Fix broken build
[oota-llvm.git] / lib / CodeGen / SplitKit.cpp
1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "regalloc"
32
33 STATISTIC(NumFinished, "Number of splits finished");
34 STATISTIC(NumSimple,   "Number of splits that were simple");
35 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
36 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
37 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
38
39 //===----------------------------------------------------------------------===//
40 //                                 Split Analysis
41 //===----------------------------------------------------------------------===//
42
43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
44                              const LiveIntervals &lis,
45                              const MachineLoopInfo &mli)
46   : MF(vrm.getMachineFunction()),
47     VRM(vrm),
48     LIS(lis),
49     Loops(mli),
50     TII(*MF.getTarget().getInstrInfo()),
51     CurLI(nullptr),
52     LastSplitPoint(MF.getNumBlockIDs()) {}
53
54 void SplitAnalysis::clear() {
55   UseSlots.clear();
56   UseBlocks.clear();
57   ThroughBlocks.clear();
58   CurLI = nullptr;
59   DidRepairRange = false;
60 }
61
62 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
63   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
64   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
65   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
66   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
67
68   // Compute split points on the first call. The pair is independent of the
69   // current live interval.
70   if (!LSP.first.isValid()) {
71     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
72     if (FirstTerm == MBB->end())
73       LSP.first = MBBEnd;
74     else
75       LSP.first = LIS.getInstructionIndex(FirstTerm);
76
77     // If there is a landing pad successor, also find the call instruction.
78     if (!LPad)
79       return LSP.first;
80     // There may not be a call instruction (?) in which case we ignore LPad.
81     LSP.second = LSP.first;
82     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
83          I != E;) {
84       --I;
85       if (I->isCall()) {
86         LSP.second = LIS.getInstructionIndex(I);
87         break;
88       }
89     }
90   }
91
92   // If CurLI is live into a landing pad successor, move the last split point
93   // back to the call that may throw.
94   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
95     return LSP.first;
96
97   // Find the value leaving MBB.
98   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
99   if (!VNI)
100     return LSP.first;
101
102   // If the value leaving MBB was defined after the call in MBB, it can't
103   // really be live-in to the landing pad.  This can happen if the landing pad
104   // has a PHI, and this register is undef on the exceptional edge.
105   // <rdar://problem/10664933>
106   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
107     return LSP.first;
108
109   // Value is properly live-in to the landing pad.
110   // Only allow splits before the call.
111   return LSP.second;
112 }
113
114 MachineBasicBlock::iterator
115 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
116   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
117   if (LSP == LIS.getMBBEndIdx(MBB))
118     return MBB->end();
119   return LIS.getInstructionFromIndex(LSP);
120 }
121
122 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
123 void SplitAnalysis::analyzeUses() {
124   assert(UseSlots.empty() && "Call clear first");
125
126   // First get all the defs from the interval values. This provides the correct
127   // slots for early clobbers.
128   for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
129        E = CurLI->vni_end(); I != E; ++I)
130     if (!(*I)->isPHIDef() && !(*I)->isUnused())
131       UseSlots.push_back((*I)->def);
132
133   // Get use slots form the use-def chain.
134   const MachineRegisterInfo &MRI = MF.getRegInfo();
135   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
136     if (!MO.isUndef())
137       UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
138
139   array_pod_sort(UseSlots.begin(), UseSlots.end());
140
141   // Remove duplicates, keeping the smaller slot for each instruction.
142   // That is what we want for early clobbers.
143   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
144                              SlotIndex::isSameInstr),
145                  UseSlots.end());
146
147   // Compute per-live block info.
148   if (!calcLiveBlockInfo()) {
149     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
150     // I am looking at you, RegisterCoalescer!
151     DidRepairRange = true;
152     ++NumRepairs;
153     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
154     const_cast<LiveIntervals&>(LIS)
155       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
156     UseBlocks.clear();
157     ThroughBlocks.clear();
158     bool fixed = calcLiveBlockInfo();
159     (void)fixed;
160     assert(fixed && "Couldn't fix broken live interval");
161   }
162
163   DEBUG(dbgs() << "Analyze counted "
164                << UseSlots.size() << " instrs in "
165                << UseBlocks.size() << " blocks, through "
166                << NumThroughBlocks << " blocks.\n");
167 }
168
169 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
170 /// where CurLI is live.
171 bool SplitAnalysis::calcLiveBlockInfo() {
172   ThroughBlocks.resize(MF.getNumBlockIDs());
173   NumThroughBlocks = NumGapBlocks = 0;
174   if (CurLI->empty())
175     return true;
176
177   LiveInterval::const_iterator LVI = CurLI->begin();
178   LiveInterval::const_iterator LVE = CurLI->end();
179
180   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
181   UseI = UseSlots.begin();
182   UseE = UseSlots.end();
183
184   // Loop over basic blocks where CurLI is live.
185   MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
186   for (;;) {
187     BlockInfo BI;
188     BI.MBB = MFI;
189     SlotIndex Start, Stop;
190     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
191
192     // If the block contains no uses, the range must be live through. At one
193     // point, RegisterCoalescer could create dangling ranges that ended
194     // mid-block.
195     if (UseI == UseE || *UseI >= Stop) {
196       ++NumThroughBlocks;
197       ThroughBlocks.set(BI.MBB->getNumber());
198       // The range shouldn't end mid-block if there are no uses. This shouldn't
199       // happen.
200       if (LVI->end < Stop)
201         return false;
202     } else {
203       // This block has uses. Find the first and last uses in the block.
