Remove the successor probabilities normalization in tail duplication pass.
[oota-llvm.git] / lib / CodeGen / SplitKit.cpp
1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "SplitKit.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineDominators.h"
20 #include "llvm/CodeGen/MachineInstrBuilder.h"
21 #include "llvm/CodeGen/MachineLoopInfo.h"
22 #include "llvm/CodeGen/MachineRegisterInfo.h"
23 #include "llvm/CodeGen/VirtRegMap.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetMachine.h"
28
29 using namespace llvm;
30
31 #define DEBUG_TYPE "regalloc"
32
33 STATISTIC(NumFinished, "Number of splits finished");
34 STATISTIC(NumSimple,   "Number of splits that were simple");
35 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
36 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
37 STATISTIC(NumRepairs,  "Number of invalid live ranges repaired");
38
39 //===----------------------------------------------------------------------===//
40 //                                 Split Analysis
41 //===----------------------------------------------------------------------===//
42
43 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
44                              const MachineLoopInfo &mli)
45     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
46       TII(*MF.getSubtarget().getInstrInfo()), CurLI(nullptr),
47       LastSplitPoint(MF.getNumBlockIDs()) {}
48
49 void SplitAnalysis::clear() {
50   UseSlots.clear();
51   UseBlocks.clear();
52   ThroughBlocks.clear();
53   CurLI = nullptr;
54   DidRepairRange = false;
55 }
56
57 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
58   const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
59   // FIXME: Handle multiple EH pad successors.
60   const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
61   std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
62   SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
63
64   // Compute split points on the first call. The pair is independent of the
65   // current live interval.
66   if (!LSP.first.isValid()) {
67     MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
68     if (FirstTerm == MBB->end())
69       LSP.first = MBBEnd;
70     else
71       LSP.first = LIS.getInstructionIndex(FirstTerm);
72
73     // If there is a landing pad successor, also find the call instruction.
74     if (!LPad)
75       return LSP.first;
76     // There may not be a call instruction (?) in which case we ignore LPad.
77     LSP.second = LSP.first;
78     for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
79          I != E;) {
80       --I;
81       if (I->isCall()) {
82         LSP.second = LIS.getInstructionIndex(I);
83         break;
84       }
85     }
86   }
87
88   // If CurLI is live into a landing pad successor, move the last split point
89   // back to the call that may throw.
90   if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
91     return LSP.first;
92
93   // Find the value leaving MBB.
94   const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
95   if (!VNI)
96     return LSP.first;
97
98   // If the value leaving MBB was defined after the call in MBB, it can't
99   // really be live-in to the landing pad.  This can happen if the landing pad
100   // has a PHI, and this register is undef on the exceptional edge.
101   // <rdar://problem/10664933>
102   if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
103     return LSP.first;
104
105   // Value is properly live-in to the landing pad.
106   // Only allow splits before the call.
107   return LSP.second;
108 }
109
110 MachineBasicBlock::iterator
111 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
112   SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
113   if (LSP == LIS.getMBBEndIdx(MBB))
114     return MBB->end();
115   return LIS.getInstructionFromIndex(LSP);
116 }
117
118 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
119 void SplitAnalysis::analyzeUses() {
120   assert(UseSlots.empty() && "Call clear first");
121
122   // First get all the defs from the interval values. This provides the correct
123   // slots for early clobbers.
124   for (const VNInfo *VNI : CurLI->valnos)
125     if (!VNI->isPHIDef() && !VNI->isUnused())
126       UseSlots.push_back(VNI->def);
127
128   // Get use slots form the use-def chain.
129   const MachineRegisterInfo &MRI = MF.getRegInfo();
130   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg))
131     if (!MO.isUndef())
132       UseSlots.push_back(LIS.getInstructionIndex(MO.getParent()).getRegSlot());
133
134   array_pod_sort(UseSlots.begin(), UseSlots.end());
135
136   // Remove duplicates, keeping the smaller slot for each instruction.
137   // That is what we want for early clobbers.
138   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
139                              SlotIndex::isSameInstr),
140                  UseSlots.end());
141
142   // Compute per-live block info.
143   if (!calcLiveBlockInfo()) {
144     // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
145     // I am looking at you, RegisterCoalescer!
146     DidRepairRange = true;
147     ++NumRepairs;
148     DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
149     const_cast<LiveIntervals&>(LIS)
150       .shrinkToUses(const_cast<LiveInterval*>(CurLI));
151     UseBlocks.clear();
152     ThroughBlocks.clear();
153     bool fixed = calcLiveBlockInfo();
154     (void)fixed;
155     assert(fixed && "Couldn't fix broken live interval");
156   }
157
158   DEBUG(dbgs() << "Analyze counted "
159                << UseSlots.size() << " instrs in "
160                << UseBlocks.size() << " blocks, through "
161                << NumThroughBlocks << " blocks.\n");
162 }
163
164 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
165 /// where CurLI is live.
166 bool SplitAnalysis::calcLiveBlockInfo() {
167   ThroughBlocks.resize(MF.getNumBlockIDs());
168   NumThroughBlocks = NumGapBlocks = 0;
169   if (CurLI->empty())
170     return true;
171
172   LiveInterval::const_iterator LVI = CurLI->begin();
173   LiveInterval::const_iterator LVE = CurLI->end();
174
175   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
176   UseI = UseSlots.begin();
177   UseE = UseSlots.end();
178
179   // Loop over basic blocks where CurLI is live.
180   MachineFunction::iterator MFI =
181       LIS.getMBBFromIndex(LVI->start)->getIterator();
182   for (;;) {
183     BlockInfo BI;
184     BI.MBB = &*MFI;
185     SlotIndex Start, Stop;
186     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
187
188     // If the block contains no uses, the range must be live through. At one
189     // point, RegisterCoalescer could create dangling ranges that ended
190     // mid-block.
