Fix a typo in the comment.
[oota-llvm.git] / lib / CodeGen / StackColoring.cpp
1 //===-- StackColoring.cpp -------------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass implements the stack-coloring optimization that looks for
11 // lifetime markers machine instructions (LIFESTART_BEGIN and LIFESTART_END),
12 // which represent the possible lifetime of stack slots. It attempts to
13 // merge disjoint stack slots and reduce the used stack space.
14 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots.
15 //
16 // TODO: In the future we plan to improve stack coloring in the following ways:
17 // 1. Allow merging multiple small slots into a single larger slot at different
18 //    offsets.
19 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with
20 //    spill slots.
21 //
22 //===----------------------------------------------------------------------===//
23
24 #define DEBUG_TYPE "stackcoloring"
25 #include "MachineTraceMetrics.h"
26 #include "llvm/Function.h"
27 #include "llvm/Module.h"
28 #include "llvm/ADT/BitVector.h"
29 #include "llvm/Analysis/Dominators.h"
30 #include "llvm/Analysis/ValueTracking.h"
31 #include "llvm/ADT/DepthFirstIterator.h"
32 #include "llvm/ADT/PostOrderIterator.h"
33 #include "llvm/ADT/SetVector.h"
34 #include "llvm/ADT/SmallPtrSet.h"
35 #include "llvm/ADT/SparseSet.h"
36 #include "llvm/ADT/Statistic.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/MachineLoopInfo.h"
39 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
40 #include "llvm/CodeGen/MachineDominators.h"
41 #include "llvm/CodeGen/MachineBasicBlock.h"
42 #include "llvm/CodeGen/MachineFunctionPass.h"
43 #include "llvm/CodeGen/MachineLoopInfo.h"
44 #include "llvm/CodeGen/MachineModuleInfo.h"
45 #include "llvm/CodeGen/MachineRegisterInfo.h"
46 #include "llvm/CodeGen/MachineFrameInfo.h"
47 #include "llvm/CodeGen/MachineMemOperand.h"
48 #include "llvm/CodeGen/Passes.h"
49 #include "llvm/CodeGen/SlotIndexes.h"
50 #include "llvm/DebugInfo.h"
51 #include "llvm/MC/MCInstrItineraries.h"
52 #include "llvm/Target/TargetInstrInfo.h"
53 #include "llvm/Target/TargetRegisterInfo.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57
58 using namespace llvm;
59
60 static cl::opt<bool>
61 DisableColoring("no-stack-coloring",
62                cl::init(true), cl::Hidden,
63                cl::desc("Suppress stack coloring"));
64
65 STATISTIC(NumMarkerSeen,  "Number of life markers found.");
66 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots.");
67 STATISTIC(StackSlotMerged, "Number of stack slot merged.");
68
69 //===----------------------------------------------------------------------===//
70 //                           StackColoring Pass
71 //===----------------------------------------------------------------------===//
72
73 namespace {
74 /// StackColoring - A machine pass for merging disjoint stack allocations,
75 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions.
76 class StackColoring : public MachineFunctionPass {
77   MachineFrameInfo *MFI;
78   MachineFunction *MF;
79
80   /// A class representing liveness information for a single basic block.
81   /// Each bit in the BitVector represents the liveness property
82   /// for a different stack slot.
83   struct BlockLifetimeInfo {
84     /// Which slots BEGINs in each basic block.
85     BitVector Begin;
86     /// Which slots ENDs in each basic block.
87     BitVector End;
88     /// Which slots are marked as LIVE_IN, coming into each basic block.
89     BitVector LiveIn;
90     /// Which slots are marked as LIVE_OUT, coming out of each basic block.
91     BitVector LiveOut;
92   };
93
94   /// Maps active slots (per bit) for each basic block.
95   DenseMap<MachineBasicBlock*, BlockLifetimeInfo> BlockLiveness;
96
97   /// Maps serial numbers to basic blocks.
98   DenseMap<MachineBasicBlock*, int> BasicBlocks;
99   /// Maps basic blocks to a serial number.
