[BranchFolding] Set correct mem refs
[oota-llvm.git] / lib / CodeGen / ShrinkWrap.cpp
1 //===-- ShrinkWrap.cpp - Compute safe point for prolog/epilog insertion ---===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass looks for safe point where the prologue and epilogue can be
11 // inserted.
12 // The safe point for the prologue (resp. epilogue) is called Save
13 // (resp. Restore).
14 // A point is safe for prologue (resp. epilogue) if and only if
15 // it 1) dominates (resp. post-dominates) all the frame related operations and
16 // between 2) two executions of the Save (resp. Restore) point there is an
17 // execution of the Restore (resp. Save) point.
18 //
19 // For instance, the following points are safe:
20 // for (int i = 0; i < 10; ++i) {
21 //   Save
22 //   ...
23 //   Restore
24 // }
25 // Indeed, the execution looks like Save -> Restore -> Save -> Restore ...
26 // And the following points are not:
27 // for (int i = 0; i < 10; ++i) {
28 //   Save
29 //   ...
30 // }
31 // for (int i = 0; i < 10; ++i) {
32 //   ...
33 //   Restore
34 // }
35 // Indeed, the execution looks like Save -> Save -> ... -> Restore -> Restore.
36 //
37 // This pass also ensures that the safe points are 3) cheaper than the regular
38 // entry and exits blocks.
39 //
40 // Property #1 is ensured via the use of MachineDominatorTree and
41 // MachinePostDominatorTree.
42 // Property #2 is ensured via property #1 and MachineLoopInfo, i.e., both
43 // points must be in the same loop.
44 // Property #3 is ensured via the MachineBlockFrequencyInfo.
45 //
46 // If this pass found points matching all these properties, then
47 // MachineFrameInfo is updated with this information.
48 //===----------------------------------------------------------------------===//
49 #include "llvm/ADT/BitVector.h"
50 #include "llvm/ADT/PostOrderIterator.h"
51 #include "llvm/ADT/SetVector.h"
52 #include "llvm/ADT/Statistic.h"
53 // To check for profitability.
54 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
55 // For property #1 for Save.
56 #include "llvm/CodeGen/MachineDominators.h"
57 #include "llvm/CodeGen/MachineFunctionPass.h"
58 // To record the result of the analysis.
59 #include "llvm/CodeGen/MachineFrameInfo.h"
60 // For property #2.
61 #include "llvm/CodeGen/MachineLoopInfo.h"
62 // For property #1 for Restore.
63 #include "llvm/CodeGen/MachinePostDominators.h"
64 #include "llvm/CodeGen/Passes.h"
65 // To know about callee-saved.
66 #include "llvm/CodeGen/RegisterClassInfo.h"
67 #include "llvm/CodeGen/RegisterScavenging.h"
68 #include "llvm/MC/MCAsmInfo.h"
69 #include "llvm/Support/Debug.h"
70 // To query the target about frame lowering.
71 #include "llvm/Target/TargetFrameLowering.h"
72 // To know about frame setup operation.
73 #include "llvm/Target/TargetInstrInfo.h"
74 #include "llvm/Target/TargetMachine.h"
75 // To access TargetInstrInfo.
76 #include "llvm/Target/TargetSubtargetInfo.h"
77
78 #define DEBUG_TYPE "shrink-wrap"
79
80 using namespace llvm;
81
82 STATISTIC(NumFunc, "Number of functions");
83 STATISTIC(NumCandidates, "Number of shrink-wrapping candidates");
84 STATISTIC(NumCandidatesDropped,
85           "Number of shrink-wrapping candidates dropped because of frequency");
86
87 static cl::opt<cl::boolOrDefault>
88     EnableShrinkWrapOpt("enable-shrink-wrap", cl::Hidden,
89                         cl::desc("enable the shrink-wrapping pass"));
90
91 namespace {
92 /// \brief Class to determine where the safe point to insert the
93 /// prologue and epilogue are.
