[StackMaps] Mark in CallLoweringInfo when lowering a patchpoint
[oota-llvm.git] / lib / CodeGen / SelectionDAG / SelectionDAGBuilder.cpp
1 //===-- SelectionDAGBuilder.cpp - Selection-DAG building ------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating from LLVM IR into SelectionDAG IR.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "SelectionDAGBuilder.h"
15 #include "SDNodeDbgValue.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/Analysis/BranchProbabilityInfo.h"
22 #include "llvm/Analysis/ConstantFolding.h"
23 #include "llvm/Analysis/ValueTracking.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/FastISel.h"
26 #include "llvm/CodeGen/FunctionLoweringInfo.h"
27 #include "llvm/CodeGen/GCMetadata.h"
28 #include "llvm/CodeGen/GCStrategy.h"
29 #include "llvm/CodeGen/MachineFrameInfo.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineInstrBuilder.h"
32 #include "llvm/CodeGen/MachineJumpTableInfo.h"
33 #include "llvm/CodeGen/MachineModuleInfo.h"
34 #include "llvm/CodeGen/MachineRegisterInfo.h"
35 #include "llvm/CodeGen/SelectionDAG.h"
36 #include "llvm/CodeGen/StackMaps.h"
37 #include "llvm/IR/CallingConv.h"
38 #include "llvm/IR/Constants.h"
39 #include "llvm/IR/DataLayout.h"
40 #include "llvm/IR/DebugInfo.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalVariable.h"
44 #include "llvm/IR/InlineAsm.h"
45 #include "llvm/IR/Instructions.h"
46 #include "llvm/IR/IntrinsicInst.h"
47 #include "llvm/IR/Intrinsics.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/Module.h"
50 #include "llvm/IR/Statepoint.h"
51 #include "llvm/MC/MCSymbol.h"
52 #include "llvm/Support/CommandLine.h"
53 #include "llvm/Support/Debug.h"
54 #include "llvm/Support/ErrorHandling.h"
55 #include "llvm/Support/MathExtras.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include "llvm/Target/TargetFrameLowering.h"
58 #include "llvm/Target/TargetInstrInfo.h"
59 #include "llvm/Target/TargetIntrinsicInfo.h"
60 #include "llvm/Target/TargetLibraryInfo.h"
61 #include "llvm/Target/TargetLowering.h"
62 #include "llvm/Target/TargetOptions.h"
63 #include "llvm/Target/TargetSelectionDAGInfo.h"
64 #include "llvm/Target/TargetSubtargetInfo.h"
65 #include <algorithm>
66 using namespace llvm;
67
68 #define DEBUG_TYPE "isel"
69
70 /// LimitFloatPrecision - Generate low-precision inline sequences for
71 /// some float libcalls (6, 8 or 12 bits).
72 static unsigned LimitFloatPrecision;
73
74 static cl::opt<unsigned, true>
75 LimitFPPrecision("limit-float-precision",
76                  cl::desc("Generate low-precision inline sequences "
77                           "for some float libcalls"),
78                  cl::location(LimitFloatPrecision),
79                  cl::init(0));
80
81 // Limit the width of DAG chains. This is important in general to prevent
82 // prevent DAG-based analysis from blowing up. For example, alias analysis and
83 // load clustering may not complete in reasonable time. It is difficult to
84 // recognize and avoid this situation within each individual analysis, and
85 // future analyses are likely to have the same behavior. Limiting DAG width is
86 // the safe approach, and will be especially important with global DAGs.
87 //
88 // MaxParallelChains default is arbitrarily high to avoid affecting
89 // optimization, but could be lowered to improve compile time. Any ld-ld-st-st
90 // sequence over this should have been converted to llvm.memcpy by the
91 // frontend. It easy to induce this behavior with .ll code such as:
92 // %buffer = alloca [4096 x i8]
93 // %data = load [4096 x i8]* %argPtr
94 // store [4096 x i8] %data, [4096 x i8]* %buffer
95 static const unsigned MaxParallelChains = 64;
96
97 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
98                                       const SDValue *Parts, unsigned NumParts,
99                                       MVT PartVT, EVT ValueVT, const Value *V);
100
101 /// getCopyFromParts - Create a value that contains the specified legal parts
102 /// combined into the value they represent.  If the parts combine to a type
103 /// larger then ValueVT then AssertOp can be used to specify whether the extra
104 /// bits are known to be zero (ISD::AssertZext) or sign extended from ValueVT
105 /// (ISD::AssertSext).
106 static SDValue getCopyFromParts(SelectionDAG &DAG, SDLoc DL,
107                                 const SDValue *Parts,
108                                 unsigned NumParts, MVT PartVT, EVT ValueVT,
109                                 const Value *V,
110                                 ISD::NodeType AssertOp = ISD::DELETED_NODE) {
111   if (ValueVT.isVector())
112     return getCopyFromPartsVector(DAG, DL, Parts, NumParts,
113                                   PartVT, ValueVT, V);
114
115   assert(NumParts > 0 && "No parts to assemble!");
116   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
117   SDValue Val = Parts[0];
118
119   if (NumParts > 1) {
120     // Assemble the value from multiple parts.
121     if (ValueVT.isInteger()) {
122       unsigned PartBits = PartVT.getSizeInBits();
123       unsigned ValueBits = ValueVT.getSizeInBits();
124
125       // Assemble the power of 2 part.
126       unsigned RoundParts = NumParts & (NumParts - 1) ?
127         1 << Log2_32(NumParts) : NumParts;
128       unsigned RoundBits = PartBits * RoundParts;
129       EVT RoundVT = RoundBits == ValueBits ?
130         ValueVT : EVT::getIntegerVT(*DAG.getContext(), RoundBits);
131       SDValue Lo, Hi;
132
133       EVT HalfVT = EVT::getIntegerVT(*DAG.getContext(), RoundBits/2);
134
135       if (RoundParts > 2) {
136         Lo = getCopyFromParts(DAG, DL, Parts, RoundParts / 2,
137                               PartVT, HalfVT, V);
138         Hi = getCopyFromParts(DAG, DL, Parts + RoundParts / 2,
139                               RoundParts / 2, PartVT, HalfVT, V);
140       } else {
141         Lo = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[0]);
142         Hi = DAG.getNode(ISD::BITCAST, DL, HalfVT, Parts[1]);
143       }
144
145       if (TLI.isBigEndian())
146         std::swap(Lo, Hi);
147
148       Val = DAG.getNode(ISD::BUILD_PAIR, DL, RoundVT, Lo, Hi);
149
150       if (RoundParts < NumParts) {
151         // Assemble the trailing non-power-of-2 part.
152         unsigned OddParts = NumParts - RoundParts;
153         EVT OddVT = EVT::getIntegerVT(*DAG.getContext(), OddParts * PartBits);
154         Hi = getCopyFromParts(DAG, DL,
155                               Parts + RoundParts, OddParts, PartVT, OddVT, V);
156
157         // Combine the round and odd parts.
158         Lo = Val;
159         if (TLI.isBigEndian())
160           std::swap(Lo, Hi);
161         EVT TotalVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
162         Hi = DAG.getNode(ISD::ANY_EXTEND, DL, TotalVT, Hi);
163         Hi = DAG.getNode(ISD::SHL, DL, TotalVT, Hi,
164                          DAG.getConstant(Lo.getValueType().getSizeInBits(),
165                                          TLI.getPointerTy()));
166         Lo = DAG.getNode(ISD::ZERO_EXTEND, DL, TotalVT, Lo);
167         Val = DAG.getNode(ISD::OR, DL, TotalVT, Lo, Hi);
168       }
169     } else if (PartVT.isFloatingPoint()) {
170       // FP split into multiple FP parts (for ppcf128)
171       assert(ValueVT == EVT(MVT::ppcf128) && PartVT == MVT::f64 &&
172              "Unexpected split");
173       SDValue Lo, Hi;
174       Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
175       Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
176       if (TLI.hasBigEndianPartOrdering(ValueVT))
177         std::swap(Lo, Hi);
178       Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
179     } else {
180       // FP split into integer parts (soft fp)
181       assert(ValueVT.isFloatingPoint() && PartVT.isInteger() &&
182              !PartVT.isVector() && "Unexpected split");
183       EVT IntVT = EVT::getIntegerVT(*DAG.getContext(), ValueVT.getSizeInBits());
184       Val = getCopyFromParts(DAG, DL, Parts, NumParts, PartVT, IntVT, V);
185     }
186   }
187
188   // There is now one part, held in Val.  Correct it to match ValueVT.