100   SmallVector<MachineBasicBlock*, 8> BasicBlockNumbering;
101
102   /// Maps liveness intervals for each slot.
103   SmallVector<LiveInterval*, 16> Intervals;
104   /// VNInfo is used for the construction of LiveIntervals.
105   VNInfo::Allocator VNInfoAllocator;
106   /// SlotIndex analysis object.
107   SlotIndexes* Indexes;
108
109   /// The list of lifetime markers found. These markers are to be removed
110   /// once the coloring is done.
111   SmallVector<MachineInstr*, 8> Markers;
112
113   /// SlotSizeSorter - A Sort utility for arranging stack slots according
114   /// to their size.
115   struct SlotSizeSorter {
116     MachineFrameInfo *MFI;
117     SlotSizeSorter(MachineFrameInfo *mfi) : MFI(mfi) { }
118     bool operator()(int LHS, int RHS) {
119       // We use -1 to denote a uninteresting slot. Place these slots at the end.
120       if (LHS == -1) return false;
121       if (RHS == -1) return true;
122       // Sort according to size.
123       return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS);
124   }
125 };
126
127 public:
128   static char ID;
129   StackColoring() : MachineFunctionPass(ID) {
130     initializeStackColoringPass(*PassRegistry::getPassRegistry());
131   }
132   void getAnalysisUsage(AnalysisUsage &AU) const;
133   bool runOnMachineFunction(MachineFunction &MF);
134
135 private:
136   /// Debug.
137   void dump();
138
139   /// Removes all of the lifetime marker instructions from the function.
140   /// \returns true if any markers were removed.
141   bool removeAllMarkers();
142
143   /// Scan the machine function and find all of the lifetime markers.
144   /// Record the findings in the BEGIN and END vectors.
145   /// \returns the number of markers found.
146   unsigned collectMarkers(unsigned NumSlot);
147
148   /// Perform the dataflow calculation and calculate the lifetime for each of
149   /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and
150   /// LifetimeLIVE_OUT maps that represent which stack slots are live coming
151   /// in and out blocks.
152   void calculateLocalLiveness();
153
154   /// Construct the LiveIntervals for the slots.
155   void calculateLiveIntervals(unsigned NumSlots);
156
157   /// Go over the machine function and change instructions which use stack
158   /// slots to use the joint slots.
159   void remapInstructions(DenseMap<int, int> &SlotRemap);
160
161   /// Map entries which point to other entries to their destination.
162   ///   A->B->C becomes A->C.
163    void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots);
164 };
165 } // end anonymous namespace
166
167 char StackColoring::ID = 0;
168 char &llvm::StackColoringID = StackColoring::ID;
169
170 INITIALIZE_PASS_BEGIN(StackColoring,
171                    "stack-coloring", "Merge disjoint stack slots", false, false)
172 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
173 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
174 INITIALIZE_PASS_END(StackColoring,
175                    "stack-coloring", "Merge disjoint stack slots", false, false)
176
177 void StackColoring::getAnalysisUsage(AnalysisUsage &AU) const {
178   AU.addRequired<MachineDominatorTree>();
179   AU.addPreserved<MachineDominatorTree>();
180   AU.addRequired<SlotIndexes>();
181   MachineFunctionPass::getAnalysisUsage(AU);
182 }
183
184 void StackColoring::dump() {
185   for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
186        FI != FE; ++FI) {
187     unsigned Num = BasicBlocks[*FI];
188     DEBUG(dbgs()<<"Inspecting block #"<<Num<<" ["<<FI->getName()<<"]\n");
189     Num = 0;
190     DEBUG(dbgs()<<"BEGIN  : {");
191     for (unsigned i=0; i < BlockLiveness[*FI].Begin.size(); ++i)
192       DEBUG(dbgs()<<BlockLiveness[*FI].Begin.test(i)<<" ");
193     DEBUG(dbgs()<<"}\n");
194
195     DEBUG(dbgs()<<"END    : {");
196     for (unsigned i=0; i < BlockLiveness[*FI].End.size(); ++i)
197       DEBUG(dbgs()<<BlockLiveness[*FI].End.test(i)<<" ");
198
199     DEBUG(dbgs()<<"}\n");
200
201     DEBUG(dbgs()<<"LIVE_IN: {");
202     for (unsigned i=0; i < BlockLiveness[*FI].LiveIn.size(); ++i)
203       DEBUG(dbgs()<<BlockLiveness[*FI].LiveIn.test(i)<<" ");
204
205     DEBUG(dbgs()<<"}\n");
206     DEBUG(dbgs()<<"LIVEOUT: {");
207     for (unsigned i=0; i < BlockLiveness[*FI].LiveOut.size(); ++i)
208       DEBUG(dbgs()<<BlockLiveness[*FI].LiveOut.test(i)<<" ");
209     DEBUG(dbgs()<<"}\n");
210   }
211 }
212
213 unsigned StackColoring::collectMarkers(unsigned NumSlot) {
214   unsigned MarkersFound = 0;
215   // Scan the function to find all lifetime markers.