204       BI.FirstInstr = *UseI;
205       assert(BI.FirstInstr >= Start);
206       do ++UseI;
207       while (UseI != UseE && *UseI < Stop);
208       BI.LastInstr = UseI[-1];
209       assert(BI.LastInstr < Stop);
210
211       // LVI is the first live segment overlapping MBB.
212       BI.LiveIn = LVI->start <= Start;
213
214       // When not live in, the first use should be a def.
215       if (!BI.LiveIn) {
216         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
217         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
218         BI.FirstDef = BI.FirstInstr;
219       }
220
221       // Look for gaps in the live range.
222       BI.LiveOut = true;
223       while (LVI->end < Stop) {
224         SlotIndex LastStop = LVI->end;
225         if (++LVI == LVE || LVI->start >= Stop) {
226           BI.LiveOut = false;
227           BI.LastInstr = LastStop;
228           break;
229         }
230
231         if (LastStop < LVI->start) {
232           // There is a gap in the live range. Create duplicate entries for the
233           // live-in snippet and the live-out snippet.
234           ++NumGapBlocks;
235
236           // Push the Live-in part.
237           BI.LiveOut = false;
238           UseBlocks.push_back(BI);
239           UseBlocks.back().LastInstr = LastStop;
240
241           // Set up BI for the live-out part.
242           BI.LiveIn = false;
243           BI.LiveOut = true;
244           BI.FirstInstr = BI.FirstDef = LVI->start;
245         }
246
247         // A Segment that starts in the middle of the block must be a def.
248         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
249         if (!BI.FirstDef)
250           BI.FirstDef = LVI->start;
251       }
252
253       UseBlocks.push_back(BI);
254
255       // LVI is now at LVE or LVI->end >= Stop.
256       if (LVI == LVE)
257         break;
258     }
259
260     // Live segment ends exactly at Stop. Move to the next segment.
261     if (LVI->end == Stop && ++LVI == LVE)
262       break;
263
264     // Pick the next basic block.
265     if (LVI->start < Stop)
266       ++MFI;
267     else
268       MFI = LIS.getMBBFromIndex(LVI->start);
269   }
270
271   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
272   return true;
273 }
274
275 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
276   if (cli->empty())
277     return 0;
278   LiveInterval *li = const_cast<LiveInterval*>(cli);
279   LiveInterval::iterator LVI = li->begin();
280   LiveInterval::iterator LVE = li->end();
281   unsigned Count = 0;
282
283   // Loop over basic blocks where li is live.
284   MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
285   SlotIndex Stop = LIS.getMBBEndIdx(MFI);
286   for (;;) {
287     ++Count;
288     LVI = li->advanceTo(LVI, Stop);
289     if (LVI == LVE)
290       return Count;
291     do {
292       ++MFI;
293       Stop = LIS.getMBBEndIdx(MFI);
294     } while (Stop <= LVI->start);
295   }
296 }
297
298 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
299   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
300   const LiveInterval &Orig = LIS.getInterval(OrigReg);
301   assert(!Orig.empty() && "Splitting empty interval?");
302   LiveInterval::const_iterator I = Orig.find(Idx);
303
304   // Range containing Idx should begin at Idx.
305   if (I != Orig.end() && I->start <= Idx)
306     return I->start == Idx;
307
308   // Range does not contain Idx, previous must end at Idx.
309   return I != Orig.begin() && (--I)->end == Idx;
310 }
311
312 void SplitAnalysis::analyze(const LiveInterval *li) {
313   clear();
314   CurLI = li;
315   analyzeUses();
316 }
317
318
319 //===----------------------------------------------------------------------===//
320 //                               Split Editor
321 //===----------------------------------------------------------------------===//
322
323 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
324 SplitEditor::SplitEditor(SplitAnalysis &sa,
325                          LiveIntervals &lis,
326                          VirtRegMap &vrm,
327                          MachineDominatorTree &mdt,
328                          MachineBlockFrequencyInfo &mbfi)
329   : SA(sa), LIS(lis), VRM(vrm),
330     MRI(vrm.getMachineFunction().getRegInfo()),
331     MDT(mdt),
332     TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
333     TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
334     MBFI(mbfi),
335     Edit(nullptr),
336     OpenIdx(0),
337     SpillMode(SM_Partition),
338     RegAssign(Allocator)
339 {}
340
341 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
342   Edit = &LRE;
343   SpillMode = SM;
344   OpenIdx = 0;
345   RegAssign.clear();
346   Values.clear();
347
348   // Reset the LiveRangeCalc instances needed for this spill mode.
349   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
350                   &LIS.getVNInfoAllocator());
351   if (SpillMode)
352     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
353                     &LIS.getVNInfoAllocator());
354
355   // We don't need an AliasAnalysis since we will only be performing
356   // cheap-as-a-copy remats anyway.
357   Edit->anyRematerializable(nullptr);
358 }
359
360 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
361 void SplitEditor::dump() const {
362   if (RegAssign.empty()) {
363     dbgs() << " empty\n";
364     return;
365   }
366
367   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
368     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
369   dbgs() << '\n';
370 }
371 #endif
372
373 VNInfo *SplitEditor::defValue(unsigned RegIdx,
374                               const VNInfo *ParentVNI,
375                               SlotIndex Idx) {
376   assert(ParentVNI && "Mapping  NULL value");
377   assert(Idx.isValid() && "Invalid SlotIndex");
378   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
379   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
380
381   // Create a new value.
