       //     %2 = load StackGuardSlot
425       //     %3 = cmp i1 %1, %2
426       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
427       //
428       //   SP_return:
429       //     ret ...
430       //
431       //   CallStackCheckFailBlk:
432       //     call void @__stack_chk_fail()
433       //     unreachable
434
435       // Create the FailBB. We duplicate the BB every time since the MI tail
436       // merge pass will merge together all of the various BB into one including
437       // fail BB generated by the stack protector pseudo instruction.
438       BasicBlock *FailBB = CreateFailBB();
439
440       // Split the basic block before the return instruction.
441       BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return");
442
443       // Update the dominator tree if we need to.
444       if (DT && DT->isReachableFromEntry(BB)) {
445         DT->addNewBlock(NewBB, BB);
446         DT->addNewBlock(FailBB, BB);
447       }
448
449       // Remove default branch instruction to the new BB.
450       BB->getTerminator()->eraseFromParent();
451
452       // Move the newly created basic block to the point right after the old
453       // basic block so that it's in the "fall through" position.
454       NewBB->moveAfter(BB);
455
456       // Generate the stack protector instructions in the old basic block.
457       IRBuilder<> B(BB);
458       LoadInst *LI1 = B.CreateLoad(StackGuardVar);
459       LoadInst *LI2 = B.CreateLoad(AI);
460       Value *Cmp = B.CreateICmpEQ(LI1, LI2);
461       B.CreateCondBr(Cmp, NewBB, FailBB);
462     }
463   }
464
465   // Return if we didn't modify any basic blocks. I.e., there are no return
466   // statements in the function.
467   if (!HasPrologue)
468     return false;
469
470   return true;
471 }
472
473 /// CreateFailBB - Create a basic block to jump to when the stack protector
474 /// check fails.
475 BasicBlock *StackProtector::CreateFailBB() {
476   LLVMContext &Context = F->getContext();
477   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
478   IRBuilder<> B(FailBB);
479   if (Trip.getOS() == llvm::Triple::OpenBSD) {
480     Constant *StackChkFail = M->getOrInsertFunction(
481         "__stack_smash_handler", Type::getVoidTy(Context),
482         Type::getInt8PtrTy(Context), NULL);
483
484     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
485   } else {
486     Constant *StackChkFail = M->getOrInsertFunction(
487         "__stack_chk_fail", Type::getVoidTy(Context), NULL);
488     B.CreateCall(StackChkFail);
489   }
490   B.CreateUnreachable();
491   return FailBB;
492 }