94 /// Unlike the paper from Fred C. Chow, PLDI'88, that introduces the
95 /// shrink-wrapping term for prologue/epilogue placement, this pass
96 /// does not rely on expensive data-flow analysis. Instead we use the
97 /// dominance properties and loop information to decide which point
98 /// are safe for such insertion.
99 class ShrinkWrap : public MachineFunctionPass {
100   /// Hold callee-saved information.
101   RegisterClassInfo RCI;
102   MachineDominatorTree *MDT;
103   MachinePostDominatorTree *MPDT;
104   /// Current safe point found for the prologue.
105   /// The prologue will be inserted before the first instruction
106   /// in this basic block.
107   MachineBasicBlock *Save;
108   /// Current safe point found for the epilogue.
109   /// The epilogue will be inserted before the first terminator instruction
110   /// in this basic block.
111   MachineBasicBlock *Restore;
112   /// Hold the information of the basic block frequency.
113   /// Use to check the profitability of the new points.
114   MachineBlockFrequencyInfo *MBFI;
115   /// Hold the loop information. Used to determine if Save and Restore
116   /// are in the same loop.
117   MachineLoopInfo *MLI;
118   /// Frequency of the Entry block.
119   uint64_t EntryFreq;
120   /// Current opcode for frame setup.
121   unsigned FrameSetupOpcode;
122   /// Current opcode for frame destroy.
123   unsigned FrameDestroyOpcode;
124   /// Entry block.
125   const MachineBasicBlock *Entry;
126   typedef SmallSetVector<unsigned, 16> SetOfRegs;
127   /// Registers that need to be saved for the current function.
128   mutable SetOfRegs CurrentCSRs;
129   /// Current MachineFunction.
130   MachineFunction *MachineFunc;
131
132   /// \brief Check if \p MI uses or defines a callee-saved register or
133   /// a frame index. If this is the case, this means \p MI must happen
134   /// after Save and before Restore.
135   bool useOrDefCSROrFI(const MachineInstr &MI, RegScavenger *RS) const;
136
137   const SetOfRegs &getCurrentCSRs(RegScavenger *RS) const {
138     if (CurrentCSRs.empty()) {
139       BitVector SavedRegs;
140       const TargetFrameLowering *TFI =
141           MachineFunc->getSubtarget().getFrameLowering();
142
143       TFI->determineCalleeSaves(*MachineFunc, SavedRegs, RS);
144
145       for (int Reg = SavedRegs.find_first(); Reg != -1;
146            Reg = SavedRegs.find_next(Reg))
147         CurrentCSRs.insert((unsigned)Reg);
148     }
149     return CurrentCSRs;
150   }
151
152   /// \brief Update the Save and Restore points such that \p MBB is in
153   /// the region that is dominated by Save and post-dominated by Restore
154   /// and Save and Restore still match the safe point definition.
155   /// Such point may not exist and Save and/or Restore may be null after
156   /// this call.
157   void updateSaveRestorePoints(MachineBasicBlock &MBB, RegScavenger *RS);
158
159   /// \brief Initialize the pass for \p MF.
160   void init(MachineFunction &MF) {
161     RCI.runOnMachineFunction(MF);
162     MDT = &getAnalysis<MachineDominatorTree>();
163     MPDT = &getAnalysis<MachinePostDominatorTree>();
164     Save = nullptr;
165     Restore = nullptr;
166     MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
167     MLI = &getAnalysis<MachineLoopInfo>();
168     EntryFreq = MBFI->getEntryFreq();
169     const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
170     FrameSetupOpcode = TII.getCallFrameSetupOpcode();
171     FrameDestroyOpcode = TII.getCallFrameDestroyOpcode();
172     Entry = &MF.front();
173     CurrentCSRs.clear();
174     MachineFunc = &MF;
175
176     ++NumFunc;
177   }
178
179   /// Check whether or not Save and Restore points are still interesting for
180   /// shrink-wrapping.