189   EVT PartEVT = Val.getValueType();
190
191   if (PartEVT == ValueVT)
192     return Val;
193
194   if (PartEVT.isInteger() && ValueVT.isInteger()) {
195     if (ValueVT.bitsLT(PartEVT)) {
196       // For a truncate, see if we have any information to
197       // indicate whether the truncated bits will always be
198       // zero or sign-extension.
199       if (AssertOp != ISD::DELETED_NODE)
200         Val = DAG.getNode(AssertOp, DL, PartEVT, Val,
201                           DAG.getValueType(ValueVT));
202       return DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
203     }
204     return DAG.getNode(ISD::ANY_EXTEND, DL, ValueVT, Val);
205   }
206
207   if (PartEVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
208     // FP_ROUND's are always exact here.
209     if (ValueVT.bitsLT(Val.getValueType()))
210       return DAG.getNode(ISD::FP_ROUND, DL, ValueVT, Val,
211                          DAG.getTargetConstant(1, TLI.getPointerTy()));
212
213     return DAG.getNode(ISD::FP_EXTEND, DL, ValueVT, Val);
214   }
215
216   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits())
217     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
218
219   llvm_unreachable("Unknown mismatch!");
220 }
221
222 static void diagnosePossiblyInvalidConstraint(LLVMContext &Ctx, const Value *V,
223                                               const Twine &ErrMsg) {
224   const Instruction *I = dyn_cast_or_null<Instruction>(V);
225   if (!V)
226     return Ctx.emitError(ErrMsg);
227
228   const char *AsmError = ", possible invalid constraint for vector type";
229   if (const CallInst *CI = dyn_cast<CallInst>(I))
230     if (isa<InlineAsm>(CI->getCalledValue()))
231       return Ctx.emitError(I, ErrMsg + AsmError);
232
233   return Ctx.emitError(I, ErrMsg);
234 }
235
236 /// getCopyFromPartsVector - Create a value that contains the specified legal
237 /// parts combined into the value they represent.  If the parts combine to a
238 /// type larger then ValueVT then AssertOp can be used to specify whether the
239 /// extra bits are known to be zero (ISD::AssertZext) or sign extended from
240 /// ValueVT (ISD::AssertSext).
241 static SDValue getCopyFromPartsVector(SelectionDAG &DAG, SDLoc DL,
242                                       const SDValue *Parts, unsigned NumParts,
243                                       MVT PartVT, EVT ValueVT, const Value *V) {
244   assert(ValueVT.isVector() && "Not a vector value");
245   assert(NumParts > 0 && "No parts to assemble!");
246   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
247   SDValue Val = Parts[0];
248
249   // Handle a multi-element vector.
250   if (NumParts > 1) {
251     EVT IntermediateVT;
252     MVT RegisterVT;
253     unsigned NumIntermediates;
254     unsigned NumRegs =
255     TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT, IntermediateVT,
256                                NumIntermediates, RegisterVT);
257     assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
258     NumParts = NumRegs; // Silence a compiler warning.
259     assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
260     assert(RegisterVT == Parts[0].getSimpleValueType() &&
261            "Part type doesn't match part!");
262
263     // Assemble the parts into intermediate operands.
264     SmallVector<SDValue, 8> Ops(NumIntermediates);
265     if (NumIntermediates == NumParts) {
266       // If the register was not expanded, truncate or copy the value,
267       // as appropriate.
268       for (unsigned i = 0; i != NumParts; ++i)
269         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i], 1,
270                                   PartVT, IntermediateVT, V);
271     } else if (NumParts > 0) {
272       // If the intermediate type was expanded, build the intermediate
273       // operands from the parts.
274       assert(NumParts % NumIntermediates == 0 &&
275              "Must expand into a divisible number of parts!");
276       unsigned Factor = NumParts / NumIntermediates;
277       for (unsigned i = 0; i != NumIntermediates; ++i)
278         Ops[i] = getCopyFromParts(DAG, DL, &Parts[i * Factor], Factor,
279                                   PartVT, IntermediateVT, V);
280     }
281
282     // Build a vector with BUILD_VECTOR or CONCAT_VECTORS from the
283     // intermediate operands.
284     Val = DAG.getNode(IntermediateVT.isVector() ? ISD::CONCAT_VECTORS
285                                                 : ISD::BUILD_VECTOR,
286                       DL, ValueVT, Ops);
287   }
288
289   // There is now one part, held in Val.  Correct it to match ValueVT.
290   EVT PartEVT = Val.getValueType();
291
292   if (PartEVT == ValueVT)
293     return Val;
294
295   if (PartEVT.isVector()) {
296     // If the element type of the source/dest vectors are the same, but the
297     // parts vector has more elements than the value vector, then we have a
298     // vector widening case (e.g. <2 x float> -> <4 x float>).  Extract the
299     // elements we want.
300     if (PartEVT.getVectorElementType() == ValueVT.getVectorElementType()) {
301       assert(PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements() &&
302              "Cannot narrow, it would be a lossy transformation");
303       return DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL, ValueVT, Val,
304                          DAG.getConstant(0, TLI.getVectorIdxTy()));
305     }
306
307     // Vector/Vector bitcast.
308     if (ValueVT.getSizeInBits() == PartEVT.getSizeInBits())
309       return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
310
311     assert(PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements() &&
312       "Cannot handle this kind of promotion");
313     // Promoted vector extract
314     bool Smaller = ValueVT.bitsLE(PartEVT);
315     return DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
316                        DL, ValueVT, Val);
317
318   }
319
320   // Trivial bitcast if the types are the same size and the destination
321   // vector type is legal.
322   if (PartEVT.getSizeInBits() == ValueVT.getSizeInBits() &&
323       TLI.isTypeLegal(ValueVT))
324     return DAG.getNode(ISD::BITCAST, DL, ValueVT, Val);
325
326   // Handle cases such as i8 -> <1 x i1>
327   if (ValueVT.getVectorNumElements() != 1) {
328     diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
329                                       "non-trivial scalar-to-vector conversion");
330     return DAG.getUNDEF(ValueVT);
331   }
332
333   if (ValueVT.getVectorNumElements() == 1 &&
334       ValueVT.getVectorElementType() != PartEVT) {
335     bool Smaller = ValueVT.bitsLE(PartEVT);
336     Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
337                        DL, ValueVT.getScalarType(), Val);
338   }
339
340   return DAG.getNode(ISD::BUILD_VECTOR, DL, ValueVT, Val);
341 }
342
343 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc dl,
344                                  SDValue Val, SDValue *Parts, unsigned NumParts,
345                                  MVT PartVT, const Value *V);
346
347 /// getCopyToParts - Create a series of nodes that contain the specified value
348 /// split into legal parts.  If the parts contain more bits than Val, then, for
349 /// integers, ExtendKind can be used to specify how to generate the extra bits.