191     if (UseI == UseE || *UseI >= Stop) {
192       ++NumThroughBlocks;
193       ThroughBlocks.set(BI.MBB->getNumber());
194       // The range shouldn't end mid-block if there are no uses. This shouldn't
195       // happen.
196       if (LVI->end < Stop)
197         return false;
198     } else {
199       // This block has uses. Find the first and last uses in the block.
200       BI.FirstInstr = *UseI;
201       assert(BI.FirstInstr >= Start);
202       do ++UseI;
203       while (UseI != UseE && *UseI < Stop);
204       BI.LastInstr = UseI[-1];
205       assert(BI.LastInstr < Stop);
206
207       // LVI is the first live segment overlapping MBB.
208       BI.LiveIn = LVI->start <= Start;
209
210       // When not live in, the first use should be a def.
211       if (!BI.LiveIn) {
212         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
213         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
214         BI.FirstDef = BI.FirstInstr;
215       }
216
217       // Look for gaps in the live range.
218       BI.LiveOut = true;
219       while (LVI->end < Stop) {
220         SlotIndex LastStop = LVI->end;
221         if (++LVI == LVE || LVI->start >= Stop) {
222           BI.LiveOut = false;
223           BI.LastInstr = LastStop;
224           break;
225         }
226
227         if (LastStop < LVI->start) {
228           // There is a gap in the live range. Create duplicate entries for the
229           // live-in snippet and the live-out snippet.
230           ++NumGapBlocks;
231
232           // Push the Live-in part.
233           BI.LiveOut = false;
234           UseBlocks.push_back(BI);
235           UseBlocks.back().LastInstr = LastStop;
236
237           // Set up BI for the live-out part.
238           BI.LiveIn = false;
239           BI.LiveOut = true;
240           BI.FirstInstr = BI.FirstDef = LVI->start;
241         }
242
243         // A Segment that starts in the middle of the block must be a def.
244         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
245         if (!BI.FirstDef)
246           BI.FirstDef = LVI->start;
247       }
248
249       UseBlocks.push_back(BI);
250
251       // LVI is now at LVE or LVI->end >= Stop.
252       if (LVI == LVE)
253         break;
254     }
255
256     // Live segment ends exactly at Stop. Move to the next segment.
257     if (LVI->end == Stop && ++LVI == LVE)
258       break;
259
260     // Pick the next basic block.
261     if (LVI->start < Stop)
262       ++MFI;
263     else
264       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
265   }
266
267   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
268   return true;
269 }
270
271 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
272   if (cli->empty())
273     return 0;
274   LiveInterval *li = const_cast<LiveInterval*>(cli);
275   LiveInterval::iterator LVI = li->begin();
276   LiveInterval::iterator LVE = li->end();
277   unsigned Count = 0;
278
279   // Loop over basic blocks where li is live.
280   MachineFunction::const_iterator MFI =
281       LIS.getMBBFromIndex(LVI->start)->getIterator();
282   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
283   for (;;) {
284     ++Count;
285     LVI = li->advanceTo(LVI, Stop);
286     if (LVI == LVE)
287       return Count;
288     do {
289       ++MFI;
290       Stop = LIS.getMBBEndIdx(&*MFI);
291     } while (Stop <= LVI->start);
292   }
293 }
294
295 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
296   unsigned OrigReg = VRM.getOriginal(CurLI->reg);
297   const LiveInterval &Orig = LIS.getInterval(OrigReg);
298   assert(!Orig.empty() && "Splitting empty interval?");
299   LiveInterval::const_iterator I = Orig.find(Idx);
300
301   // Range containing Idx should begin at Idx.
302   if (I != Orig.end() && I->start <= Idx)
303     return I->start == Idx;
304
305   // Range does not contain Idx, previous must end at Idx.
306   return I != Orig.begin() && (--I)->end == Idx;
307 }
308
309 void SplitAnalysis::analyze(const LiveInterval *li) {
310   clear();
311   CurLI = li;
312   analyzeUses();
313 }
314
315
316 //===----------------------------------------------------------------------===//
317 //                               Split Editor
318 //===----------------------------------------------------------------------===//
319
320 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
321 SplitEditor::SplitEditor(SplitAnalysis &sa, LiveIntervals &lis, VirtRegMap &vrm,
322                          MachineDominatorTree &mdt,
323                          MachineBlockFrequencyInfo &mbfi)
324     : SA(sa), LIS(lis), VRM(vrm), MRI(vrm.getMachineFunction().getRegInfo()),
325       MDT(mdt), TII(*vrm.getMachineFunction().getSubtarget().getInstrInfo()),
326       TRI(*vrm.getMachineFunction().getSubtarget().getRegisterInfo()),
327       MBFI(mbfi), Edit(nullptr), OpenIdx(0), SpillMode(SM_Partition),
328       RegAssign(Allocator) {}
329
330 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
331   Edit = &LRE;
332   SpillMode = SM;
333   OpenIdx = 0;
334   RegAssign.clear();
335   Values.clear();
336
337   // Reset the LiveRangeCalc instances needed for this spill mode.
338   LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
339                   &LIS.getVNInfoAllocator());
340   if (SpillMode)
341     LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
342                     &LIS.getVNInfoAllocator());
343
344   // We don't need an AliasAnalysis since we will only be performing
345   // cheap-as-a-copy remats anyway.