216   // NOTE: We use the a reverse-post-order iteration to ensure that we obtain a
217   // deterministic numbering, and because we'll need a post-order iteration
218   // later for solving the liveness dataflow problem.
219   for (df_iterator<MachineFunction*> FI = df_begin(MF), FE = df_end(MF);
220        FI != FE; ++FI) {
221
222     // Assign a serial number to this basic block.
223     BasicBlocks[*FI] = BasicBlockNumbering.size();;
224     BasicBlockNumbering.push_back(*FI);
225
226     BlockLiveness[*FI].Begin.resize(NumSlot);
227     BlockLiveness[*FI].End.resize(NumSlot);
228
229     for (MachineBasicBlock::iterator BI = (*FI)->begin(), BE = (*FI)->end();
230          BI != BE; ++BI) {
231
232       if (BI->getOpcode() != TargetOpcode::LIFETIME_START &&
233           BI->getOpcode() != TargetOpcode::LIFETIME_END)
234         continue;
235
236       Markers.push_back(BI);
237
238       bool IsStart = BI->getOpcode() == TargetOpcode::LIFETIME_START;
239       MachineOperand &MI = BI->getOperand(0);
240       unsigned Slot = MI.getIndex();
241
242       MarkersFound++;
243
244       const Value* Allocation = MFI->getObjectAllocation(Slot);
245       if (Allocation) {
246         DEBUG(dbgs()<<"Found lifetime marker for allocation: "<<
247               Allocation->getName()<<"\n");
248       }
249
250       if (IsStart) {
251         BlockLiveness[*FI].Begin.set(Slot);
252       } else {
253         if (BlockLiveness[*FI].Begin.test(Slot)) {
254           // Allocas that start and end within a single block are handled
255           // specially when computing the LiveIntervals to avoid pessimizing
256           // the liveness propagation.
257           BlockLiveness[*FI].Begin.reset(Slot);
258         } else {
259           BlockLiveness[*FI].End.set(Slot);
260         }
261       }
262     }
263   }
264
265   // Update statistics.
266   NumMarkerSeen += MarkersFound;
267   return MarkersFound;
268 }
269
270 void StackColoring::calculateLocalLiveness() {
271   // Perform a standard reverse dataflow computation to solve for
272   // global liveness.  The BEGIN set here is equivalent to KILL in the standard
273   // formulation, and END is equivalent to GEN.  The result of this computation
274   // is a map from blocks to bitvectors where the bitvectors represent which
275   // allocas are live in/out of that block.