350 static void getCopyToParts(SelectionDAG &DAG, SDLoc DL,
351                            SDValue Val, SDValue *Parts, unsigned NumParts,
352                            MVT PartVT, const Value *V,
353                            ISD::NodeType ExtendKind = ISD::ANY_EXTEND) {
354   EVT ValueVT = Val.getValueType();
355
356   // Handle the vector case separately.
357   if (ValueVT.isVector())
358     return getCopyToPartsVector(DAG, DL, Val, Parts, NumParts, PartVT, V);
359
360   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
361   unsigned PartBits = PartVT.getSizeInBits();
362   unsigned OrigNumParts = NumParts;
363   assert(TLI.isTypeLegal(PartVT) && "Copying to an illegal type!");
364
365   if (NumParts == 0)
366     return;
367
368   assert(!ValueVT.isVector() && "Vector case handled elsewhere");
369   EVT PartEVT = PartVT;
370   if (PartEVT == ValueVT) {
371     assert(NumParts == 1 && "No-op copy with multiple parts!");
372     Parts[0] = Val;
373     return;
374   }
375
376   if (NumParts * PartBits > ValueVT.getSizeInBits()) {
377     // If the parts cover more bits than the value has, promote the value.
378     if (PartVT.isFloatingPoint() && ValueVT.isFloatingPoint()) {
379       assert(NumParts == 1 && "Do not know what to promote to!");
380       Val = DAG.getNode(ISD::FP_EXTEND, DL, PartVT, Val);
381     } else {
382       assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
383              ValueVT.isInteger() &&
384              "Unknown mismatch!");
385       ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
386       Val = DAG.getNode(ExtendKind, DL, ValueVT, Val);
387       if (PartVT == MVT::x86mmx)
388         Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
389     }
390   } else if (PartBits == ValueVT.getSizeInBits()) {
391     // Different types of the same size.
392     assert(NumParts == 1 && PartEVT != ValueVT);
393     Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
394   } else if (NumParts * PartBits < ValueVT.getSizeInBits()) {
395     // If the parts cover less bits than value has, truncate the value.
396     assert((PartVT.isInteger() || PartVT == MVT::x86mmx) &&
397            ValueVT.isInteger() &&
398            "Unknown mismatch!");
399     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
400     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
401     if (PartVT == MVT::x86mmx)
402       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
403   }
404
405   // The value may have changed - recompute ValueVT.
406   ValueVT = Val.getValueType();
407   assert(NumParts * PartBits == ValueVT.getSizeInBits() &&
408          "Failed to tile the value with PartVT!");
409
410   if (NumParts == 1) {
411     if (PartEVT != ValueVT)
412       diagnosePossiblyInvalidConstraint(*DAG.getContext(), V,
413                                         "scalar-to-vector conversion failed");
414
415     Parts[0] = Val;
416     return;
417   }
418
419   // Expand the value into multiple parts.
420   if (NumParts & (NumParts - 1)) {
421     // The number of parts is not a power of 2.  Split off and copy the tail.
422     assert(PartVT.isInteger() && ValueVT.isInteger() &&
423            "Do not know what to expand to!");
424     unsigned RoundParts = 1 << Log2_32(NumParts);
425     unsigned RoundBits = RoundParts * PartBits;
426     unsigned OddParts = NumParts - RoundParts;
427     SDValue OddVal = DAG.getNode(ISD::SRL, DL, ValueVT, Val,
428                                  DAG.getIntPtrConstant(RoundBits));
429     getCopyToParts(DAG, DL, OddVal, Parts + RoundParts, OddParts, PartVT, V);
430
431     if (TLI.isBigEndian())
432       // The odd parts were reversed by getCopyToParts - unreverse them.
433       std::reverse(Parts + RoundParts, Parts + NumParts);
434
435     NumParts = RoundParts;
436     ValueVT = EVT::getIntegerVT(*DAG.getContext(), NumParts * PartBits);
437     Val = DAG.getNode(ISD::TRUNCATE, DL, ValueVT, Val);
438   }
439
440   // The number of parts is a power of 2.  Repeatedly bisect the value using
441   // EXTRACT_ELEMENT.
442   Parts[0] = DAG.getNode(ISD::BITCAST, DL,
443                          EVT::getIntegerVT(*DAG.getContext(),
444                                            ValueVT.getSizeInBits()),
445                          Val);
446
447   for (unsigned StepSize = NumParts; StepSize > 1; StepSize /= 2) {
448     for (unsigned i = 0; i < NumParts; i += StepSize) {
449       unsigned ThisBits = StepSize * PartBits / 2;
450       EVT ThisVT = EVT::getIntegerVT(*DAG.getContext(), ThisBits);
451       SDValue &Part0 = Parts[i];
452       SDValue &Part1 = Parts[i+StepSize/2];
453
454       Part1 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
455                           ThisVT, Part0, DAG.getIntPtrConstant(1));
456       Part0 = DAG.getNode(ISD::EXTRACT_ELEMENT, DL,
457                           ThisVT, Part0, DAG.getIntPtrConstant(0));
458
459       if (ThisBits == PartBits && ThisVT != PartVT) {
460         Part0 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part0);
461         Part1 = DAG.getNode(ISD::BITCAST, DL, PartVT, Part1);
462       }
463     }
464   }
465
466   if (TLI.isBigEndian())
467     std::reverse(Parts, Parts + OrigNumParts);
468 }
469
470
471 /// getCopyToPartsVector - Create a series of nodes that contain the specified
472 /// value split into legal parts.
473 static void getCopyToPartsVector(SelectionDAG &DAG, SDLoc DL,
474                                  SDValue Val, SDValue *Parts, unsigned NumParts,
475                                  MVT PartVT, const Value *V) {
476   EVT ValueVT = Val.getValueType();
477   assert(ValueVT.isVector() && "Not a vector");
478   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
479
480   if (NumParts == 1) {
481     EVT PartEVT = PartVT;
482     if (PartEVT == ValueVT) {
483       // Nothing to do.
484     } else if (PartVT.getSizeInBits() == ValueVT.getSizeInBits()) {
485       // Bitconvert vector->vector case.
486       Val = DAG.getNode(ISD::BITCAST, DL, PartVT, Val);
487     } else if (PartVT.isVector() &&
488                PartEVT.getVectorElementType() == ValueVT.getVectorElementType() &&
489                PartEVT.getVectorNumElements() > ValueVT.getVectorNumElements()) {
490       EVT ElementVT = PartVT.getVectorElementType();
491       // Vector widening case, e.g. <2 x float> -> <4 x float>.  Shuffle in
492       // undef elements.
493       SmallVector<SDValue, 16> Ops;
494       for (unsigned i = 0, e = ValueVT.getVectorNumElements(); i != e; ++i)
495         Ops.push_back(DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
496                                   ElementVT, Val, DAG.getConstant(i,
497                                                   TLI.getVectorIdxTy())));
498
499       for (unsigned i = ValueVT.getVectorNumElements(),
500            e = PartVT.getVectorNumElements(); i != e; ++i)
501         Ops.push_back(DAG.getUNDEF(ElementVT));
502
503       Val = DAG.getNode(ISD::BUILD_VECTOR, DL, PartVT, Ops);
504
505       // FIXME: Use CONCAT for 2x -> 4x.
506
507       //SDValue UndefElts = DAG.getUNDEF(VectorTy);
508       //Val = DAG.getNode(ISD::CONCAT_VECTORS, DL, PartVT, Val, UndefElts);
509     } else if (PartVT.isVector() &&
510                PartEVT.getVectorElementType().bitsGE(
511                  ValueVT.getVectorElementType()) &&
512                PartEVT.getVectorNumElements() == ValueVT.getVectorNumElements()) {
513
514       // Promoted vector extract
515       bool Smaller = PartEVT.bitsLE(ValueVT);
516       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
517                         DL, PartVT, Val);
518     } else{
519       // Vector -> scalar conversion.