346   Edit->anyRematerializable(nullptr);
347 }
348
349 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
350 void SplitEditor::dump() const {
351   if (RegAssign.empty()) {
352     dbgs() << " empty\n";
353     return;
354   }
355
356   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
357     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
358   dbgs() << '\n';
359 }
360 #endif
361
362 VNInfo *SplitEditor::defValue(unsigned RegIdx,
363                               const VNInfo *ParentVNI,
364                               SlotIndex Idx) {
365   assert(ParentVNI && "Mapping  NULL value");
366   assert(Idx.isValid() && "Invalid SlotIndex");
367   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
368   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
369
370   // Create a new value.
371   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
372
373   // Use insert for lookup, so we can add missing values with a second lookup.
374   std::pair<ValueMap::iterator, bool> InsP =
375     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
376                                  ValueForcePair(VNI, false)));
377
378   // This was the first time (RegIdx, ParentVNI) was mapped.
379   // Keep it as a simple def without any liveness.
380   if (InsP.second)
381     return VNI;
382
383   // If the previous value was a simple mapping, add liveness for it now.
384   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
385     SlotIndex Def = OldVNI->def;
386     LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), OldVNI));
387     // No longer a simple mapping.  Switch to a complex, non-forced mapping.
388     InsP.first->second = ValueForcePair();
389   }
390
391   // This is a complex mapping, add liveness for VNI
392   SlotIndex Def = VNI->def;
393   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
394
395   return VNI;
396 }
397
398 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
399   assert(ParentVNI && "Mapping  NULL value");
400   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
401   VNInfo *VNI = VFP.getPointer();
402
403   // ParentVNI was either unmapped or already complex mapped. Either way, just
404   // set the force bit.
405   if (!VNI) {
406     VFP.setInt(true);
407     return;
408   }
409
410   // This was previously a single mapping. Make sure the old def is represented
411   // by a trivial live range.
412   SlotIndex Def = VNI->def;
413   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
414   LI->addSegment(LiveInterval::Segment(Def, Def.getDeadSlot(), VNI));
415   // Mark as complex mapped, forced.
416   VFP = ValueForcePair(nullptr, true);
417 }
418
419 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
420                                    VNInfo *ParentVNI,
421                                    SlotIndex UseIdx,
422                                    MachineBasicBlock &MBB,
423                                    MachineBasicBlock::iterator I) {
424   MachineInstr *CopyMI = nullptr;
425   SlotIndex Def;
426   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
427
428   // We may be trying to avoid interference that ends at a deleted instruction,
429   // so always begin RegIdx 0 early and all others late.
430   bool Late = RegIdx != 0;
431
432   // Attempt cheap-as-a-copy rematerialization.
433   LiveRangeEdit::Remat RM(ParentVNI);
434   if (Edit->canRematerializeAt(RM, UseIdx, true)) {
435     Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
436     ++NumRemats;
437   } else {
438     // Can't remat, just insert a copy from parent.
439     CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
440                .addReg(Edit->getReg());
441     Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
442             .getRegSlot();
443     ++NumCopies;
444   }
445
446   // Define the value in Reg.
447   return defValue(RegIdx, ParentVNI, Def);
448 }
449
450 /// Create a new virtual register and live interval.
451 unsigned SplitEditor::openIntv() {
452   // Create the complement as index 0.
453   if (Edit->empty())
454     Edit->createEmptyInterval();
455
456   // Create the open interval.
457   OpenIdx = Edit->size();
458   Edit->createEmptyInterval();
459   return OpenIdx;
460 }
461
462 void SplitEditor::selectIntv(unsigned Idx) {
463   assert(Idx != 0 && "Cannot select the complement interval");
464   assert(Idx < Edit->size() && "Can only select previously opened interval");
465   DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
466   OpenIdx = Idx;
467 }
468
469 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
470   assert(OpenIdx && "openIntv not called before enterIntvBefore");
471   DEBUG(dbgs() << "    enterIntvBefore " << Idx);
472   Idx = Idx.getBaseIndex();
473   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
474   if (!ParentVNI) {
475     DEBUG(dbgs() << ": not live\n");
476     return Idx;
477   }
478   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
479   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
480   assert(MI && "enterIntvBefore called with invalid index");
481
482   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
483   return VNI->def;
484 }
485
486 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
487   assert(OpenIdx && "openIntv not called before enterIntvAfter");
488   DEBUG(dbgs() << "    enterIntvAfter " << Idx);
489   Idx = Idx.getBoundaryIndex();
490   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
491   if (!ParentVNI) {
492     DEBUG(dbgs() << ": not live\n");
493     return Idx;
494   }
495   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
496   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
497   assert(MI && "enterIntvAfter called with invalid index");
498
499   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
500                               std::next(MachineBasicBlock::iterator(MI)));
501   return VNI->def;
502 }
503
504 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
505   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
506   SlotIndex End = LIS.getMBBEndIdx(&MBB);
507   SlotIndex Last = End.getPrevSlot();
508   DEBUG(dbgs() << "    enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
509   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
510   if (!ParentVNI) {
511     DEBUG(dbgs() << ": not live\n");
512     return End;
513   }
514   DEBUG(dbgs() << ": valno " << ParentVNI->id);
515   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
516                               SA.getLastSplitPointIter(&MBB));
517   RegAssign.insert(VNI->def, End, OpenIdx);
518   DEBUG(dump());
519   return VNI->def;
520 }
521
522 /// useIntv - indicate that all instructions in MBB should use OpenLI.
523 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
524   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
525 }
526
527 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
528   assert(OpenIdx && "openIntv not called before useIntv");
529   DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
530   RegAssign.insert(Start, End, OpenIdx);
531   DEBUG(dump());
532 }
533
534 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
535   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
536   DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
537
538   // The interval must be live beyond the instruction at Idx.