181   bool ArePointsInteresting() const { return Save != Entry && Save && Restore; }
182
183   /// \brief Check if shrink wrapping is enabled for this target and function.
184   static bool isShrinkWrapEnabled(const MachineFunction &MF);
185
186 public:
187   static char ID;
188
189   ShrinkWrap() : MachineFunctionPass(ID) {
190     initializeShrinkWrapPass(*PassRegistry::getPassRegistry());
191   }
192
193   void getAnalysisUsage(AnalysisUsage &AU) const override {
194     AU.setPreservesAll();
195     AU.addRequired<MachineBlockFrequencyInfo>();
196     AU.addRequired<MachineDominatorTree>();
197     AU.addRequired<MachinePostDominatorTree>();
198     AU.addRequired<MachineLoopInfo>();
199     MachineFunctionPass::getAnalysisUsage(AU);
200   }
201
202   const char *getPassName() const override {
203     return "Shrink Wrapping analysis";
204   }
205
206   /// \brief Perform the shrink-wrapping analysis and update
207   /// the MachineFrameInfo attached to \p MF with the results.
208   bool runOnMachineFunction(MachineFunction &MF) override;
209 };
210 } // End anonymous namespace.
211
212 char ShrinkWrap::ID = 0;
213 char &llvm::ShrinkWrapID = ShrinkWrap::ID;
214
215 INITIALIZE_PASS_BEGIN(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false,
216                       false)
217 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
218 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
219 INITIALIZE_PASS_DEPENDENCY(MachinePostDominatorTree)
220 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
221 INITIALIZE_PASS_END(ShrinkWrap, "shrink-wrap", "Shrink Wrap Pass", false, false)
222
223 bool ShrinkWrap::useOrDefCSROrFI(const MachineInstr &MI,
224                                  RegScavenger *RS) const {
225   if (MI.getOpcode() == FrameSetupOpcode ||
226       MI.getOpcode() == FrameDestroyOpcode) {
227     DEBUG(dbgs() << "Frame instruction: " << MI << '\n');
228     return true;
229   }
230   for (const MachineOperand &MO : MI.operands()) {
231     bool UseOrDefCSR = false;
232     if (MO.isReg()) {
233       unsigned PhysReg = MO.getReg();
234       if (!PhysReg)
235         continue;
236       assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
237              "Unallocated register?!");
238       UseOrDefCSR = RCI.getLastCalleeSavedAlias(PhysReg);
239     } else if (MO.isRegMask()) {
240       // Check if this regmask clobbers any of the CSRs.
241       for (unsigned Reg : getCurrentCSRs(RS)) {
242         if (MO.clobbersPhysReg(Reg)) {
243           UseOrDefCSR = true;
244           break;
245         }
246       }
247     }
248     if (UseOrDefCSR || MO.isFI()) {
249       DEBUG(dbgs() << "Use or define CSR(" << UseOrDefCSR << ") or FI("
250                    << MO.isFI() << "): " << MI << '\n');
251       return true;
252     }
253   }
254   return false;
255 }
256
257 /// \brief Helper function to find the immediate (post) dominator.
258 template <typename ListOfBBs, typename DominanceAnalysis>
259 MachineBasicBlock *FindIDom(MachineBasicBlock &Block, ListOfBBs BBs,
260                             DominanceAnalysis &Dom) {
261   MachineBasicBlock *IDom = &Block;
262   for (MachineBasicBlock *BB : BBs) {
263     IDom = Dom.findNearestCommonDominator(IDom, BB);
264     if (!IDom)
265       break;
266   }
267   if (IDom == &Block)
268     return nullptr;
269   return IDom;
270 }
271
272 void ShrinkWrap::updateSaveRestorePoints(MachineBasicBlock &MBB,
273                                          RegScavenger *RS) {
274   // Get rid of the easy cases first.