520       assert(ValueVT.getVectorNumElements() == 1 &&
521              "Only trivial vector-to-scalar conversions should get here!");
522       Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
523                         PartVT, Val, DAG.getConstant(0, TLI.getVectorIdxTy()));
524
525       bool Smaller = ValueVT.bitsLE(PartVT);
526       Val = DAG.getNode((Smaller ? ISD::TRUNCATE : ISD::ANY_EXTEND),
527                          DL, PartVT, Val);
528     }
529
530     Parts[0] = Val;
531     return;
532   }
533
534   // Handle a multi-element vector.
535   EVT IntermediateVT;
536   MVT RegisterVT;
537   unsigned NumIntermediates;
538   unsigned NumRegs = TLI.getVectorTypeBreakdown(*DAG.getContext(), ValueVT,
539                                                 IntermediateVT,
540                                                 NumIntermediates, RegisterVT);
541   unsigned NumElements = ValueVT.getVectorNumElements();
542
543   assert(NumRegs == NumParts && "Part count doesn't match vector breakdown!");
544   NumParts = NumRegs; // Silence a compiler warning.
545   assert(RegisterVT == PartVT && "Part type doesn't match vector breakdown!");
546
547   // Split the vector into intermediate operands.
548   SmallVector<SDValue, 8> Ops(NumIntermediates);
549   for (unsigned i = 0; i != NumIntermediates; ++i) {
550     if (IntermediateVT.isVector())
551       Ops[i] = DAG.getNode(ISD::EXTRACT_SUBVECTOR, DL,
552                            IntermediateVT, Val,
553                    DAG.getConstant(i * (NumElements / NumIntermediates),
554                                    TLI.getVectorIdxTy()));
555     else
556       Ops[i] = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL,
557                            IntermediateVT, Val,
558                            DAG.getConstant(i, TLI.getVectorIdxTy()));
559   }
560
561   // Split the intermediate operands into legal parts.
562   if (NumParts == NumIntermediates) {
563     // If the register was not expanded, promote or copy the value,
564     // as appropriate.
565     for (unsigned i = 0; i != NumParts; ++i)
566       getCopyToParts(DAG, DL, Ops[i], &Parts[i], 1, PartVT, V);
567   } else if (NumParts > 0) {
568     // If the intermediate type was expanded, split each the value into
569     // legal parts.
570     assert(NumIntermediates != 0 && "division by zero");
571     assert(NumParts % NumIntermediates == 0 &&
572            "Must expand into a divisible number of parts!");
573     unsigned Factor = NumParts / NumIntermediates;
574     for (unsigned i = 0; i != NumIntermediates; ++i)
575       getCopyToParts(DAG, DL, Ops[i], &Parts[i*Factor], Factor, PartVT, V);
576   }
577 }
578
579 namespace {
580   /// RegsForValue - This struct represents the registers (physical or virtual)
581   /// that a particular set of values is assigned, and the type information
582   /// about the value. The most common situation is to represent one value at a
583   /// time, but struct or array values are handled element-wise as multiple
584   /// values.  The splitting of aggregates is performed recursively, so that we
585   /// never have aggregate-typed registers. The values at this point do not
586   /// necessarily have legal types, so each value may require one or more
587   /// registers of some legal type.
588   ///
589   struct RegsForValue {
590     /// ValueVTs - The value types of the values, which may not be legal, and
591     /// may need be promoted or synthesized from one or more registers.
592     ///
593     SmallVector<EVT, 4> ValueVTs;
594
595     /// RegVTs - The value types of the registers. This is the same size as
596     /// ValueVTs and it records, for each value, what the type of the assigned
597     /// register or registers are. (Individual values are never synthesized
598     /// from more than one type of register.)
599     ///
600     /// With virtual registers, the contents of RegVTs is redundant with TLI's
601     /// getRegisterType member function, however when with physical registers
602     /// it is necessary to have a separate record of the types.
603     ///
604     SmallVector<MVT, 4> RegVTs;
605
606     /// Regs - This list holds the registers assigned to the values.
607     /// Each legal or promoted value requires one register, and each
608     /// expanded value requires multiple registers.
609     ///
610     SmallVector<unsigned, 4> Regs;
611
612     RegsForValue() {}
613
614     RegsForValue(const SmallVector<unsigned, 4> &regs,
615                  MVT regvt, EVT valuevt)
616       : ValueVTs(1, valuevt), RegVTs(1, regvt), Regs(regs) {}
617
618     RegsForValue(LLVMContext &Context, const TargetLowering &tli,
619                  unsigned Reg, Type *Ty) {
620       ComputeValueVTs(tli, Ty, ValueVTs);
621
622       for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
623         EVT ValueVT = ValueVTs[Value];
624         unsigned NumRegs = tli.getNumRegisters(Context, ValueVT);
625         MVT RegisterVT = tli.getRegisterType(Context, ValueVT);
626         for (unsigned i = 0; i != NumRegs; ++i)
627           Regs.push_back(Reg + i);
628         RegVTs.push_back(RegisterVT);
629         Reg += NumRegs;
630       }
631     }
632
633     /// append - Add the specified values to this one.
634     void append(const RegsForValue &RHS) {
635       ValueVTs.append(RHS.ValueVTs.begin(), RHS.ValueVTs.end());
636       RegVTs.append(RHS.RegVTs.begin(), RHS.RegVTs.end());
637       Regs.append(RHS.Regs.begin(), RHS.Regs.end());
638     }
639
640     /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
641     /// this value and returns the result as a ValueVTs value.  This uses
642     /// Chain/Flag as the input and updates them for the output Chain/Flag.
643     /// If the Flag pointer is NULL, no flag is used.
644     SDValue getCopyFromRegs(SelectionDAG &DAG, FunctionLoweringInfo &FuncInfo,
645                             SDLoc dl,
646                             SDValue &Chain, SDValue *Flag,
647                             const Value *V = nullptr) const;
648
649     /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
650     /// specified value into the registers specified by this object.  This uses
651     /// Chain/Flag as the input and updates them for the output Chain/Flag.
652     /// If the Flag pointer is NULL, no flag is used.
653     void
654     getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl, SDValue &Chain,
655                   SDValue *Flag, const Value *V,
656                   ISD::NodeType PreferredExtendType = ISD::ANY_EXTEND) const;
657
658     /// AddInlineAsmOperands - Add this value to the specified inlineasm node
659     /// operand list.  This adds the code marker, matching input operand index
660     /// (if applicable), and includes the number of values added into it.
661     void AddInlineAsmOperands(unsigned Kind,
662                               bool HasMatching, unsigned MatchingIdx,
663                               SelectionDAG &DAG,
664                               std::vector<SDValue> &Ops) const;
665   };
666 }
667
668 /// getCopyFromRegs - Emit a series of CopyFromReg nodes that copies from
669 /// this value and returns the result as a ValueVT value.  This uses
670 /// Chain/Flag as the input and updates them for the output Chain/Flag.
671 /// If the Flag pointer is NULL, no flag is used.
672 SDValue RegsForValue::getCopyFromRegs(SelectionDAG &DAG,
673                                       FunctionLoweringInfo &FuncInfo,
674                                       SDLoc dl,
675                                       SDValue &Chain, SDValue *Flag,
676                                       const Value *V) const {
677   // A Value with type {} or [0 x %t] needs no registers.
678   if (ValueVTs.empty())
679     return SDValue();
680
681   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
682
683   // Assemble the legal parts into the final values.
684   SmallVector<SDValue, 4> Values(ValueVTs.size());
685   SmallVector<SDValue, 8> Parts;
686   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
687     // Copy the legal parts from the registers.