539   SlotIndex Boundary = Idx.getBoundaryIndex();
540   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
541   if (!ParentVNI) {
542     DEBUG(dbgs() << ": not live\n");
543     return Boundary.getNextSlot();
544   }
545   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
546   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
547   assert(MI && "No instruction at index");
548
549   // In spill mode, make live ranges as short as possible by inserting the copy
550   // before MI.  This is only possible if that instruction doesn't redefine the
551   // value.  The inserted COPY is not a kill, and we don't need to recompute
552   // the source live range.  The spiller also won't try to hoist this copy.
553   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
554       MI->readsVirtualRegister(Edit->getReg())) {
555     forceRecompute(0, ParentVNI);
556     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
557     return Idx;
558   }
559
560   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
561                               std::next(MachineBasicBlock::iterator(MI)));
562   return VNI->def;
563 }
564
565 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
566   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
567   DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
568
569   // The interval must be live into the instruction at Idx.
570   Idx = Idx.getBaseIndex();
571   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
572   if (!ParentVNI) {
573     DEBUG(dbgs() << ": not live\n");
574     return Idx.getNextSlot();
575   }
576   DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
577
578   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
579   assert(MI && "No instruction at index");
580   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
581   return VNI->def;
582 }
583
584 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
585   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
586   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
587   DEBUG(dbgs() << "    leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
588
589   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
590   if (!ParentVNI) {
591     DEBUG(dbgs() << ": not live\n");
592     return Start;
593   }
594
595   VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
596                               MBB.SkipPHIsAndLabels(MBB.begin()));
597   RegAssign.insert(Start, VNI->def, OpenIdx);
598   DEBUG(dump());
599   return VNI->def;
600 }
601
602 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
603   assert(OpenIdx && "openIntv not called before overlapIntv");
604   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
605   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
606          "Parent changes value in extended range");
607   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
608          "Range cannot span basic blocks");
609
610   // The complement interval will be extended as needed by LRCalc.extend().
611   if (ParentVNI)
612     forceRecompute(0, ParentVNI);
613   DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
614   RegAssign.insert(Start, End, OpenIdx);
615   DEBUG(dump());
616 }
617
618 //===----------------------------------------------------------------------===//
619 //                                  Spill modes
620 //===----------------------------------------------------------------------===//
621
622 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
623   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
624   DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
625   RegAssignMap::iterator AssignI;
626   AssignI.setMap(RegAssign);
627
628   for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
629     SlotIndex Def = Copies[i]->def;
630     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
631     assert(MI && "No instruction for back-copy");
632
633     MachineBasicBlock *MBB = MI->getParent();
634     MachineBasicBlock::iterator MBBI(MI);
635     bool AtBegin;
636     do AtBegin = MBBI == MBB->begin();
637     while (!AtBegin && (--MBBI)->isDebugValue());
638
639     DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
640     LIS.removeVRegDefAt(*LI, Def);
641     LIS.RemoveMachineInstrFromMaps(MI);
642     MI->eraseFromParent();
643
644     // Adjust RegAssign if a register assignment is killed at Def. We want to
645     // avoid calculating the live range of the source register if possible.
646     AssignI.find(Def.getPrevSlot());
647     if (!AssignI.valid() || AssignI.start() >= Def)
648       continue;
649     // If MI doesn't kill the assigned register, just leave it.
650     if (AssignI.stop() != Def)
651       continue;
652     unsigned RegIdx = AssignI.value();
653     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
654       DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx << '\n');
655       forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
656     } else {
657       SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
658       DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
659       AssignI.setStop(Kill);
660     }
661   }
662 }
663
664 MachineBasicBlock*
665 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
666                                   MachineBasicBlock *DefMBB) {
667   if (MBB == DefMBB)
668     return MBB;
669   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
670
671   const MachineLoopInfo &Loops = SA.Loops;
672   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
673   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
674
675   // Best candidate so far.
676   MachineBasicBlock *BestMBB = MBB;
677   unsigned BestDepth = UINT_MAX;
678
679   for (;;) {
680     const MachineLoop *Loop = Loops.getLoopFor(MBB);
681
682     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
683     // higher frequency by definition.
684     if (!Loop) {
685       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
686                    << MBB->getNumber() << " at depth 0\n");
687       return MBB;
688     }
689
690     // We'll never be able to exit the DefLoop.
691     if (Loop == DefLoop) {
692       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
693                    << MBB->getNumber() << " in the same loop\n");
694       return MBB;
695     }
696
697     // Least busy dominator seen so far.
698     unsigned Depth = Loop->getLoopDepth();
699     if (Depth < BestDepth) {
700       BestMBB = MBB;
701       BestDepth = Depth;
702       DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
703                    << MBB->getNumber() << " at depth " << Depth << '\n');
704     }
705
706     // Leave loop by going to the immediate dominator of the loop header.
707     // This is a bigger stride than simply walking up the dominator tree.
708     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
709
710     // Too far up the dominator tree?
711     if (!IDom || !MDT.dominates(DefDomNode, IDom))
712       return BestMBB;
713
714     MBB = IDom->getBlock();
715   }
716 }
717
718 void SplitEditor::hoistCopiesForSize() {
719   // Get the complement interval, always RegIdx 0.
720   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
721   LiveInterval *Parent = &Edit->getParent();
722
723   // Track the nearest common dominator for all back-copies for each ParentVNI,
724   // indexed by ParentVNI->id.
725   typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
726   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
727
728   // Find the nearest common dominator for parent values with multiple
729   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
730   for (VNInfo *VNI : LI->valnos) {
731     if (VNI->isUnused())
732       continue;
733     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
734     assert(ParentVNI && "Parent not live at complement def");
735
736     // Don't hoist remats.  The complement is probably going to disappear
737     // completely anyway.