276   SmallPtrSet<MachineBasicBlock*, 8> BBSet(BasicBlockNumbering.begin(),
277                                            BasicBlockNumbering.end());
278   unsigned NumSSMIters = 0;
279   bool changed = true;
280   while (changed) {
281     changed = false;
282     ++NumSSMIters;
283
284     SmallPtrSet<MachineBasicBlock*, 8> NextBBSet;
285
286     for (SmallVector<MachineBasicBlock*, 8>::iterator
287          PI = BasicBlockNumbering.begin(), PE = BasicBlockNumbering.end();
288          PI != PE; ++PI) {
289
290       MachineBasicBlock *BB = *PI;
291       if (!BBSet.count(BB)) continue;
292
293       BitVector LocalLiveIn;
294       BitVector LocalLiveOut;
295
296       // Forward propagation from begins to ends.
297       for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
298            PE = BB->pred_end(); PI != PE; ++PI)
299         LocalLiveIn |= BlockLiveness[*PI].LiveOut;
300       LocalLiveIn |= BlockLiveness[BB].End;
301       LocalLiveIn.reset(BlockLiveness[BB].Begin);
302
303       // Reverse propagation from ends to begins.
304       for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
305            SE = BB->succ_end(); SI != SE; ++SI)
306         LocalLiveOut |= BlockLiveness[*SI].LiveIn;
307       LocalLiveOut |= BlockLiveness[BB].Begin;
308       LocalLiveOut.reset(BlockLiveness[BB].End);
309
310       LocalLiveIn |= LocalLiveOut;
311       LocalLiveOut |= LocalLiveIn;
312
313       // After adopting the live bits, we need to turn-off the bits which
314       // are de-activated in this block.
315       LocalLiveOut.reset(BlockLiveness[BB].End);
316       LocalLiveIn.reset(BlockLiveness[BB].Begin);
317
318       if (LocalLiveIn.test(BlockLiveness[BB].LiveIn)) {
319         changed = true;
320         BlockLiveness[BB].LiveIn |= LocalLiveIn;
321
322         for (MachineBasicBlock::pred_iterator PI = BB->pred_begin(),
323              PE = BB->pred_end(); PI != PE; ++PI)
324           NextBBSet.insert(*PI);
325       }
326
327       if (LocalLiveOut.test(BlockLiveness[BB].LiveOut)) {
328         changed = true;
329         BlockLiveness[BB].LiveOut |= LocalLiveOut;
330
331         for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
332              SE = BB->succ_end(); SI != SE; ++SI)
333           NextBBSet.insert(*SI);
334       }
335     }
336
337     BBSet = NextBBSet;
338   }// while changed.
339 }
340
341 void StackColoring::calculateLiveIntervals(unsigned NumSlots) {
342   SmallVector<SlotIndex, 16> Starts;
343   SmallVector<SlotIndex, 16> Finishes;
344
345   // For each block, find which slots are active within this block
346   // and update the live intervals.
347   for (MachineFunction::iterator MBB = MF->begin(), MBBe = MF->end();
348        MBB != MBBe; ++MBB) {
349     Starts.clear();
350     Starts.resize(NumSlots);
351     Finishes.clear();
352     Finishes.resize(NumSlots);
353
354     BitVector Alive = BlockLiveness[MBB].LiveIn;
355     Alive |= BlockLiveness[MBB].LiveOut;
356
357     if (Alive.any()) {
358       for (int pos = Alive.find_first(); pos != -1;
359            pos = Alive.find_next(pos)) {
360         Starts[pos] = Indexes->getMBBStartIdx(MBB);
361         Finishes[pos] = Indexes->getMBBEndIdx(MBB);
362       }
363     }
364
365     for (SmallVector<MachineInstr*, 8>::iterator it = Markers.begin(),
366          e = Markers.end(); it != e; ++it) {
367       MachineInstr *MI = *it;
368       assert((MI->getOpcode() == TargetOpcode::LIFETIME_START ||
369               MI->getOpcode() == TargetOpcode::LIFETIME_END) &&
370              "Invalid Lifetime marker");
371
372       if (MI->getParent() == MBB) {
373         bool IsStart = MI->getOpcode() == TargetOpcode::LIFETIME_START;
374         MachineOperand &Mo = MI->getOperand(0);
375         int Slot = Mo.getIndex();
376         assert(Slot >= 0 && "Invalid slot");
377         if (IsStart) {
378           Starts[Slot] = Indexes->getInstructionIndex(MI);
379         } else {
380           Finishes[Slot] = Indexes->getInstructionIndex(MI);
381         }
382       }
383     }
384
385     for (unsigned i = 0; i < NumSlots; ++i) {
386       assert(!!Starts[i] == !!Finishes[i] && "Unmatched range");
387       if (Starts[i] == Finishes[i])
388         continue;
389
390       assert(Starts[i] && Finishes[i] && "Invalid interval");
391       VNInfo *ValNum = Intervals[i]->getValNumInfo(0);
392       SlotIndex S = Starts[i];
393       SlotIndex F = Finishes[i];
394       if (S < F) {
395         // We have a single consecutive region.