688     EVT ValueVT = ValueVTs[Value];
689     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
690     MVT RegisterVT = RegVTs[Value];
691
692     Parts.resize(NumRegs);
693     for (unsigned i = 0; i != NumRegs; ++i) {
694       SDValue P;
695       if (!Flag) {
696         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT);
697       } else {
698         P = DAG.getCopyFromReg(Chain, dl, Regs[Part+i], RegisterVT, *Flag);
699         *Flag = P.getValue(2);
700       }
701
702       Chain = P.getValue(1);
703       Parts[i] = P;
704
705       // If the source register was virtual and if we know something about it,
706       // add an assert node.
707       if (!TargetRegisterInfo::isVirtualRegister(Regs[Part+i]) ||
708           !RegisterVT.isInteger() || RegisterVT.isVector())
709         continue;
710
711       const FunctionLoweringInfo::LiveOutInfo *LOI =
712         FuncInfo.GetLiveOutRegInfo(Regs[Part+i]);
713       if (!LOI)
714         continue;
715
716       unsigned RegSize = RegisterVT.getSizeInBits();
717       unsigned NumSignBits = LOI->NumSignBits;
718       unsigned NumZeroBits = LOI->KnownZero.countLeadingOnes();
719
720       if (NumZeroBits == RegSize) {
721         // The current value is a zero.
722         // Explicitly express that as it would be easier for
723         // optimizations to kick in.
724         Parts[i] = DAG.getConstant(0, RegisterVT);
725         continue;
726       }
727
728       // FIXME: We capture more information than the dag can represent.  For
729       // now, just use the tightest assertzext/assertsext possible.
730       bool isSExt = true;
731       EVT FromVT(MVT::Other);
732       if (NumSignBits == RegSize)
733         isSExt = true, FromVT = MVT::i1;   // ASSERT SEXT 1
734       else if (NumZeroBits >= RegSize-1)
735         isSExt = false, FromVT = MVT::i1;  // ASSERT ZEXT 1
736       else if (NumSignBits > RegSize-8)
737         isSExt = true, FromVT = MVT::i8;   // ASSERT SEXT 8
738       else if (NumZeroBits >= RegSize-8)
739         isSExt = false, FromVT = MVT::i8;  // ASSERT ZEXT 8
740       else if (NumSignBits > RegSize-16)
741         isSExt = true, FromVT = MVT::i16;  // ASSERT SEXT 16
742       else if (NumZeroBits >= RegSize-16)
743         isSExt = false, FromVT = MVT::i16; // ASSERT ZEXT 16
744       else if (NumSignBits > RegSize-32)
745         isSExt = true, FromVT = MVT::i32;  // ASSERT SEXT 32
746       else if (NumZeroBits >= RegSize-32)
747         isSExt = false, FromVT = MVT::i32; // ASSERT ZEXT 32
748       else
749         continue;
750
751       // Add an assertion node.
752       assert(FromVT != MVT::Other);
753       Parts[i] = DAG.getNode(isSExt ? ISD::AssertSext : ISD::AssertZext, dl,
754                              RegisterVT, P, DAG.getValueType(FromVT));
755     }
756
757     Values[Value] = getCopyFromParts(DAG, dl, Parts.begin(),
758                                      NumRegs, RegisterVT, ValueVT, V);
759     Part += NumRegs;
760     Parts.clear();
761   }
762
763   return DAG.getNode(ISD::MERGE_VALUES, dl, DAG.getVTList(ValueVTs), Values);
764 }
765
766 /// getCopyToRegs - Emit a series of CopyToReg nodes that copies the
767 /// specified value into the registers specified by this object.  This uses
768 /// Chain/Flag as the input and updates them for the output Chain/Flag.
769 /// If the Flag pointer is NULL, no flag is used.
770 void RegsForValue::getCopyToRegs(SDValue Val, SelectionDAG &DAG, SDLoc dl,
771                                  SDValue &Chain, SDValue *Flag, const Value *V,
772                                  ISD::NodeType PreferredExtendType) const {
773   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
774   ISD::NodeType ExtendKind = PreferredExtendType;
775
776   // Get the list of the values's legal parts.
777   unsigned NumRegs = Regs.size();
778   SmallVector<SDValue, 8> Parts(NumRegs);
779   for (unsigned Value = 0, Part = 0, e = ValueVTs.size(); Value != e; ++Value) {
780     EVT ValueVT = ValueVTs[Value];
781     unsigned NumParts = TLI.getNumRegisters(*DAG.getContext(), ValueVT);
782     MVT RegisterVT = RegVTs[Value];
783
784     if (ExtendKind == ISD::ANY_EXTEND && TLI.isZExtFree(Val, RegisterVT))
785       ExtendKind = ISD::ZERO_EXTEND;
786
787     getCopyToParts(DAG, dl, Val.getValue(Val.getResNo() + Value),
788                    &Parts[Part], NumParts, RegisterVT, V, ExtendKind);
789     Part += NumParts;
790   }
791
792   // Copy the parts into the registers.
793   SmallVector<SDValue, 8> Chains(NumRegs);
794   for (unsigned i = 0; i != NumRegs; ++i) {
795     SDValue Part;
796     if (!Flag) {
797       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i]);
798     } else {
799       Part = DAG.getCopyToReg(Chain, dl, Regs[i], Parts[i], *Flag);
800       *Flag = Part.getValue(1);
801     }
802
803     Chains[i] = Part.getValue(0);
804   }
805
806   if (NumRegs == 1 || Flag)
807     // If NumRegs > 1 && Flag is used then the use of the last CopyToReg is
808     // flagged to it. That is the CopyToReg nodes and the user are considered
809     // a single scheduling unit. If we create a TokenFactor and return it as
810     // chain, then the TokenFactor is both a predecessor (operand) of the
811     // user as well as a successor (the TF operands are flagged to the user).
812     // c1, f1 = CopyToReg
813     // c2, f2 = CopyToReg
814     // c3     = TokenFactor c1, c2
815     // ...
816     //        = op c3, ..., f2
817     Chain = Chains[NumRegs-1];
818   else
819     Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Chains);
820 }
821
822 /// AddInlineAsmOperands - Add this value to the specified inlineasm node
823 /// operand list.  This adds the code marker and includes the number of
824 /// values added into it.
825 void RegsForValue::AddInlineAsmOperands(unsigned Code, bool HasMatching,
826                                         unsigned MatchingIdx,
827                                         SelectionDAG &DAG,
828                                         std::vector<SDValue> &Ops) const {
829   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
830
831   unsigned Flag = InlineAsm::getFlagWord(Code, Regs.size());
832   if (HasMatching)
833     Flag = InlineAsm::getFlagWordForMatchingOp(Flag, MatchingIdx);
834   else if (!Regs.empty() &&
835            TargetRegisterInfo::isVirtualRegister(Regs.front())) {
836     // Put the register class of the virtual registers in the flag word.  That
837     // way, later passes can recompute register class constraints for inline
838     // assembly as well as normal instructions.
839     // Don't do this for tied operands that can use the regclass information
840     // from the def.
841     const MachineRegisterInfo &MRI = DAG.getMachineFunction().getRegInfo();
842     const TargetRegisterClass *RC = MRI.getRegClass(Regs.front());
843     Flag = InlineAsm::getFlagWordForRegClass(Flag, RC->getID());
844   }
845
846   SDValue Res = DAG.getTargetConstant(Flag, MVT::i32);
847   Ops.push_back(Res);
848
849   unsigned SP = TLI.getStackPointerRegisterToSaveRestore();
850   for (unsigned Value = 0, Reg = 0, e = ValueVTs.size(); Value != e; ++Value) {
851     unsigned NumRegs = TLI.getNumRegisters(*DAG.getContext(), ValueVTs[Value]);
852     MVT RegisterVT = RegVTs[Value];
853     for (unsigned i = 0; i != NumRegs; ++i) {
854       assert(Reg < Regs.size() && "Mismatch in # registers expected");
855       unsigned TheReg = Regs[Reg++];
856       Ops.push_back(DAG.getRegister(TheReg, RegisterVT));
857
858       if (TheReg == SP && Code == InlineAsm::Kind_Clobber) {
859         // If we clobbered the stack pointer, MFI should know about it.