738     if (Edit->didRematerialize(ParentVNI))
739       continue;
740
741     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
742     DomPair &Dom = NearestDom[ParentVNI->id];
743
744     // Keep directly defined parent values.  This is either a PHI or an
745     // instruction in the complement range.  All other copies of ParentVNI
746     // should be eliminated.
747     if (VNI->def == ParentVNI->def) {
748       DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
749       Dom = DomPair(ValMBB, VNI->def);
750       continue;
751     }
752     // Skip the singly mapped values.  There is nothing to gain from hoisting a
753     // single back-copy.
754     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
755       DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
756       continue;
757     }
758
759     if (!Dom.first) {
760       // First time we see ParentVNI.  VNI dominates itself.
761       Dom = DomPair(ValMBB, VNI->def);
762     } else if (Dom.first == ValMBB) {
763       // Two defs in the same block.  Pick the earlier def.
764       if (!Dom.second.isValid() || VNI->def < Dom.second)
765         Dom.second = VNI->def;
766     } else {
767       // Different basic blocks. Check if one dominates.
768       MachineBasicBlock *Near =
769         MDT.findNearestCommonDominator(Dom.first, ValMBB);
770       if (Near == ValMBB)
771         // Def ValMBB dominates.
772         Dom = DomPair(ValMBB, VNI->def);
773       else if (Near != Dom.first)
774         // None dominate. Hoist to common dominator, need new def.
775         Dom = DomPair(Near, SlotIndex());
776     }
777
778     DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
779                  << " for parent " << ParentVNI->id << '@' << ParentVNI->def
780                  << " hoist to BB#" << Dom.first->getNumber() << ' '
781                  << Dom.second << '\n');
782   }
783
784   // Insert the hoisted copies.
785   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
786     DomPair &Dom = NearestDom[i];
787     if (!Dom.first || Dom.second.isValid())
788       continue;
789     // This value needs a hoisted copy inserted at the end of Dom.first.
790     VNInfo *ParentVNI = Parent->getValNumInfo(i);
791     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
792     // Get a less loopy dominator than Dom.first.
793     Dom.first = findShallowDominator(Dom.first, DefMBB);
794     SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
795     Dom.second =
796       defFromParent(0, ParentVNI, Last, *Dom.first,
797                     SA.getLastSplitPointIter(Dom.first))->def;
798   }
799
800   // Remove redundant back-copies that are now known to be dominated by another
801   // def with the same value.
802   SmallVector<VNInfo*, 8> BackCopies;
803   for (VNInfo *VNI : LI->valnos) {
804     if (VNI->isUnused())
805       continue;
806     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
807     const DomPair &Dom = NearestDom[ParentVNI->id];
808     if (!Dom.first || Dom.second == VNI->def)
809       continue;
810     BackCopies.push_back(VNI);
811     forceRecompute(0, ParentVNI);
812   }
813   removeBackCopies(BackCopies);
814 }
815
816
817 /// transferValues - Transfer all possible values to the new live ranges.
818 /// Values that were rematerialized are left alone, they need LRCalc.extend().
819 bool SplitEditor::transferValues() {
820   bool Skipped = false;
821   RegAssignMap::const_iterator AssignI = RegAssign.begin();
822   for (const LiveRange::Segment &S : Edit->getParent()) {
823     DEBUG(dbgs() << "  blit " << S << ':');
824     VNInfo *ParentVNI = S.valno;
825     // RegAssign has holes where RegIdx 0 should be used.
826     SlotIndex Start = S.start;
827     AssignI.advanceTo(Start);
828     do {
829       unsigned RegIdx;
830       SlotIndex End = S.end;
831       if (!AssignI.valid()) {
832         RegIdx = 0;
833       } else if (AssignI.start() <= Start) {
834         RegIdx = AssignI.value();
835         if (AssignI.stop() < End) {
836           End = AssignI.stop();
837           ++AssignI;
838         }
839       } else {
840         RegIdx = 0;
841         End = std::min(End, AssignI.start());
842       }
843
844       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
845       DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
846       LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
847
848       // Check for a simply defined value that can be blitted directly.
849       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
850       if (VNInfo *VNI = VFP.getPointer()) {
851         DEBUG(dbgs() << ':' << VNI->id);
852         LR.addSegment(LiveInterval::Segment(Start, End, VNI));
853         Start = End;
854         continue;
855       }
856
857       // Skip values with forced recomputation.
858       if (VFP.getInt()) {
859         DEBUG(dbgs() << "(recalc)");
860         Skipped = true;
861         Start = End;
862         continue;
863       }
864
865       LiveRangeCalc &LRC = getLRCalc(RegIdx);
866
867       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
868       // so the live range is accurate. Add live-in blocks in [Start;End) to the
869       // LiveInBlocks.
870       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
871       SlotIndex BlockStart, BlockEnd;
872       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
873
874       // The first block may be live-in, or it may have its own def.
875       if (Start != BlockStart) {
876         VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
877         assert(VNI && "Missing def for complex mapped value");
878         DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
879         // MBB has its own def. Is it also live-out?
880         if (BlockEnd <= End)
881           LRC.setLiveOutValue(&*MBB, VNI);
882
883         // Skip to the next block for live-in.
884         ++MBB;
885         BlockStart = BlockEnd;
886       }
887
888       // Handle the live-in blocks covered by [Start;End).
889       assert(Start <= BlockStart && "Expected live-in block");
890       while (BlockStart < End) {
891         DEBUG(dbgs() << ">BB#" << MBB->getNumber());
892         BlockEnd = LIS.getMBBEndIdx(&*MBB);
893         if (BlockStart == ParentVNI->def) {
894           // This block has the def of a parent PHI, so it isn't live-in.