382   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
383
384   // Use insert for lookup, so we can add missing values with a second lookup.
385   std::pair<ValueMap::iterator, bool> InsP =
386     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
387                                  ValueForcePair(VNI, false)));
388
389   // This was the first time (RegIdx, ParentVNI) was mapped.
390   // Keep it as a simple def without any liveness.
391   if (InsP.second)
392     return VNI;
393
394   // If the previous value was a simple mapping, add liveness for it now.
395   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
396     SlotIndex Def = OldVNI->def;
397     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
398     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
399     InsP.first->second = ValueForcePair();
400   }
401
402   // This is a complex mapping, add liveness for VNI
403   SlotIndex Def = VNI->def;
404   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
405
406   return VNI;
407 }
408
409 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
410   assert(ParentVNI && "Mapping  NULL value");
411   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
412   VNInfo *VNI = VFP.getPointer();
413
414   // ParentVNI was either unmapped or already complex mapped. Either way, just
415   // set the force bit.
416   if (!VNI) {
417     VFP.setInt(true);
418     return;
419   }
420
421   // This was previously a single mapping. Make sure the old def is represented
422   // by a trivial live range.
423   SlotIndex Def = VNI->def;
424   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
425   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
426   // Mark as complex mapped, forced.
427   VFP = ValueForcePair(nullptr, true);
428 }
429
430 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
431                                    VNInfo *ParentVNI,
432                                    SlotIndex UseIdx,
433                                    MachineBasicBlock &MBB,
434                                    MachineBasicBlock::iterator I) {
435   MachineInstr *CopyMI = nullptr;
436   SlotIndex Def;
437   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
438
439   // We may be trying to avoid interference that ends at a deleted instruction,
440   // so always begin RegIdx 0 early and all others late.
441   bool Late = RegIdx != 0;
442
443   // Attempt cheap-as-a-copy rematerialization.
444   LiveRangeEdit::Remat RM(ParentVNI);
445   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
446     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
447     ++NumRemats;
448   } else {
449     // Can't remat, just insert a copy from parent.
450     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
451                .addReg(Edit->getReg());
452     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
453             .getRegSlot();
454     ++NumCopies;
455   }
456
457   // Define the value in Reg.
458   return defValue(RegIdx, ParentVNI, Def);
459 }
460
461 /// Create a new virtual register and live interval.
462 unsigned SplitEditor::openIntv() {
463   // Create the complement as index 0.
464   if (Edit->empty())
465     Edit->createEmptyInterval();
466
467   // Create the open interval.
468   OpenIdx = Edit->size();
469   Edit->createEmptyInterval();
470   return OpenIdx;
471 }
472
473 void SplitEditor::selectIntv(unsigned Idx) {
474   assert(Idx != 0 && "Cannot select the complement interval");
475   assert(Idx < Edit->size() && "Can only select previously opened interval");
476   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
477   OpenIdx = Idx;
478 }
479
480 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
481   assert(OpenIdx && "openIntv not called before enterIntvBefore");
482   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
483   Idx = Idx.getBaseIndex();
484   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
485   if (!ParentVNI) {
486     DEBUG(dbgs() << ": not live\n");
487     return Idx;
488   }
489   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
490   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
491   assert(MI && "enterIntvBefore called with invalid index");
492
493   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
494   return VNI->def;
495 }
496
497 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
498   assert(OpenIdx && "openIntv not called before enterIntvAfter");
499   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
500   Idx = Idx.getBoundaryIndex();
501   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
502   if (!ParentVNI) {
503     DEBUG(dbgs() << ": not live\n");
504     return Idx;
505   }
506   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
507   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
508   assert(MI && "enterIntvAfter called with invalid index");
509
510   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
511                               std::next(MachineBasicBlock::iterator(MI)));
512   return VNI->def;
513 }
514
515 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
516   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
517   SlotIndex End = LIS.getMBBEndIdx(&MBB);
518   SlotIndex Last = End.getPrevSlot();
519   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
520   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
521   if (!ParentVNI) {
522     DEBUG(dbgs() << ": not live\n");
523     return End;
524   }
525   DEBUG(dbgs() << ": valno " << ParentVNI->id);
526   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
527                               SA.getLastSplitPointIter(&MBB));
528   RegAssign.insert(VNI->def, End, OpenIdx);
529   DEBUG(dump());
530   return VNI->def;
531 }
532
533 /// useIntv - indicate that all instructions in MBB should use OpenLI.
534 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
535   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
536 }
537
538 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
539   assert(OpenIdx && "openIntv not called before useIntv");
540   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
541   RegAssign.insert(Start, End, OpenIdx);
542   DEBUG(dump());
543 }
544
545 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
546   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
547   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
548
549   // The interval must be live beyond the instruction at Idx.
550   SlotIndex Boundary = Idx.getBoundaryIndex();
551   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
552   if (!ParentVNI) {
553     DEBUG(dbgs() << ": not live\n");
554     return Boundary.getNextSlot();
555   }
556   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
557   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
558   assert(MI && "No instruction at index");
559
560   // In spill mode, make live ranges as short as possible by inserting the copy
561   // before MI.  This is only possible if that instruction doesn't redefine the
562   // value.  The inserted COPY is not a kill, and we don't need to recompute
563   // the source live range.  The spiller also won't try to hoist this copy.