860         assert(DAG.getMachineFunction().getFrameInfo()->
861             hasInlineAsmWithSPAdjust());
862       }
863     }
864   }
865 }
866
867 void SelectionDAGBuilder::init(GCFunctionInfo *gfi, AliasAnalysis &aa,
868                                const TargetLibraryInfo *li) {
869   AA = &aa;
870   GFI = gfi;
871   LibInfo = li;
872   DL = DAG.getSubtarget().getDataLayout();
873   Context = DAG.getContext();
874   LPadToCallSiteMap.clear();
875 }
876
877 /// clear - Clear out the current SelectionDAG and the associated
878 /// state and prepare this SelectionDAGBuilder object to be used
879 /// for a new block. This doesn't clear out information about
880 /// additional blocks that are needed to complete switch lowering
881 /// or PHI node updating; that information is cleared out as it is
882 /// consumed.
883 void SelectionDAGBuilder::clear() {
884   NodeMap.clear();
885   UnusedArgNodeMap.clear();
886   PendingLoads.clear();
887   PendingExports.clear();
888   CurInst = nullptr;
889   HasTailCall = false;
890   SDNodeOrder = LowestSDNodeOrder;
891   StatepointLowering.clear();
892 }
893
894 /// clearDanglingDebugInfo - Clear the dangling debug information
895 /// map. This function is separated from the clear so that debug
896 /// information that is dangling in a basic block can be properly
897 /// resolved in a different basic block. This allows the
898 /// SelectionDAG to resolve dangling debug information attached
899 /// to PHI nodes.
900 void SelectionDAGBuilder::clearDanglingDebugInfo() {
901   DanglingDebugInfoMap.clear();
902 }
903
904 /// getRoot - Return the current virtual root of the Selection DAG,
905 /// flushing any PendingLoad items. This must be done before emitting
906 /// a store or any other node that may need to be ordered after any
907 /// prior load instructions.
908 ///
909 SDValue SelectionDAGBuilder::getRoot() {
910   if (PendingLoads.empty())
911     return DAG.getRoot();
912
913   if (PendingLoads.size() == 1) {
914     SDValue Root = PendingLoads[0];
915     DAG.setRoot(Root);
916     PendingLoads.clear();
917     return Root;
918   }
919
920   // Otherwise, we have to make a token factor node.
921   SDValue Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
922                              PendingLoads);
923   PendingLoads.clear();
924   DAG.setRoot(Root);
925   return Root;
926 }
927
928 /// getControlRoot - Similar to getRoot, but instead of flushing all the
929 /// PendingLoad items, flush all the PendingExports items. It is necessary
930 /// to do this before emitting a terminator instruction.
931 ///
932 SDValue SelectionDAGBuilder::getControlRoot() {
933   SDValue Root = DAG.getRoot();
934
935   if (PendingExports.empty())
936     return Root;
937
938   // Turn all of the CopyToReg chains into one factored node.
939   if (Root.getOpcode() != ISD::EntryToken) {
940     unsigned i = 0, e = PendingExports.size();
941     for (; i != e; ++i) {
942       assert(PendingExports[i].getNode()->getNumOperands() > 1);
943       if (PendingExports[i].getNode()->getOperand(0) == Root)
944         break;  // Don't add the root if we already indirectly depend on it.
945     }
946
947     if (i == e)
948       PendingExports.push_back(Root);
949   }
950
951   Root = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
952                      PendingExports);
953   PendingExports.clear();
954   DAG.setRoot(Root);
955   return Root;
956 }
957
958 void SelectionDAGBuilder::visit(const Instruction &I) {
959   // Set up outgoing PHI node register values before emitting the terminator.
960   if (isa<TerminatorInst>(&I))
961     HandlePHINodesInSuccessorBlocks(I.getParent());
962
963   ++SDNodeOrder;
964
965   CurInst = &I;
966
967   visit(I.getOpcode(), I);
968
969   if (!isa<TerminatorInst>(&I) && !HasTailCall)
970     CopyToExportRegsIfNeeded(&I);
971
972   CurInst = nullptr;
973 }
974
975 void SelectionDAGBuilder::visitPHI(const PHINode &) {
976   llvm_unreachable("SelectionDAGBuilder shouldn't visit PHI nodes!");
977 }
978
979 void SelectionDAGBuilder::visit(unsigned Opcode, const User &I) {
980   // Note: this doesn't use InstVisitor, because it has to work with
981   // ConstantExpr's in addition to instructions.
982   switch (Opcode) {
983   default: llvm_unreachable("Unknown instruction type encountered!");
984     // Build the switch statement using the Instruction.def file.
985 #define HANDLE_INST(NUM, OPCODE, CLASS) \
986     case Instruction::OPCODE: visit##OPCODE((const CLASS&)I); break;
987 #include "llvm/IR/Instruction.def"
988   }
989 }
990
991 // resolveDanglingDebugInfo - if we saw an earlier dbg_value referring to V,
992 // generate the debug data structures now that we've seen its definition.
993 void SelectionDAGBuilder::resolveDanglingDebugInfo(const Value *V,
994                                                    SDValue Val) {
995   DanglingDebugInfo &DDI = DanglingDebugInfoMap[V];
996   if (DDI.getDI()) {
997     const DbgValueInst *DI = DDI.getDI();
998     DebugLoc dl = DDI.getdl();
999     unsigned DbgSDNodeOrder = DDI.getSDNodeOrder();
1000     MDNode *Variable = DI->getVariable();
1001     MDNode *Expr = DI->getExpression();
1002     uint64_t Offset = DI->getOffset();
1003     // A dbg.value for an alloca is always indirect.
1004     bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
1005     SDDbgValue *SDV;
1006     if (Val.getNode()) {
1007       if (!EmitFuncArgumentDbgValue(V, Variable, Expr, Offset, IsIndirect,
1008                                     Val)) {
1009         SDV = DAG.getDbgValue(Variable, Expr, Val.getNode(), Val.getResNo(),
1010                               IsIndirect, Offset, dl, DbgSDNodeOrder);
1011         DAG.AddDbgValue(SDV, Val.getNode(), false);
1012       }
1013     } else
1014       DEBUG(dbgs() << "Dropping debug info for " << *DI << "\n");
1015     DanglingDebugInfoMap[V] = DanglingDebugInfo();
1016   }
1017 }
1018
1019 /// getValue - Return an SDValue for the given Value.
1020 SDValue SelectionDAGBuilder::getValue(const Value *V) {
1021   // If we already have an SDValue for this value, use it. It's important
1022   // to do this first, so that we don't create a CopyFromReg if we already
1023   // have a regular SDValue.
1024   SDValue &N = NodeMap[V];
1025   if (N.getNode()) return N;
1026
1027   // If there's a virtual register allocated and initialized for this
1028   // value, use it.
1029   DenseMap<const Value *, unsigned>::iterator It = FuncInfo.ValueMap.find(V);
1030   if (It != FuncInfo.ValueMap.end()) {
1031     unsigned InReg = It->second;
1032     RegsForValue RFV(*DAG.getContext(), DAG.getTargetLoweringInfo(), InReg,
1033                      V->getType());
1034     SDValue Chain = DAG.getEntryNode();
1035     N = RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1036     resolveDanglingDebugInfo(V, N);
1037     return N;
1038   }
1039
1040   // Otherwise create a new SDValue and remember it.