895           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
896           VNInfo *VNI = LR.extendInBlock(BlockStart, std::min(BlockEnd, End));
897           assert(VNI && "Missing def for complex mapped parent PHI");
898           if (End >= BlockEnd)
899             LRC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
900         } else {
901           // This block needs a live-in value.  The last block covered may not
902           // be live-out.
903           if (End < BlockEnd)
904             LRC.addLiveInBlock(LR, MDT[&*MBB], End);
905           else {
906             // Live-through, and we don't know the value.
907             LRC.addLiveInBlock(LR, MDT[&*MBB]);
908             LRC.setLiveOutValue(&*MBB, nullptr);
909           }
910         }
911         BlockStart = BlockEnd;
912         ++MBB;
913       }
914       Start = End;
915     } while (Start != S.end);
916     DEBUG(dbgs() << '\n');
917   }
918
919   LRCalc[0].calculateValues();
920   if (SpillMode)
921     LRCalc[1].calculateValues();
922
923   return Skipped;
924 }
925
926 void SplitEditor::extendPHIKillRanges() {
927     // Extend live ranges to be live-out for successor PHI values.
928   for (const VNInfo *PHIVNI : Edit->getParent().valnos) {
929     if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
930       continue;
931     unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
932     LiveRange &LR = LIS.getInterval(Edit->get(RegIdx));
933     LiveRangeCalc &LRC = getLRCalc(RegIdx);
934     MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
935     for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
936          PE = MBB->pred_end(); PI != PE; ++PI) {
937       SlotIndex End = LIS.getMBBEndIdx(*PI);
938       SlotIndex LastUse = End.getPrevSlot();
939       // The predecessor may not have a live-out value. That is OK, like an
940       // undef PHI operand.
941       if (Edit->getParent().liveAt(LastUse)) {
942         assert(RegAssign.lookup(LastUse) == RegIdx &&
943                "Different register assignment in phi predecessor");
944         LRC.extend(LR, End);
945       }
946     }
947   }
948 }
949
950 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
951 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
952   for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
953        RE = MRI.reg_end(); RI != RE;) {
954     MachineOperand &MO = *RI;
955     MachineInstr *MI = MO.getParent();
956     ++RI;
957     // LiveDebugVariables should have handled all DBG_VALUE instructions.
958     if (MI->isDebugValue()) {
959       DEBUG(dbgs() << "Zapping " << *MI);
960       MO.setReg(0);
961       continue;
962     }
963
964     // <undef> operands don't really read the register, so it doesn't matter
965     // which register we choose.  When the use operand is tied to a def, we must
966     // use the same register as the def, so just do that always.
967     SlotIndex Idx = LIS.getInstructionIndex(MI);
968     if (MO.isDef() || MO.isUndef())
969       Idx = Idx.getRegSlot(MO.isEarlyClobber());
970
971     // Rewrite to the mapped register at Idx.
972     unsigned RegIdx = RegAssign.lookup(Idx);
973     LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
974     MO.setReg(LI->reg);
975     DEBUG(dbgs() << "  rewr BB#" << MI->getParent()->getNumber() << '\t'
976                  << Idx << ':' << RegIdx << '\t' << *MI);
977
978     // Extend liveness to Idx if the instruction reads reg.
979     if (!ExtendRanges || MO.isUndef())
980       continue;
981
982     // Skip instructions that don't read Reg.
983     if (MO.isDef()) {
984       if (!MO.getSubReg() && !MO.isEarlyClobber())
985         continue;
986       // We may wan't to extend a live range for a partial redef, or for a use
987       // tied to an early clobber.
988       Idx = Idx.getPrevSlot();
989       if (!Edit->getParent().liveAt(Idx))
990         continue;
991     } else
992       Idx = Idx.getRegSlot(true);
993
994     getLRCalc(RegIdx).extend(*LI, Idx.getNextSlot());
995   }
996 }
997
998 void SplitEditor::deleteRematVictims() {
999   SmallVector<MachineInstr*, 8> Dead;
1000   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1001     LiveInterval *LI = &LIS.getInterval(*I);
1002     for (const LiveRange::Segment &S : LI->segments) {
1003       // Dead defs end at the dead slot.
1004       if (S.end != S.valno->def.getDeadSlot())
1005         continue;
1006       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1007       assert(MI && "Missing instruction for dead def");
1008       MI->addRegisterDead(LI->reg, &TRI);
1009
1010       if (!MI->allDefsAreDead())
1011         continue;
1012
1013       DEBUG(dbgs() << "All defs dead: " << *MI);
1014       Dead.push_back(MI);
1015     }
1016   }
1017
1018   if (Dead.empty())
1019     return;
1020
1021   Edit->eliminateDeadDefs(Dead);
1022 }
1023
1024 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1025   ++NumFinished;
1026
1027   // At this point, the live intervals in Edit contain VNInfos corresponding to
1028   // the inserted copies.
1029
1030   // Add the original defs from the parent interval.
1031   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1032     if (ParentVNI->isUnused())
1033       continue;
1034     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1035     defValue(RegIdx, ParentVNI, ParentVNI->def);
1036
1037     // Force rematted values to be recomputed everywhere.
1038     // The new live ranges may be truncated.
1039     if (Edit->didRematerialize(ParentVNI))
1040       for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1041         forceRecompute(i, ParentVNI);
1042   }
1043
1044   // Hoist back-copies to the complement interval when in spill mode.
1045   switch (SpillMode) {
1046   case SM_Partition:
1047     // Leave all back-copies as is.