396         Intervals[i]->addRange(LiveRange(S, F, ValNum));
397       } else {
398         // We have two non consecutive regions. This happens when
399         // LIFETIME_START appears after the LIFETIME_END marker.
400         SlotIndex NewStart = Indexes->getMBBStartIdx(MBB);
401         SlotIndex NewFin = Indexes->getMBBEndIdx(MBB);
402         Intervals[i]->addRange(LiveRange(NewStart, F, ValNum));
403         Intervals[i]->addRange(LiveRange(S, NewFin, ValNum));
404       }
405     }
406   }
407 }
408
409 bool StackColoring::removeAllMarkers() {
410   unsigned Count = 0;
411   for (unsigned i = 0; i < Markers.size(); ++i) {
412     Markers[i]->eraseFromParent();
413     Count++;
414   }
415   Markers.clear();
416
417   DEBUG(dbgs()<<"Removed "<<Count<<" markers.\n");
418   return Count;
419 }
420
421 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) {
422   unsigned FixedInstr = 0;
423   unsigned FixedMemOp = 0;
424   unsigned FixedDbg = 0;
425   MachineModuleInfo *MMI = &MF->getMMI();
426
427   // Remap debug information that refers to stack slots.
428   MachineModuleInfo::VariableDbgInfoMapTy &VMap = MMI->getVariableDbgInfo();
429   for (MachineModuleInfo::VariableDbgInfoMapTy::iterator VI = VMap.begin(),
430        VE = VMap.end(); VI != VE; ++VI) {
431     const MDNode *Var = VI->first;
432     if (!Var) continue;
433     std::pair<unsigned, DebugLoc> &VP = VI->second;
434     if (SlotRemap.count(VP.first)) {
435       DEBUG(dbgs()<<"Remapping debug info for ["<<Var->getName()<<"].\n");
436       VP.first = SlotRemap[VP.first];
437       FixedDbg++;
438     }
439   }
440
441   // Keep a list of *allocas* which need to be remapped.
442   DenseMap<const Value*, const Value*> Allocas;
443   for (DenseMap<int, int>::iterator it = SlotRemap.begin(),
444        e = SlotRemap.end(); it != e; ++it) {
445     const Value* From = MFI->getObjectAllocation(it->first);
446     const Value* To = MFI->getObjectAllocation(it->second);
447     assert(To && From && "Invalid allocation object");
448     Allocas[From] = To;
449   }
450
451   // Remap all instructions to the new stack slots.
452   MachineFunction::iterator BB, BBE;
453   MachineBasicBlock::iterator I, IE;
454   for (BB = MF->begin(), BBE = MF->end(); BB != BBE; ++BB)
455     for (I = BB->begin(), IE = BB->end(); I != IE; ++I) {
456
457       // Skip lifetime markers. We'll remove them soon.
458       if (I->getOpcode() == TargetOpcode::LIFETIME_START ||
459           I->getOpcode() == TargetOpcode::LIFETIME_END)
460         continue;
461
462       // Update the MachineMemOperand to use the new alloca.
463       for (MachineInstr::mmo_iterator MM = I->memoperands_begin(),
464            E = I->memoperands_end(); MM != E; ++MM) {
465         MachineMemOperand *MMO = *MM;
466
467         const Value *V = MMO->getValue();
468
469         if (!V)
470           continue;
471
472         // Climb up and find the original alloca.