1041   SDValue Val = getValueImpl(V);
1042   NodeMap[V] = Val;
1043   resolveDanglingDebugInfo(V, Val);
1044   return Val;
1045 }
1046
1047 /// getNonRegisterValue - Return an SDValue for the given Value, but
1048 /// don't look in FuncInfo.ValueMap for a virtual register.
1049 SDValue SelectionDAGBuilder::getNonRegisterValue(const Value *V) {
1050   // If we already have an SDValue for this value, use it.
1051   SDValue &N = NodeMap[V];
1052   if (N.getNode()) return N;
1053
1054   // Otherwise create a new SDValue and remember it.
1055   SDValue Val = getValueImpl(V);
1056   NodeMap[V] = Val;
1057   resolveDanglingDebugInfo(V, Val);
1058   return Val;
1059 }
1060
1061 /// getValueImpl - Helper function for getValue and getNonRegisterValue.
1062 /// Create an SDValue for the given value.
1063 SDValue SelectionDAGBuilder::getValueImpl(const Value *V) {
1064   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1065
1066   if (const Constant *C = dyn_cast<Constant>(V)) {
1067     EVT VT = TLI.getValueType(V->getType(), true);
1068
1069     if (const ConstantInt *CI = dyn_cast<ConstantInt>(C))
1070       return DAG.getConstant(*CI, VT);
1071
1072     if (const GlobalValue *GV = dyn_cast<GlobalValue>(C))
1073       return DAG.getGlobalAddress(GV, getCurSDLoc(), VT);
1074
1075     if (isa<ConstantPointerNull>(C)) {
1076       unsigned AS = V->getType()->getPointerAddressSpace();
1077       return DAG.getConstant(0, TLI.getPointerTy(AS));
1078     }
1079
1080     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(C))
1081       return DAG.getConstantFP(*CFP, VT);
1082
1083     if (isa<UndefValue>(C) && !V->getType()->isAggregateType())
1084       return DAG.getUNDEF(VT);
1085
1086     if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
1087       visit(CE->getOpcode(), *CE);
1088       SDValue N1 = NodeMap[V];
1089       assert(N1.getNode() && "visit didn't populate the NodeMap!");
1090       return N1;
1091     }
1092
1093     if (isa<ConstantStruct>(C) || isa<ConstantArray>(C)) {
1094       SmallVector<SDValue, 4> Constants;
1095       for (User::const_op_iterator OI = C->op_begin(), OE = C->op_end();
1096            OI != OE; ++OI) {
1097         SDNode *Val = getValue(*OI).getNode();
1098         // If the operand is an empty aggregate, there are no values.
1099         if (!Val) continue;
1100         // Add each leaf value from the operand to the Constants list
1101         // to form a flattened list of all the values.
1102         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1103           Constants.push_back(SDValue(Val, i));
1104       }
1105
1106       return DAG.getMergeValues(Constants, getCurSDLoc());
1107     }
1108
1109     if (const ConstantDataSequential *CDS =
1110           dyn_cast<ConstantDataSequential>(C)) {
1111       SmallVector<SDValue, 4> Ops;
1112       for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1113         SDNode *Val = getValue(CDS->getElementAsConstant(i)).getNode();
1114         // Add each leaf value from the operand to the Constants list
1115         // to form a flattened list of all the values.
1116         for (unsigned i = 0, e = Val->getNumValues(); i != e; ++i)
1117           Ops.push_back(SDValue(Val, i));
1118       }
1119
1120       if (isa<ArrayType>(CDS->getType()))
1121         return DAG.getMergeValues(Ops, getCurSDLoc());
1122       return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(),
1123                                       VT, Ops);
1124     }
1125
1126     if (C->getType()->isStructTy() || C->getType()->isArrayTy()) {
1127       assert((isa<ConstantAggregateZero>(C) || isa<UndefValue>(C)) &&
1128              "Unknown struct or array constant!");
1129
1130       SmallVector<EVT, 4> ValueVTs;
1131       ComputeValueVTs(TLI, C->getType(), ValueVTs);
1132       unsigned NumElts = ValueVTs.size();
1133       if (NumElts == 0)
1134         return SDValue(); // empty struct
1135       SmallVector<SDValue, 4> Constants(NumElts);
1136       for (unsigned i = 0; i != NumElts; ++i) {
1137         EVT EltVT = ValueVTs[i];
1138         if (isa<UndefValue>(C))
1139           Constants[i] = DAG.getUNDEF(EltVT);
1140         else if (EltVT.isFloatingPoint())
1141           Constants[i] = DAG.getConstantFP(0, EltVT);
1142         else
1143           Constants[i] = DAG.getConstant(0, EltVT);
1144       }
1145
1146       return DAG.getMergeValues(Constants, getCurSDLoc());
1147     }
1148
1149     if (const BlockAddress *BA = dyn_cast<BlockAddress>(C))
1150       return DAG.getBlockAddress(BA, VT);
1151
1152     VectorType *VecTy = cast<VectorType>(V->getType());
1153     unsigned NumElements = VecTy->getNumElements();
1154
1155     // Now that we know the number and type of the elements, get that number of
1156     // elements into the Ops array based on what kind of constant it is.
1157     SmallVector<SDValue, 16> Ops;
1158     if (const ConstantVector *CV = dyn_cast<ConstantVector>(C)) {
1159       for (unsigned i = 0; i != NumElements; ++i)
1160         Ops.push_back(getValue(CV->getOperand(i)));
1161     } else {
1162       assert(isa<ConstantAggregateZero>(C) && "Unknown vector constant!");
1163       EVT EltVT = TLI.getValueType(VecTy->getElementType());
1164
1165       SDValue Op;
1166       if (EltVT.isFloatingPoint())
1167         Op = DAG.getConstantFP(0, EltVT);
1168       else
1169         Op = DAG.getConstant(0, EltVT);
1170       Ops.assign(NumElements, Op);
1171     }
1172
1173     // Create a BUILD_VECTOR node.
1174     return NodeMap[V] = DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops);
1175   }
1176
1177   // If this is a static alloca, generate it as the frameindex instead of
1178   // computation.
1179   if (const AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
1180     DenseMap<const AllocaInst*, int>::iterator SI =
1181       FuncInfo.StaticAllocaMap.find(AI);
1182     if (SI != FuncInfo.StaticAllocaMap.end())
1183       return DAG.getFrameIndex(SI->second, TLI.getPointerTy());
1184   }
1185
1186   // If this is an instruction which fast-isel has deferred, select it now.
1187   if (const Instruction *Inst = dyn_cast<Instruction>(V)) {
1188     unsigned InReg = FuncInfo.InitializeRegForValue(Inst);
1189     RegsForValue RFV(*DAG.getContext(), TLI, InReg, Inst->getType());
1190     SDValue Chain = DAG.getEntryNode();
1191     return RFV.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(), Chain, nullptr, V);
1192   }
1193
1194   llvm_unreachable("Can't get register for value!");
1195 }
1196
1197 void SelectionDAGBuilder::visitRet(const ReturnInst &I) {
1198   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1199   SDValue Chain = getControlRoot();
1200   SmallVector<ISD::OutputArg, 8> Outs;
1201   SmallVector<SDValue, 8> OutVals;
1202
1203   if (!FuncInfo.CanLowerReturn) {
1204     unsigned DemoteReg = FuncInfo.DemoteRegister;
1205     const Function *F = I.getParent()->getParent();
1206
1207     // Emit a store of the return value through the virtual register.
1208     // Leave Outs empty so that LowerReturn won't try to load return
1209     // registers the usual way.