1048     break;
1049   case SM_Size:
1050     hoistCopiesForSize();
1051     break;
1052   case SM_Speed:
1053     llvm_unreachable("Spill mode 'speed' not implemented yet");
1054   }
1055
1056   // Transfer the simply mapped values, check if any are skipped.
1057   bool Skipped = transferValues();
1058   if (Skipped)
1059     extendPHIKillRanges();
1060   else
1061     ++NumSimple;
1062
1063   // Rewrite virtual registers, possibly extending ranges.
1064   rewriteAssigned(Skipped);
1065
1066   // Delete defs that were rematted everywhere.
1067   if (Skipped)
1068     deleteRematVictims();
1069
1070   // Get rid of unused values and set phi-kill flags.
1071   for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I) {
1072     LiveInterval &LI = LIS.getInterval(*I);
1073     LI.RenumberValues();
1074   }
1075
1076   // Provide a reverse mapping from original indices to Edit ranges.
1077   if (LRMap) {
1078     LRMap->clear();
1079     for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1080       LRMap->push_back(i);
1081   }
1082
1083   // Now check if any registers were separated into multiple components.
1084   ConnectedVNInfoEqClasses ConEQ(LIS);
1085   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1086     // Don't use iterators, they are invalidated by create() below.
1087     unsigned VReg = Edit->get(i);
1088     LiveInterval &LI = LIS.getInterval(VReg);
1089     SmallVector<LiveInterval*, 8> SplitLIs;
1090     LIS.splitSeparateComponents(LI, SplitLIs);
1091     unsigned Original = VRM.getOriginal(VReg);
1092     for (LiveInterval *SplitLI : SplitLIs)
1093       VRM.setIsSplitFromReg(SplitLI->reg, Original);
1094
1095     // The new intervals all map back to i.
1096     if (LRMap)
1097       LRMap->resize(Edit->size(), i);
1098   }
1099
1100   // Calculate spill weight and allocation hints for new intervals.
1101   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1102
1103   assert(!LRMap || LRMap->size() == Edit->size());
1104 }
1105
1106
1107 //===----------------------------------------------------------------------===//
1108 //                            Single Block Splitting
1109 //===----------------------------------------------------------------------===//
1110
1111 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1112                                            bool SingleInstrs) const {
1113   // Always split for multiple instructions.
1114   if (!BI.isOneInstr())
1115     return true;
1116   // Don't split for single instructions unless explicitly requested.
1117   if (!SingleInstrs)
1118     return false;
1119   // Splitting a live-through range always makes progress.
1120   if (BI.LiveIn && BI.LiveOut)
1121     return true;
1122   // No point in isolating a copy. It has no register class constraints.
1123   if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1124     return false;
1125   // Finally, don't isolate an end point that was created by earlier splits.
1126   return isOriginalEndpoint(BI.FirstInstr);
1127 }
1128
1129 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1130   openIntv();
1131   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1132   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1133     LastSplitPoint));
1134   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1135     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1136   } else {
1137       // The last use is after the last valid split point.
1138     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1139     useIntv(SegStart, SegStop);
1140     overlapIntv(SegStop, BI.LastInstr);
1141   }
1142 }
1143
1144
1145 //===----------------------------------------------------------------------===//
1146 //                    Global Live Range Splitting Support
1147 //===----------------------------------------------------------------------===//
1148
1149 // These methods support a method of global live range splitting that uses a
1150 // global algorithm to decide intervals for CFG edges. They will insert split
1151 // points and color intervals in basic blocks while avoiding interference.
1152 //
1153 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1154 // are on the stack.
1155
1156 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1157                                         unsigned IntvIn, SlotIndex LeaveBefore,
1158                                         unsigned IntvOut, SlotIndex EnterAfter){
1159   SlotIndex Start, Stop;
1160   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1161
1162   DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1163                << ") intf " << LeaveBefore << '-' << EnterAfter
1164                << ", live-through " << IntvIn << " -> " << IntvOut);
1165
1166   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1167
1168   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1169   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1170   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1171
1172   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1173
1174   if (!IntvOut) {
1175     DEBUG(dbgs() << ", spill on entry.\n");
1176     //
1177     //        <<<<<<<<<    Possible LeaveBefore interference.
1178     //    |-----------|    Live through.
1179     //    -____________    Spill on entry.
1180     //
1181     selectIntv(IntvIn);
1182     SlotIndex Idx = leaveIntvAtTop(*MBB);
1183     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1184     (void)Idx;
1185     return;
1186   }
1187
1188   if (!IntvIn) {
1189     DEBUG(dbgs() << ", reload on exit.\n");
1190     //
1191     //    >>>>>>>          Possible EnterAfter interference.
1192     //    |-----------|    Live through.
1193     //    ___________--    Reload on exit.
1194     //
1195     selectIntv(IntvOut);
1196     SlotIndex Idx = enterIntvAtEnd(*MBB);
1197     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1198     (void)Idx;
1199     return;
1200   }
1201
1202   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1203     DEBUG(dbgs() << ", straight through.\n");
1204     //
1205     //    |-----------|    Live through.
1206     //    -------------    Straight through, same intv, no interference.
1207     //
1208     selectIntv(IntvOut);
1209     useIntv(Start, Stop);
1210     return;
1211   }
1212
1213   // We cannot legally insert splits after LSP.
1214   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1215   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1216
1217   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1218                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1219     DEBUG(dbgs() << ", switch avoiding interference.\n");
1220     //
1221     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1222     //    |-----------|    Live through.
1223     //    ------=======    Switch intervals between interference.