564   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
565       MI->readsVirtualRegister(Edit->getReg())) {
566     forceRecompute(0, ParentVNI);
567     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
568     return Idx;
569   }
570
571   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
572                               std::next(MachineBasicBlock::iterator(MI)));
573   return VNI->def;
574 }
575
576 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
577   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
578   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
579
580   // The interval must be live into the instruction at Idx.
581   Idx = Idx.getBaseIndex();
582   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
583   if (!ParentVNI) {
584     DEBUG(dbgs() << ": not live\n");
585     return Idx.getNextSlot();
586   }
587   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
588
589   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
590   assert(MI && "No instruction at index");
591   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
592   return VNI->def;
593 }
594
595 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
596   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
597   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
598   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
599
600   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
601   if (!ParentVNI) {
602     DEBUG(dbgs() << ": not live\n");
603     return Start;
604   }
605
606   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
607                               MBB.SkipPHIsAndLabels(MBB.begin()));
608   RegAssign.insert(Start, VNI->def, OpenIdx);
609   DEBUG(dump());
610   return VNI->def;
611 }
612
613 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
614   assert(OpenIdx && "openIntv not called before overlapIntv");
615   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
616   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
617          "Parent changes value in extended range");
618   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
619          "Range cannot span basic blocks");
620
621   // The complement interval will be extended as needed by LRCalc.extend().
622   if (ParentVNI)
623     forceRecompute(0, ParentVNI);
624   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
625   RegAssign.insert(Start, End, OpenIdx);
626   DEBUG(dump());
627 }
628
629 //===----------------------------------------------------------------------===//
630 //                                  Spill modes
631 //===----------------------------------------------------------------------===//
632
633 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
634   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
635   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
636   RegAssignMap::iterator AssignI;
637   AssignI.setMap(RegAssign);
638
639   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
640     VNInfo *VNI = Copies[i];
641     SlotIndex Def = VNI->def;
642     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
643     assert(MI && "No instruction for back-copy");
644
645     MachineBasicBlock *MBB = MI->getParent();
646     MachineBasicBlock::iterator MBBI(MI);
647     bool AtBegin;
648     do AtBegin = MBBI == MBB->begin();
649     while (!AtBegin && (--MBBI)->isDebugValue());
650
651     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
652     LI->removeValNo(VNI);
653     LIS.RemoveMachineInstrFromMaps(MI);
654     MI->eraseFromParent();
655
656     // Adjust RegAssign if a register assignment is killed at VNI->def.  We
657     // want to avoid calculating the live range of the source register if
658     // possible.
659     AssignI.find(Def.getPrevSlot());
660     if (!AssignI.valid() || AssignI.start() >= Def)
661       continue;
662     // If MI doesn't kill the assigned register, just leave it.
663     if (AssignI.stop() != Def)
664       continue;
665     unsigned RegIdx = AssignI.value();
666     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
667       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
668       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
669     } else {
670       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
671       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
672       AssignI.setStop(Kill);
673     }
674   }
675 }
676
677 MachineBasicBlock*
678 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
679                                   MachineBasicBlock *DefMBB) {
680   if (MBB == DefMBB)
681     return MBB;
682   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
683
684   const MachineLoopInfo &Loops = SA.Loops;
685   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
686   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
687
688   // Best candidate so far.
689   MachineBasicBlock *BestMBB = MBB;
690   unsigned BestDepth = UINT_MAX;
691
692   for (;;) {
693     const MachineLoop *Loop = Loops.getLoopFor(MBB);
694
695     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
696     // higher frequency by definition.
697     if (!Loop) {
698       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
699                    << MBB->getNumber() << " at depth 0\n");
700       return MBB;
701     }
702
703     // We'll never be able to exit the DefLoop.
704     if (Loop == DefLoop) {
705       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
706                    << MBB->getNumber() << " in the same loop\n");
707       return MBB;
708     }
709
710     // Least busy dominator seen so far.
711     unsigned Depth = Loop->getLoopDepth();
712     if (Depth < BestDepth) {
713       BestMBB = MBB;
714       BestDepth = Depth;
715       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
716                    << MBB->getNumber() << " at depth " << Depth << '\n');
717     }
718
719     // Leave loop by going to the immediate dominator of the loop header.
720     // This is a bigger stride than simply walking up the dominator tree.
721     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
722
723     // Too far up the dominator tree?
724     if (!IDom || !MDT.dominates(DefDomNode, IDom))
725       return BestMBB;
726
727     MBB = IDom->getBlock();
728   }
729 }
730
731 void SplitEditor::hoistCopiesForSize() {
732   // Get the complement interval, always RegIdx 0.
733   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
734   LiveInterval *Parent = &Edit->getParent();
735
736   // Track the nearest common dominator for all back-copies for each ParentVNI,
737   // indexed by ParentVNI->id.
738   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
739   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
740
741   // Find the nearest common dominator for parent values with multiple
742   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
743   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
744        VI != VE; ++VI) {
745     VNInfo *VNI = *VI;
746     if (VNI->isUnused())
747       continue;
748     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
749     assert(ParentVNI && "Parent not live at complement def");
750
751     // Don't hoist remats.  The complement is probably going to disappear
752     // completely anyway.
753     if (Edit->didRematerialize(ParentVNI))
754       continue;
755
756     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
757     DomPair &Dom = NearestDom[ParentVNI->id];
758
759     // Keep directly defined parent values.  This is either a PHI or an
760     // instruction in the complement range.  All other copies of ParentVNI
761     // should be eliminated.