275   if (!Save)
276     Save = &MBB;
277   else
278     Save = MDT->findNearestCommonDominator(Save, &MBB);
279
280   if (!Save) {
281     DEBUG(dbgs() << "Found a block that is not reachable from Entry\n");
282     return;
283   }
284
285   if (!Restore)
286     Restore = &MBB;
287   else
288     Restore = MPDT->findNearestCommonDominator(Restore, &MBB);
289
290   // Make sure we would be able to insert the restore code before the
291   // terminator.
292   if (Restore == &MBB) {
293     for (const MachineInstr &Terminator : MBB.terminators()) {
294       if (!useOrDefCSROrFI(Terminator, RS))
295         continue;
296       // One of the terminator needs to happen before the restore point.
297       if (MBB.succ_empty()) {
298         Restore = nullptr;
299         break;
300       }
301       // Look for a restore point that post-dominates all the successors.
302       // The immediate post-dominator is what we are looking for.
303       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
304       break;
305     }
306   }
307
308   if (!Restore) {
309     DEBUG(dbgs() << "Restore point needs to be spanned on several blocks\n");
310     return;
311   }
312
313   // Make sure Save and Restore are suitable for shrink-wrapping:
314   // 1. all path from Save needs to lead to Restore before exiting.
315   // 2. all path to Restore needs to go through Save from Entry.
316   // We achieve that by making sure that:
317   // A. Save dominates Restore.
318   // B. Restore post-dominates Save.
319   // C. Save and Restore are in the same loop.
320   bool SaveDominatesRestore = false;
321   bool RestorePostDominatesSave = false;
322   while (Save && Restore &&
323          (!(SaveDominatesRestore = MDT->dominates(Save, Restore)) ||
324           !(RestorePostDominatesSave = MPDT->dominates(Restore, Save)) ||
325           // Post-dominance is not enough in loops to ensure that all uses/defs
326           // are after the prologue and before the epilogue at runtime.
327           // E.g.,
328           // while(1) {
329           //  Save
330           //  Restore
331           //   if (...)
332           //     break;
333           //  use/def CSRs
334           // }
335           // All the uses/defs of CSRs are dominated by Save and post-dominated
336           // by Restore. However, the CSRs uses are still reachable after
337           // Restore and before Save are executed.
338           //
339           // For now, just push the restore/save points outside of loops.
340           // FIXME: Refine the criteria to still find interesting cases
341           // for loops.
342           MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
343     // Fix (A).
344     if (!SaveDominatesRestore) {
345       Save = MDT->findNearestCommonDominator(Save, Restore);
346       continue;
347     }
348     // Fix (B).
349     if (!RestorePostDominatesSave)
350       Restore = MPDT->findNearestCommonDominator(Restore, Save);
351
352     // Fix (C).
353     if (Save && Restore &&
354         (MLI->getLoopFor(Save) || MLI->getLoopFor(Restore))) {
355       if (MLI->getLoopDepth(Save) > MLI->getLoopDepth(Restore)) {
356         // Push Save outside of this loop if immediate dominator is different
357         // from save block. If immediate dominator is not different, bail out.
358         Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
359         if (!Save)
360           break;
361       } else {
362         // If the loop does not exit, there is no point in looking
363         // for a post-dominator outside the loop.
364         SmallVector<MachineBasicBlock*, 4> ExitBlocks;
365         MLI->getLoopFor(Restore)->getExitingBlocks(ExitBlocks);
366         // Push Restore outside of this loop.
367         // Look for the immediate post-dominator of the loop exits.
368         MachineBasicBlock *IPdom = Restore;
369         for (MachineBasicBlock *LoopExitBB: ExitBlocks) {
370           IPdom = FindIDom<>(*IPdom, LoopExitBB->successors(), *MPDT);
371           if (!IPdom)
372             break;
373         }
374         // If the immediate post-dominator is not in a less nested loop,
375         // then we are stuck in a program with an infinite loop.
376         // In that case, we will not find a safe point, hence, bail out.