1224     //
1225     selectIntv(IntvOut);
1226     SlotIndex Idx;
1227     if (LeaveBefore && LeaveBefore < LSP) {
1228       Idx = enterIntvBefore(LeaveBefore);
1229       useIntv(Idx, Stop);
1230     } else {
1231       Idx = enterIntvAtEnd(*MBB);
1232     }
1233     selectIntv(IntvIn);
1234     useIntv(Start, Idx);
1235     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1236     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1237     return;
1238   }
1239
1240   DEBUG(dbgs() << ", create local intv for interference.\n");
1241   //
1242   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1243   //    |-----------|    Live through.
1244   //    ==---------==    Switch intervals before/after interference.
1245   //
1246   assert(LeaveBefore <= EnterAfter && "Missed case");
1247
1248   selectIntv(IntvOut);
1249   SlotIndex Idx = enterIntvAfter(EnterAfter);
1250   useIntv(Idx, Stop);
1251   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1252
1253   selectIntv(IntvIn);
1254   Idx = leaveIntvBefore(LeaveBefore);
1255   useIntv(Start, Idx);
1256   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1257 }
1258
1259
1260 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1261                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1262   SlotIndex Start, Stop;
1263   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1264
1265   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1266                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1267                << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1268                << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1269
1270   assert(IntvIn && "Must have register in");
1271   assert(BI.LiveIn && "Must be live-in");
1272   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1273
1274   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1275     DEBUG(dbgs() << " before interference.\n");
1276     //
1277     //               <<<    Interference after kill.
1278     //     |---o---x   |    Killed in block.
1279     //     =========        Use IntvIn everywhere.
1280     //
1281     selectIntv(IntvIn);
1282     useIntv(Start, BI.LastInstr);
1283     return;
1284   }
1285
1286   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1287
1288   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1289     //
1290     //               <<<    Possible interference after last use.
1291     //     |---o---o---|    Live-out on stack.
1292     //     =========____    Leave IntvIn after last use.
1293     //
1294     //                 <    Interference after last use.
1295     //     |---o---o--o|    Live-out on stack, late last use.
1296     //     ============     Copy to stack after LSP, overlap IntvIn.
1297     //            \_____    Stack interval is live-out.
1298     //
1299     if (BI.LastInstr < LSP) {
1300       DEBUG(dbgs() << ", spill after last use before interference.\n");
1301       selectIntv(IntvIn);
1302       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1303       useIntv(Start, Idx);
1304       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1305     } else {
1306       DEBUG(dbgs() << ", spill before last split point.\n");
1307       selectIntv(IntvIn);
1308       SlotIndex Idx = leaveIntvBefore(LSP);
1309       overlapIntv(Idx, BI.LastInstr);
1310       useIntv(Start, Idx);
1311       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1312     }
1313     return;
1314   }
1315
1316   // The interference is overlapping somewhere we wanted to use IntvIn. That
1317   // means we need to create a local interval that can be allocated a
1318   // different register.
1319   unsigned LocalIntv = openIntv();
1320   (void)LocalIntv;
1321   DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1322
1323   if (!BI.LiveOut || BI.LastInstr < LSP) {
1324     //
1325     //           <<<<<<<    Interference overlapping uses.
1326     //     |---o---o---|    Live-out on stack.
1327     //     =====----____    Leave IntvIn before interference, then spill.
1328     //
1329     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1330     SlotIndex From = enterIntvBefore(LeaveBefore);
1331     useIntv(From, To);
1332     selectIntv(IntvIn);
1333     useIntv(Start, From);
1334     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1335     return;
1336   }
1337
1338   //           <<<<<<<    Interference overlapping uses.
1339   //     |---o---o--o|    Live-out on stack, late last use.
1340   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1341   //            \_____    Stack interval is live-out.
1342   //
1343   SlotIndex To = leaveIntvBefore(LSP);
1344   overlapIntv(To, BI.LastInstr);
1345   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1346   useIntv(From, To);
1347   selectIntv(IntvIn);
1348   useIntv(Start, From);
1349   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1350 }
1351
1352 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1353                                    unsigned IntvOut, SlotIndex EnterAfter) {
1354   SlotIndex Start, Stop;
1355   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1356
1357   DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1358                << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1359                << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1360                << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1361
1362   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1363
1364   assert(IntvOut && "Must have register out");
1365   assert(BI.LiveOut && "Must be live-out");
1366   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1367
1368   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1369     DEBUG(dbgs() << " after interference.\n");
1370     //
1371     //    >>>>             Interference before def.
1372     //    |   o---o---|    Defined in block.
1373     //        =========    Use IntvOut everywhere.
1374     //
1375     selectIntv(IntvOut);
1376     useIntv(BI.FirstInstr, Stop);
1377     return;
1378   }
1379
1380   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1381     DEBUG(dbgs() << ", reload after interference.\n");
1382     //
1383     //    >>>>             Interference before def.
1384     //    |---o---o---|    Live-through, stack-in.
1385     //    ____=========    Enter IntvOut before first use.
1386     //
1387     selectIntv(IntvOut);
1388     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1389     useIntv(Idx, Stop);
1390     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1391     return;
1392   }
1393
1394   // The interference is overlapping somewhere we wanted to use IntvOut. That
1395   // means we need to create a local interval that can be allocated a
1396   // different register.
1397   DEBUG(dbgs() << ", interference overlaps uses.\n");
1398   //
1399   //    >>>>>>>          Interference overlapping uses.
1400   //    |---o---o---|    Live-through, stack-in.
1401   //    ____---======    Create local interval for interference range.
1402   //
1403   selectIntv(IntvOut);
1404   SlotIndex Idx = enterIntvAfter(EnterAfter);
1405   useIntv(Idx, Stop);
1406   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1407
1408   openIntv();
1409   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1410   useIntv(From, Idx);
1411 }