762     if (VNI->def == ParentVNI->def) {
763       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
764       Dom = DomPair(ValMBB, VNI->def);
765       continue;
766     }
767     // Skip the singly mapped values.  There is nothing to gain from hoisting a
768     // single back-copy.
769     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
770       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
771       continue;
772     }
773
774     if (!Dom.first) {
775       // First time we see ParentVNI.  VNI dominates itself.
776       Dom = DomPair(ValMBB, VNI->def);
777     } else if (Dom.first == ValMBB) {
778       // Two defs in the same block.  Pick the earlier def.
779       if (!Dom.second.isValid() || VNI->def < Dom.second)
780         Dom.second = VNI->def;
781     } else {
782       // Different basic blocks. Check if one dominates.
783       MachineBasicBlock *Near =
784         MDT.findNearestCommonDominator(Dom.first, ValMBB);
785       if (Near == ValMBB)
786         // Def ValMBB dominates.
787         Dom = DomPair(ValMBB, VNI->def);
788       else if (Near != Dom.first)
789         // None dominate. Hoist to common dominator, need new def.
790         Dom = DomPair(Near, SlotIndex());
791     }
792
793     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
794                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
795                  << " hoist to BB#" << Dom.first->getNumber() << ' '
796                  << Dom.second << '\n');
797   }
798
799   // Insert the hoisted copies.
800   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
801     DomPair &Dom = NearestDom[i];
802     if (!Dom.first || Dom.second.isValid())
803       continue;
804     // This value needs a hoisted copy inserted at the end of Dom.first.
805     VNInfo *ParentVNI = Parent->getValNumInfo(i);
806     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
807     // Get a less loopy dominator than Dom.first.
808     Dom.first = findShallowDominator(Dom.first, DefMBB);
809     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
810     Dom.second =
811       defFromParent(0, ParentVNI, Last, *Dom.first,
812                     SA.getLastSplitPointIter(Dom.first))->def;
813   }
814
815   // Remove redundant back-copies that are now known to be dominated by another
816   // def with the same value.
817   SmallVector<VNInfo*, 8> BackCopies;
818   for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
819        VI != VE; ++VI) {
820     VNInfo *VNI = *VI;
821     if (VNI->isUnused())
822       continue;
823     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
824     const DomPair &Dom = NearestDom[ParentVNI->id];
825     if (!Dom.first || Dom.second == VNI->def)
826       continue;
827     BackCopies.push_back(VNI);
828     forceRecompute(0, ParentVNI);
829   }
830   removeBackCopies(BackCopies);
831 }
832
833
834 /// transferValues - Transfer all possible values to the new live ranges.
835 /// Values that were rematerialized are left alone, they need LRCalc.extend().
836 bool SplitEditor::transferValues() {
837   bool Skipped = false;
838   RegAssignMap::const_iterator AssignI = RegAssign.begin();
839   for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
840          ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
841     DEBUG(dbgs() << "  blit " << *ParentI << ':');
842     VNInfo *ParentVNI = ParentI->valno;
843     // RegAssign has holes where RegIdx 0 should be used.
844     SlotIndex Start = ParentI->start;
845     AssignI.advanceTo(Start);
846     do {
847       unsigned RegIdx;
848       SlotIndex End = ParentI->end;
849       if (!AssignI.valid()) {
850         RegIdx = 0;
851       } else if (AssignI.start() <= Start) {
852         RegIdx = AssignI.value();
853         if (AssignI.stop() < End) {
854           End = AssignI.stop();
855           ++AssignI;
856         }
857       } else {
858         RegIdx = 0;
859         End = std::min(End, AssignI.start());
860       }
861
862       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
863       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
864       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
865
866       // Check for a simply defined value that can be blitted directly.
867       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
868       if (VNInfo *VNI = VFP.getPointer()) {
869         DEBUG(dbgs() << ':' << VNI->id);
870         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
871         Start = End;
872         continue;
873       }
874
875       // Skip values with forced recomputation.
876       if (VFP.getInt()) {
877         DEBUG(dbgs() << "(recalc)");
878         Skipped = true;
879         Start = End;
880         continue;
881       }
882
883       LiveRangeCalc &LRC = getLRCalc(RegIdx);
884
885       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
886       // so the live range is accurate. Add live-in blocks in [Start;End) to the
887       // LiveInBlocks.
888       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
889       SlotIndex BlockStart, BlockEnd;
890       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
891
892       // The first block may be live-in, or it may have its own def.
893       if (Start != BlockStart) {
894         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
895         assert(VNI && "Missing def for complex mapped value");
896         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
897         // MBB has its own def. Is it also live-out?
898         if (BlockEnd <= End)
899           LRC.setLiveOutValue(MBB, VNI);
900
901         // Skip to the next block for live-in.
902         ++MBB;
903         BlockStart = BlockEnd;
904       }
905
906       // Handle the live-in blocks covered by [Start;End).
907       assert(Start <= BlockStart && "Expected live-in block");
908       while (BlockStart < End) {
909         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
910         BlockEnd = LIS.getMBBEndIdx(MBB);
911         if (BlockStart == ParentVNI->def) {
912           // This block has the def of a parent PHI, so it isn't live-in.
913           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
914           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
915           assert(VNI && "Missing def for complex mapped parent PHI");
916           if (End >= BlockEnd)
917             LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
918         } else {
919           // This block needs a live-in value.  The last block covered may not
920           // be live-out.
921           if (End < BlockEnd)
922             LRC.addLiveInBlock(LR, MDT[MBB], End);
923           else {
924             // Live-through, and we don't know the value.