473         V = GetUnderlyingObject(V);
474         // If we did not find one, or if the one that we found is not in our
475         // map, then move on.
476         if (!V || !Allocas.count(V))
477           continue;
478
479         MMO->setValue(Allocas[V]);
480         FixedMemOp++;
481       }
482
483       // Update all of the machine instruction operands.
484       for (unsigned i = 0 ; i <  I->getNumOperands(); ++i) {
485         MachineOperand &MO = I->getOperand(i);
486
487         if (!MO.isFI())
488           continue;
489         int FromSlot = MO.getIndex();
490
491         // Don't touch arguments.
492         if (FromSlot<0)
493           continue;
494
495         // Only look at mapped slots.
496         if (!SlotRemap.count(FromSlot))
497           continue;
498
499         // In a debug build, check that the instruction that we are modifying is
500         // inside the expected live range. If the instruction is not inside
501         // the calculated range then it means that the alloca usage moved
502         // outside of the lifetime markers.
503 #ifndef NDEBUG
504         SlotIndex Index = Indexes->getInstructionIndex(I);
505         LiveInterval* Interval = Intervals[FromSlot];
506         assert(Interval->find(Index) != Interval->end() &&
507                "Found instruction usage outside of live range.");
508 #endif
509
510         // Fix the machine instructions.
511         int ToSlot = SlotRemap[FromSlot];
512         MO.setIndex(ToSlot);
513         FixedInstr++;
514       }
515     }
516
517   DEBUG(dbgs()<<"Fixed "<<FixedMemOp<<" machine memory operands.\n");
518   DEBUG(dbgs()<<"Fixed "<<FixedDbg<<" debug locations.\n");
519   DEBUG(dbgs()<<"Fixed "<<FixedInstr<<" machine instructions.\n");
520 }
521
522 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap,
523                                    unsigned NumSlots) {
524   // Expunge slot remap map.
525   for (unsigned i=0; i < NumSlots; ++i) {
526     // If we are remapping i
527     if (SlotRemap.count(i)) {
528       int Target = SlotRemap[i];
529       // As long as our target is mapped to something else, follow it.
530       while (SlotRemap.count(Target)) {
531         Target = SlotRemap[Target];
532         SlotRemap[i] = Target;
533       }
534     }
535   }
536 }
537
538 bool StackColoring::runOnMachineFunction(MachineFunction &Func) {
539   DEBUG(dbgs() << "********** Stack Coloring **********\n"
540                << "********** Function: "
541                << ((const Value*)Func.getFunction())->getName() << '\n');
542   MF = &Func;
543   MFI = MF->getFrameInfo();
544   Indexes = &getAnalysis<SlotIndexes>();
545   BlockLiveness.clear();
546   BasicBlocks.clear();
547   BasicBlockNumbering.clear();
548   Markers.clear();
549   Intervals.clear();
550   VNInfoAllocator.Reset();
551
552   unsigned NumSlots = MFI->getObjectIndexEnd();
553
554   // If there are no stack slots then there are no markers to remove.
555   if (!NumSlots)
556     return false;
557
558   SmallVector<int, 8> SortedSlots;
559
560   SortedSlots.reserve(NumSlots);
561   Intervals.reserve(NumSlots);
562
563   unsigned NumMarkers = collectMarkers(NumSlots);
564
565   unsigned TotalSize = 0;
566   DEBUG(dbgs()<<"Found "<<NumMarkers<<" markers and "<<NumSlots<<" slots\n");
567   DEBUG(dbgs()<<"Slot structure:\n");
568
569   for (int i=0; i < MFI->getObjectIndexEnd(); ++i) {
570     DEBUG(dbgs()<<"Slot #"<<i<<" - "<<MFI->getObjectSize(i)<<" bytes.\n");
571     TotalSize += MFI->getObjectSize(i);
572   }
573
574   DEBUG(dbgs()<<"Total Stack size: "<<TotalSize<<" bytes\n\n");
575
576   // Don't continue because there are not enough lifetime markers, or the
577   // stack or too small, or we are told not to optimize the slots.