377         if (IPdom && MLI->getLoopDepth(IPdom) < MLI->getLoopDepth(Restore))
378           Restore = IPdom;
379         else {
380           Restore = nullptr;
381           break;
382         }
383       }
384     }
385   }
386 }
387
388 /// Check whether the edge (\p SrcBB, \p DestBB) is a backedge according to MLI.
389 /// I.e., check if it exists a loop that contains SrcBB and where DestBB is the
390 /// loop header.
391 static bool isProperBackedge(const MachineLoopInfo &MLI,
392                              const MachineBasicBlock *SrcBB,
393                              const MachineBasicBlock *DestBB) {
394   for (const MachineLoop *Loop = MLI.getLoopFor(SrcBB); Loop;
395        Loop = Loop->getParentLoop()) {
396     if (Loop->getHeader() == DestBB)
397       return true;
398   }
399   return false;
400 }
401
402 /// Check if the CFG of \p MF is irreducible.
403 static bool isIrreducibleCFG(const MachineFunction &MF,
404                              const MachineLoopInfo &MLI) {
405   const MachineBasicBlock *Entry = &*MF.begin();
406   ReversePostOrderTraversal<const MachineBasicBlock *> RPOT(Entry);
407   BitVector VisitedBB(MF.getNumBlockIDs());
408   for (const MachineBasicBlock *MBB : RPOT) {
409     VisitedBB.set(MBB->getNumber());
410     for (const MachineBasicBlock *SuccBB : MBB->successors()) {
411       if (!VisitedBB.test(SuccBB->getNumber()))
412         continue;
413       // We already visited SuccBB, thus MBB->SuccBB must be a backedge.
414       // Check that the head matches what we have in the loop information.
415       // Otherwise, we have an irreducible graph.
416       if (!isProperBackedge(MLI, MBB, SuccBB))
417         return true;
418     }
419   }
420   return false;
421 }
422
423 bool ShrinkWrap::runOnMachineFunction(MachineFunction &MF) {
424   if (MF.empty() || !isShrinkWrapEnabled(MF))
425     return false;
426
427   DEBUG(dbgs() << "**** Analysing " << MF.getName() << '\n');
428
429   init(MF);
430
431   if (isIrreducibleCFG(MF, *MLI)) {
432     // If MF is irreducible, a block may be in a loop without
433     // MachineLoopInfo reporting it. I.e., we may use the
434     // post-dominance property in loops, which lead to incorrect
435     // results. Moreover, we may miss that the prologue and
436     // epilogue are not in the same loop, leading to unbalanced
437     // construction/deconstruction of the stack frame.
438     DEBUG(dbgs() << "Irreducible CFGs are not supported yet\n");
439     return false;
440   }
441
442   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
443   std::unique_ptr<RegScavenger> RS(
444       TRI->requiresRegisterScavenging(MF) ? new RegScavenger() : nullptr);
445
446   for (MachineBasicBlock &MBB : MF) {
447     DEBUG(dbgs() << "Look into: " << MBB.getNumber() << ' ' << MBB.getName()
448                  << '\n');
449
450     if (MBB.isEHFuncletEntry()) {
451       DEBUG(dbgs() << "EH Funclets are not supported yet.\n");
452       return false;
453     }
454
455     for (const MachineInstr &MI : MBB) {
456       if (!useOrDefCSROrFI(MI, RS.get()))
457         continue;
458       // Save (resp. restore) point must dominate (resp. post dominate)
459       // MI. Look for the proper basic block for those.
460       updateSaveRestorePoints(MBB, RS.get());
461       // If we are at a point where we cannot improve the placement of
462       // save/restore instructions, just give up.
463       if (!ArePointsInteresting()) {
464         DEBUG(dbgs() << "No Shrink wrap candidate found\n");
465         return false;
466       }
467       // No need to look for other instructions, this basic block
468       // will already be part of the handled region.
469       break;
470     }
471   }
472   if (!ArePointsInteresting()) {
473     // If the points are not interesting at this point, then they must be null
474     // because it means we did not encounter any frame/CSR related code.