925             LRC.addLiveInBlock(LR, MDT[MBB]);
926             LRC.setLiveOutValue(MBB, nullptr);
927           }
928         }
929         BlockStart = BlockEnd;
930         ++MBB;
931       }
932       Start = End;
933     } while (Start != ParentI->end);
934     DEBUG(dbgs() << '\n');
935   }
936
937   LRCalc[0].calculateValues();
938   if (SpillMode)
939     LRCalc[1].calculateValues();
940
941   return Skipped;
942 }
943
944 void SplitEditor::extendPHIKillRanges() {
945     // Extend live ranges to be live-out for successor PHI values.
946   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
947        E = Edit->getParent().vni_end(); I != E; ++I) {
948     const VNInfo *PHIVNI = *I;
949     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
950       continue;
951     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
952     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
953     LiveRangeCalc &LRC = getLRCalc(RegIdx);
954     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
955     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
956          PE = MBB->pred_end(); PI != PE; ++PI) {
957       SlotIndex End = LIS.getMBBEndIdx(*PI);
958       SlotIndex LastUse = End.getPrevSlot();
959       // The predecessor may not have a live-out value. That is OK, like an
960       // undef PHI operand.
961       if (Edit->getParent().liveAt(LastUse)) {
962         assert(RegAssign.lookup(LastUse) == RegIdx &&
963                "Different register assignment in phi predecessor");
964         LRC.extend(LR, End);
965       }
966     }
967   }
968 }
969
970 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
971 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
972   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
973        RE = MRI.reg_end(); RI != RE;) {
974     MachineOperand &MO = *RI;
975     MachineInstr *MI = MO.getParent();
976     ++RI;
977     // LiveDebugVariables should have handled all DBG_VALUE instructions.
978     if (MI->isDebugValue()) {
979       DEBUG(dbgs() << "Zapping " << *MI);
980       MO.setReg(0);
981       continue;
982     }
983
984     // <undef> operands don't really read the register, so it doesn't matter
985     // which register we choose.  When the use operand is tied to a def, we must
986     // use the same register as the def, so just do that always.
987     SlotIndex Idx = LIS.getInstructionIndex(MI);
988     if (MO.isDef() || MO.isUndef())
989       Idx = Idx.getRegSlot(MO.isEarlyClobber());
990
991     // Rewrite to the mapped register at Idx.
992     unsigned RegIdx = RegAssign.lookup(Idx);
993     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
994     MO.setReg(LI->reg);
995     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
996                  << Idx << ':' << RegIdx << '\t' << *MI);
997
998     // Extend liveness to Idx if the instruction reads reg.
999     if (!ExtendRanges || MO.isUndef())
1000       continue;
1001
1002     // Skip instructions that don't read Reg.
1003     if (MO.isDef()) {
1004       if (!MO.getSubReg() && !MO.isEarlyClobber())
1005         continue;
1006       // We may wan't to extend a live range for a partial redef, or for a use
1007       // tied to an early clobber.
1008       Idx = Idx.getPrevSlot();
1009       if (!Edit->getParent().liveAt(Idx))
1010         continue;
1011     } else
1012       Idx = Idx.getRegSlot(true);
1013
1014     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
1015   }
1016 }
1017
1018 void SplitEditor::deleteRematVictims() {
1019   SmallVector<MachineInstr*, 8> Dead;
1020   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1021     LiveInterval *LI = &LIS.getInterval(*I);
1022     for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1023            LII != LIE; ++LII) {
1024       // Dead defs end at the dead slot.
1025       if (LII->end != LII->valno->def.getDeadSlot())
1026         continue;
1027       MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1028       assert(MI && "Missing instruction for dead def");
1029       MI->addRegisterDead(LI->reg, &TRI);
1030
1031       if (!MI->allDefsAreDead())
1032         continue;
1033
1034       DEBUG(dbgs() << "All defs dead: " << *MI);
1035       Dead.push_back(MI);
1036     }
1037   }
1038
1039   if (Dead.empty())
1040     return;
1041
1042   Edit->eliminateDeadDefs(Dead);
1043 }
1044
1045 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1046   ++NumFinished;
1047
1048   // At this point, the live intervals in Edit contain VNInfos corresponding to
1049   // the inserted copies.
1050
1051   // Add the original defs from the parent interval.
1052   for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1053          E = Edit->getParent().vni_end(); I != E; ++I) {
1054     const VNInfo *ParentVNI = *I;
1055     if (ParentVNI->isUnused())
1056       continue;
1057     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1058     defValue(RegIdx, ParentVNI, ParentVNI->def);
1059
1060     // Force rematted values to be recomputed everywhere.
1061     // The new live ranges may be truncated.
1062     if (Edit->didRematerialize(ParentVNI))
1063       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1064         forceRecompute(i, ParentVNI);
1065   }
1066
1067   // Hoist back-copies to the complement interval when in spill mode.
1068   switch (SpillMode) {
1069   case SM_Partition:
1070     // Leave all back-copies as is.
1071     break;
1072   case SM_Size:
1073     hoistCopiesForSize();
1074     break;
1075   case SM_Speed:
1076     llvm_unreachable("Spill mode 'speed' not implemented yet");
1077   }
1078
1079   // Transfer the simply mapped values, check if any are skipped.
1080   bool Skipped = transferValues();
1081   if (Skipped)
1082     extendPHIKillRanges();
1083   else
1084     ++NumSimple;
1085
1086   // Rewrite virtual registers, possibly extending ranges.