578   if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) {
579     DEBUG(dbgs()<<"Will not try to merge slots.\n");
580     return removeAllMarkers();
581   }
582
583   for (unsigned i=0; i < NumSlots; ++i) {
584     LiveInterval *LI = new LiveInterval(i, 0);
585     Intervals.push_back(LI);
586     LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator);
587     SortedSlots.push_back(i);
588   }
589
590   // Calculate the liveness of each block.
591   calculateLocalLiveness();
592
593   // Propagate the liveness information.
594   calculateLiveIntervals(NumSlots);
595
596   // Maps old slots to new slots.
597   DenseMap<int, int> SlotRemap;
598   unsigned RemovedSlots = 0;
599   unsigned ReducedSize = 0;
600
601   // Do not bother looking at empty intervals.
602   for (unsigned I = 0; I < NumSlots; ++I) {
603     if (Intervals[SortedSlots[I]]->empty())
604       SortedSlots[I] = -1;
605   }
606
607   // This is a simple greedy algorithm for merging allocas. First, sort the
608   // slots, placing the largest slots first. Next, perform an n^2 scan and look
609   // for disjoint slots. When you find disjoint slots, merge the samller one
610   // into the bigger one and update the live interval. Remove the small alloca
611   // and continue.
612
613   // Sort the slots according to their size. Place unused slots at the end.
614   std::sort(SortedSlots.begin(), SortedSlots.end(), SlotSizeSorter(MFI));
615
616   bool Chanded = true;
617   while (Chanded) {
618     Chanded = false;
619     for (unsigned I = 0; I < NumSlots; ++I) {
620       if (SortedSlots[I] == -1)
621         continue;
622
623       for (unsigned J=0; J < NumSlots; ++J) {
624         if (SortedSlots[J] == -1)
625           continue;
626
627         int FirstSlot = SortedSlots[I];
628         int SecondSlot = SortedSlots[J];
629         LiveInterval *First = Intervals[FirstSlot];
630         LiveInterval *Second = Intervals[SecondSlot];
631         assert (!First->empty() && !Second->empty() && "Found an empty range");
632
633         // Merge disjoint slots.
634         if (!First->overlaps(*Second)) {
635           Chanded = true;
636           First->MergeRangesInAsValue(*Second, First->getValNumInfo(0));
637           SlotRemap[SecondSlot] = FirstSlot;
638           SortedSlots[J] = -1;
639           DEBUG(dbgs()<<"Merging #"<<I<<" and slots #"<<J<<" together.\n");
640           unsigned MaxAlignment = std::max(MFI->getObjectAlignment(FirstSlot),
641                                            MFI->getObjectAlignment(SecondSlot));
642
643           assert(MFI->getObjectSize(FirstSlot) >=
644                  MFI->getObjectSize(SecondSlot) &&
645                  "Merging a small object into a larger one");
646
647           RemovedSlots+=1;
648           ReducedSize += MFI->getObjectSize(SecondSlot);
649           MFI->setObjectAlignment(FirstSlot, MaxAlignment);
650           MFI->RemoveStackObject(SecondSlot);
651         }
652       }
653     }
654   }// While changed.
655
656   // Record statistics.
657   StackSpaceSaved += ReducedSize;
658   StackSlotMerged += RemovedSlots;
659   DEBUG(dbgs()<<"Merge "<<RemovedSlots<<" slots. Saved "<<
660         ReducedSize<<" bytes\n");
661
662   // Scan the entire function and update all machine operands that use frame
663   // indices to use the remapped frame index.
664   expungeSlotMap(SlotRemap, NumSlots);
665   remapInstructions(SlotRemap);
666
667   // Release the intervals.
668   for (unsigned I = 0; I < NumSlots; ++I) {
669     delete Intervals[I];
670   }
671
672   return removeAllMarkers();
673 }