475     // Otherwise, we would have returned from the previous loop.
476     assert(!Save && !Restore && "We miss a shrink-wrap opportunity?!");
477     DEBUG(dbgs() << "Nothing to shrink-wrap\n");
478     return false;
479   }
480
481   DEBUG(dbgs() << "\n ** Results **\nFrequency of the Entry: " << EntryFreq
482                << '\n');
483
484   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
485   do {
486     DEBUG(dbgs() << "Shrink wrap candidates (#, Name, Freq):\nSave: "
487                  << Save->getNumber() << ' ' << Save->getName() << ' '
488                  << MBFI->getBlockFreq(Save).getFrequency() << "\nRestore: "
489                  << Restore->getNumber() << ' ' << Restore->getName() << ' '
490                  << MBFI->getBlockFreq(Restore).getFrequency() << '\n');
491
492     bool IsSaveCheap, TargetCanUseSaveAsPrologue = false;
493     if (((IsSaveCheap = EntryFreq >= MBFI->getBlockFreq(Save).getFrequency()) &&
494          EntryFreq >= MBFI->getBlockFreq(Restore).getFrequency()) &&
495         ((TargetCanUseSaveAsPrologue = TFI->canUseAsPrologue(*Save)) &&
496          TFI->canUseAsEpilogue(*Restore)))
497       break;
498     DEBUG(dbgs() << "New points are too expensive or invalid for the target\n");
499     MachineBasicBlock *NewBB;
500     if (!IsSaveCheap || !TargetCanUseSaveAsPrologue) {
501       Save = FindIDom<>(*Save, Save->predecessors(), *MDT);
502       if (!Save)
503         break;
504       NewBB = Save;
505     } else {
506       // Restore is expensive.
507       Restore = FindIDom<>(*Restore, Restore->successors(), *MPDT);
508       if (!Restore)
509         break;
510       NewBB = Restore;
511     }
512     updateSaveRestorePoints(*NewBB, RS.get());
513   } while (Save && Restore);
514
515   if (!ArePointsInteresting()) {
516     ++NumCandidatesDropped;
517     return false;
518   }
519
520   DEBUG(dbgs() << "Final shrink wrap candidates:\nSave: " << Save->getNumber()
521                << ' ' << Save->getName() << "\nRestore: "
522                << Restore->getNumber() << ' ' << Restore->getName() << '\n');
523
524   MachineFrameInfo *MFI = MF.getFrameInfo();
525   MFI->setSavePoint(Save);
526   MFI->setRestorePoint(Restore);
527   ++NumCandidates;
528   return false;
529 }
530
531 bool ShrinkWrap::isShrinkWrapEnabled(const MachineFunction &MF) {
532   const TargetFrameLowering *TFI = MF.getSubtarget().getFrameLowering();
533
534   switch (EnableShrinkWrapOpt) {
535   case cl::BOU_UNSET:
536     return TFI->enableShrinkWrapping(MF) &&
537       // Windows with CFI has some limitations that make it impossible
538       // to use shrink-wrapping.
539       !MF.getTarget().getMCAsmInfo()->usesWindowsCFI() &&
540       // Sanitizers look at the value of the stack at the location
541       // of the crash. Since a crash can happen anywhere, the
542       // frame must be lowered before anything else happen for the
543       // sanitizers to be able to get a correct stack frame.
544       !(MF.getFunction()->hasFnAttribute(Attribute::SanitizeAddress) ||
545         MF.getFunction()->hasFnAttribute(Attribute::SanitizeThread) ||
546         MF.getFunction()->hasFnAttribute(Attribute::SanitizeMemory));
547   // If EnableShrinkWrap is set, it takes precedence on whatever the
548   // target sets. The rational is that we assume we want to test
549   // something related to shrink-wrapping.
550   case cl::BOU_TRUE:
551     return true;
552   case cl::BOU_FALSE:
553     return false;
554   }
555   llvm_unreachable("Invalid shrink-wrapping state");
556 }