1087   rewriteAssigned(Skipped);
1088
1089   // Delete defs that were rematted everywhere.
1090   if (Skipped)
1091     deleteRematVictims();
1092
1093   // Get rid of unused values and set phi-kill flags.
1094   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1095     LiveInterval &LI = LIS.getInterval(*I);
1096     LI.RenumberValues();
1097   }
1098
1099   // Provide a reverse mapping from original indices to Edit ranges.
1100   if (LRMap) {
1101     LRMap->clear();
1102     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1103       LRMap->push_back(i);
1104   }
1105
1106   // Now check if any registers were separated into multiple components.
1107   ConnectedVNInfoEqClasses ConEQ(LIS);
1108   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1109     // Don't use iterators, they are invalidated by create() below.
1110     LiveInterval *li = &LIS.getInterval(Edit->get(i));
1111     unsigned NumComp = ConEQ.Classify(li);
1112     if (NumComp <= 1)
1113       continue;
1114     DEBUG(dbgs() << "  " << NumComp << " components: " << *li << '\n');
1115     SmallVector<LiveInterval*, 8> dups;
1116     dups.push_back(li);
1117     for (unsigned j = 1; j != NumComp; ++j)
1118       dups.push_back(&Edit->createEmptyInterval());
1119     ConEQ.Distribute(&dups[0], MRI);
1120     // The new intervals all map back to i.
1121     if (LRMap)
1122       LRMap->resize(Edit->size(), i);
1123   }
1124
1125   // Calculate spill weight and allocation hints for new intervals.
1126   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1127
1128   assert(!LRMap || LRMap->size() == Edit->size());
1129 }
1130
1131
1132 //===----------------------------------------------------------------------===//
1133 //                            Single Block Splitting
1134 //===----------------------------------------------------------------------===//
1135
1136 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1137                                            bool SingleInstrs) const {
1138   // Always split for multiple instructions.
1139   if (!BI.isOneInstr())
1140     return true;
1141   // Don't split for single instructions unless explicitly requested.
1142   if (!SingleInstrs)
1143     return false;
1144   // Splitting a live-through range always makes progress.
1145   if (BI.LiveIn && BI.LiveOut)
1146     return true;
1147   // No point in isolating a copy. It has no register class constraints.
1148   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1149     return false;
1150   // Finally, don't isolate an end point that was created by earlier splits.
1151   return isOriginalEndpoint(BI.FirstInstr);
1152 }
1153
1154 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1155   openIntv();
1156   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1157   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1158     LastSplitPoint));
1159   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1160     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1161   } else {
1162       // The last use is after the last valid split point.
1163     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1164     useIntv(SegStart, SegStop);
1165     overlapIntv(SegStop, BI.LastInstr);
1166   }
1167 }
1168
1169
1170 //===----------------------------------------------------------------------===//
1171 //                    Global Live Range Splitting Support
1172 //===----------------------------------------------------------------------===//
1173
1174 // These methods support a method of global live range splitting that uses a
1175 // global algorithm to decide intervals for CFG edges. They will insert split
1176 // points and color intervals in basic blocks while avoiding interference.
1177 //
1178 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1179 // are on the stack.
1180
1181 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1182                                         unsigned IntvIn, SlotIndex LeaveBefore,
1183                                         unsigned IntvOut, SlotIndex EnterAfter){
1184   SlotIndex Start, Stop;
1185   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1186
1187   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1188                << ") intf " << LeaveBefore << '-' << EnterAfter
1189                << ", live-through " << IntvIn << " -> " << IntvOut);
1190
1191   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1192
1193   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1194   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1195   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1196
1197   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1198
1199   if (!IntvOut) {
1200     DEBUG(dbgs() << ", spill on entry.\n");
1201     //
1202     //        <<<<<<<<<    Possible LeaveBefore interference.
1203     //    |-----------|    Live through.
1204     //    -____________    Spill on entry.
1205     //
1206     selectIntv(IntvIn);
1207     SlotIndex Idx = leaveIntvAtTop(*MBB);
1208     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1209     (void)Idx;
1210     return;
1211   }
1212
1213   if (!IntvIn) {
1214     DEBUG(dbgs() << ", reload on exit.\n");
1215     //
1216     //    >>>>>>>          Possible EnterAfter interference.
1217     //    |-----------|    Live through.
1218     //    ___________--    Reload on exit.
1219     //
1220     selectIntv(IntvOut);
1221     SlotIndex Idx = enterIntvAtEnd(*MBB);
1222     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1223     (void)Idx;
1224     return;
1225   }
1226
1227   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1228     DEBUG(dbgs() << ", straight through.\n");
1229     //
1230     //    |-----------|    Live through.
1231     //    -------------    Straight through, same intv, no interference.
1232     //
1233     selectIntv(IntvOut);
1234     useIntv(Start, Stop);
1235     return;
1236   }
1237
1238   // We cannot legally insert splits after LSP.
1239   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1240   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1241
1242   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1243                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1244     DEBUG(dbgs() << ", switch avoiding interference.\n");
1245     //
1246     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1247     //    |-----------|    Live through.
1248     //    ------=======    Switch intervals between interference.
1249     //
1250     selectIntv(IntvOut);
1251     SlotIndex Idx;
1252     if (LeaveBefore && LeaveBefore < LSP) {
1253       Idx = enterIntvBefore(LeaveBefore);
1254       useIntv(Idx, Stop);
1255     } else {
1256       Idx = enterIntvAtEnd(*MBB);
1257     }
1258     selectIntv(IntvIn);
1259     useIntv(Start, Idx);
1260     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1261     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1262     return;
1263   }
1264
1265   DEBUG(dbgs() << ", create local intv for interference.\n");
1266   //
1267   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1268   //    |-----------|    Live through.
1269   //    ==---------==    Switch intervals before/after interference.
1270   //
1271   assert(LeaveBefore <= EnterAfter && "Missed case");
1272
1273   selectIntv(IntvOut);
1274   SlotIndex Idx = enterIntvAfter(EnterAfter);
1275   useIntv(Idx, Stop);
1276   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1277
1278   selectIntv(IntvIn);
1279   Idx = leaveIntvBefore(LeaveBefore);
1280   useIntv(Start, Idx);
1281   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1282 }
1283
1284
1285 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1286                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1287   SlotIndex Start, Stop;
1288   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1289
1290   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1291                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1292                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1293                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1294
1295   assert(IntvIn && "Must have register in");
1296   assert(BI.LiveIn && "Must be live-in");
1297   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1298
1299   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1300     DEBUG(dbgs() << " before interference.\n");
1301     //
1302     //               <<<    Interference after kill.
1303     //     |---o---x   |    Killed in block.
1304     //     =========        Use IntvIn everywhere.
1305     //
1306     selectIntv(IntvIn);
1307     useIntv(Start, BI.LastInstr);
1308     return;
1309   }
1310
1311   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1312
1313   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1314     //
1315     //               <<<    Possible interference after last use.
1316     //     |---o---o---|    Live-out on stack.
1317     //     =========____    Leave IntvIn after last use.
1318     //
1319     //                 <    Interference after last use.
1320     //     |---o---o--o|    Live-out on stack, late last use.
1321     //     ============     Copy to stack after LSP, overlap IntvIn.
1322     //            \_____    Stack interval is live-out.
1323     //
1324     if (BI.LastInstr < LSP) {
1325       DEBUG(dbgs() << ", spill after last use before interference.\n");
1326       selectIntv(IntvIn);
1327       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1328       useIntv(Start, Idx);
1329       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1330     } else {
1331       DEBUG(dbgs() << ", spill before last split point.\n");
1332       selectIntv(IntvIn);
1333       SlotIndex Idx = leaveIntvBefore(LSP);
1334       overlapIntv(Idx, BI.LastInstr);
1335       useIntv(Start, Idx);
1336       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1337     }
1338     return;
1339   }
1340
1341   // The interference is overlapping somewhere we wanted to use IntvIn. That
1342   // means we need to create a local interval that can be allocated a
1343   // different register.
1344   unsigned LocalIntv = openIntv();
1345   (void)LocalIntv;
1346   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1347
1348   if (!BI.LiveOut || BI.LastInstr < LSP) {
1349     //
1350     //           <<<<<<<    Interference overlapping uses.
1351     //     |---o---o---|    Live-out on stack.
1352     //     =====----____    Leave IntvIn before interference, then spill.
1353     //
1354     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1355     SlotIndex From = enterIntvBefore(LeaveBefore);
1356     useIntv(From, To);
1357     selectIntv(IntvIn);
1358     useIntv(Start, From);
1359     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1360     return;
1361   }
1362
1363   //           <<<<<<<    Interference overlapping uses.
1364   //     |---o---o--o|    Live-out on stack, late last use.
1365   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1366   //            \_____    Stack interval is live-out.
1367   //
1368   SlotIndex To = leaveIntvBefore(LSP);
1369   overlapIntv(To, BI.LastInstr);
1370   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1371   useIntv(From, To);
1372   selectIntv(IntvIn);
1373   useIntv(Start, From);
1374   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1375 }
1376
1377 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1378                                    unsigned IntvOut, SlotIndex EnterAfter) {
1379   SlotIndex Start, Stop;
1380   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1381
1382   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1383                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1384                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1385                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1386
1387   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1388
1389   assert(IntvOut && "Must have register out");
1390   assert(BI.LiveOut && "Must be live-out");
1391   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1392
1393   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1394     DEBUG(dbgs() << " after interference.\n");
1395     //
1396     //    >>>>             Interference before def.
1397     //    |   o---o---|    Defined in block.
1398     //        =========    Use IntvOut everywhere.
1399     //
1400     selectIntv(IntvOut);
1401     useIntv(BI.FirstInstr, Stop);
1402     return;
1403   }
1404
1405   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1406     DEBUG(dbgs() << ", reload after interference.\n");
1407     //
1408     //    >>>>             Interference before def.
1409     //    |---o---o---|    Live-through, stack-in.
1410     //    ____=========    Enter IntvOut before first use.
1411     //
1412     selectIntv(IntvOut);
1413     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1414     useIntv(Idx, Stop);
1415     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1416     return;
1417   }
1418
1419   // The interference is overlapping somewhere we wanted to use IntvOut. That
1420   // means we need to create a local interval that can be allocated a
1421   // different register.
1422   DEBUG(dbgs() << ", interference overlaps uses.\n");
1423   //
1424   //    >>>>>>>          Interference overlapping uses.
1425   //    |---o---o---|    Live-through, stack-in.
1426   //    ____---======    Create local interval for interference range.
1427   //
1428   selectIntv(IntvOut);
1429   SlotIndex Idx = enterIntvAfter(EnterAfter);
1430   useIntv(Idx, Stop);
1431   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1432
1433   openIntv();
1434   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1435   useIntv(From, Idx);
1436 }