1210     SmallVector<EVT, 1> PtrValueVTs;
1211     ComputeValueVTs(TLI, PointerType::getUnqual(F->getReturnType()),
1212                     PtrValueVTs);
1213
1214     SDValue RetPtr = DAG.getRegister(DemoteReg, PtrValueVTs[0]);
1215     SDValue RetOp = getValue(I.getOperand(0));
1216
1217     SmallVector<EVT, 4> ValueVTs;
1218     SmallVector<uint64_t, 4> Offsets;
1219     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs, &Offsets);
1220     unsigned NumValues = ValueVTs.size();
1221
1222     SmallVector<SDValue, 4> Chains(NumValues);
1223     for (unsigned i = 0; i != NumValues; ++i) {
1224       SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(),
1225                                 RetPtr.getValueType(), RetPtr,
1226                                 DAG.getIntPtrConstant(Offsets[i]));
1227       Chains[i] =
1228         DAG.getStore(Chain, getCurSDLoc(),
1229                      SDValue(RetOp.getNode(), RetOp.getResNo() + i),
1230                      // FIXME: better loc info would be nice.
1231                      Add, MachinePointerInfo(), false, false, 0);
1232     }
1233
1234     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(),
1235                         MVT::Other, Chains);
1236   } else if (I.getNumOperands() != 0) {
1237     SmallVector<EVT, 4> ValueVTs;
1238     ComputeValueVTs(TLI, I.getOperand(0)->getType(), ValueVTs);
1239     unsigned NumValues = ValueVTs.size();
1240     if (NumValues) {
1241       SDValue RetOp = getValue(I.getOperand(0));
1242
1243       const Function *F = I.getParent()->getParent();
1244
1245       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1246       if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1247                                           Attribute::SExt))
1248         ExtendKind = ISD::SIGN_EXTEND;
1249       else if (F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1250                                                Attribute::ZExt))
1251         ExtendKind = ISD::ZERO_EXTEND;
1252
1253       LLVMContext &Context = F->getContext();
1254       bool RetInReg = F->getAttributes().hasAttribute(AttributeSet::ReturnIndex,
1255                                                       Attribute::InReg);
1256
1257       for (unsigned j = 0; j != NumValues; ++j) {
1258         EVT VT = ValueVTs[j];
1259
1260         if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1261           VT = TLI.getTypeForExtArgOrReturn(Context, VT, ExtendKind);
1262
1263         unsigned NumParts = TLI.getNumRegisters(Context, VT);
1264         MVT PartVT = TLI.getRegisterType(Context, VT);
1265         SmallVector<SDValue, 4> Parts(NumParts);
1266         getCopyToParts(DAG, getCurSDLoc(),
1267                        SDValue(RetOp.getNode(), RetOp.getResNo() + j),
1268                        &Parts[0], NumParts, PartVT, &I, ExtendKind);
1269
1270         // 'inreg' on function refers to return value
1271         ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1272         if (RetInReg)
1273           Flags.setInReg();
1274
1275         // Propagate extension type if any
1276         if (ExtendKind == ISD::SIGN_EXTEND)
1277           Flags.setSExt();
1278         else if (ExtendKind == ISD::ZERO_EXTEND)
1279           Flags.setZExt();
1280
1281         for (unsigned i = 0; i < NumParts; ++i) {
1282           Outs.push_back(ISD::OutputArg(Flags, Parts[i].getValueType(),
1283                                         VT, /*isfixed=*/true, 0, 0));
1284           OutVals.push_back(Parts[i]);
1285         }
1286       }
1287     }
1288   }
1289
1290   bool isVarArg = DAG.getMachineFunction().getFunction()->isVarArg();
1291   CallingConv::ID CallConv =
1292     DAG.getMachineFunction().getFunction()->getCallingConv();
1293   Chain = DAG.getTargetLoweringInfo().LowerReturn(
1294       Chain, CallConv, isVarArg, Outs, OutVals, getCurSDLoc(), DAG);
1295
1296   // Verify that the target's LowerReturn behaved as expected.
1297   assert(Chain.getNode() && Chain.getValueType() == MVT::Other &&
1298          "LowerReturn didn't return a valid chain!");
1299
1300   // Update the DAG with the new chain value resulting from return lowering.
1301   DAG.setRoot(Chain);
1302 }
1303
1304 /// CopyToExportRegsIfNeeded - If the given value has virtual registers
1305 /// created for it, emit nodes to copy the value into the virtual
1306 /// registers.
1307 void SelectionDAGBuilder::CopyToExportRegsIfNeeded(const Value *V) {
1308   // Skip empty types
1309   if (V->getType()->isEmptyTy())
1310     return;
1311
1312   DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
1313   if (VMI != FuncInfo.ValueMap.end()) {
1314     assert(!V->use_empty() && "Unused value assigned virtual registers!");
1315     CopyValueToVirtualRegister(V, VMI->second);
1316   }
1317 }
1318
1319 /// ExportFromCurrentBlock - If this condition isn't known to be exported from
1320 /// the current basic block, add it to ValueMap now so that we'll get a
1321 /// CopyTo/FromReg.
1322 void SelectionDAGBuilder::ExportFromCurrentBlock(const Value *V) {
1323   // No need to export constants.
1324   if (!isa<Instruction>(V) && !isa<Argument>(V)) return;
1325
1326   // Already exported?
1327   if (FuncInfo.isExportedInst(V)) return;
1328
1329   unsigned Reg = FuncInfo.InitializeRegForValue(V);
1330   CopyValueToVirtualRegister(V, Reg);
1331 }
1332
1333 bool SelectionDAGBuilder::isExportableFromCurrentBlock(const Value *V,
1334                                                      const BasicBlock *FromBB) {
1335   // The operands of the setcc have to be in this block.  We don't know
1336   // how to export them from some other block.
1337   if (const Instruction *VI = dyn_cast<Instruction>(V)) {
1338     // Can export from current BB.
1339     if (VI->getParent() == FromBB)
1340       return true;
1341
1342     // Is already exported, noop.
1343     return FuncInfo.isExportedInst(V);
1344   }
1345
1346   // If this is an argument, we can export it if the BB is the entry block or
1347   // if it is already exported.
1348   if (isa<Argument>(V)) {
1349     if (FromBB == &FromBB->getParent()->getEntryBlock())
1350       return true;
1351
1352     // Otherwise, can only export this if it is already exported.
1353     return FuncInfo.isExportedInst(V);
1354   }
1355
1356   // Otherwise, constants can always be exported.
1357   return true;
1358 }
1359
1360 /// Return branch probability calculated by BranchProbabilityInfo for IR blocks.
1361 uint32_t SelectionDAGBuilder::getEdgeWeight(const MachineBasicBlock *Src,
1362                                             const MachineBasicBlock *Dst) const {
1363   BranchProbabilityInfo *BPI = FuncInfo.BPI;
1364   if (!BPI)
1365     return 0;
1366   const BasicBlock *SrcBB = Src->getBasicBlock();
1367   const BasicBlock *DstBB = Dst->getBasicBlock();
1368   return BPI->getEdgeWeight(SrcBB, DstBB);
1369 }
1370
1371 void SelectionDAGBuilder::
1372 addSuccessorWithWeight(MachineBasicBlock *Src, MachineBasicBlock *Dst,
1373                        uint32_t Weight /* = 0 */) {
1374   if (!Weight)
1375     Weight = getEdgeWeight(Src, Dst);
1376   Src->addSuccessor(Dst, Weight);
1377 }
1378
1379
1380 static bool InBlock(const Value *V, const BasicBlock *BB) {
1381   if (const Instruction *I = dyn_cast<Instruction>(V))
1382     return I->getParent() == BB;
1383   return true;
1384 }
1385
1386 /// EmitBranchForMergedCondition - Helper method for FindMergedConditions.
1387 /// This function emits a branch and is used at the leaves of an OR or an
1388 /// AND operator tree.
1389 ///
1390 void
1391 SelectionDAGBuilder::EmitBranchForMergedCondition(const Value *Cond,
1392                                                   MachineBasicBlock *TBB,
1393                                                   MachineBasicBlock *FBB,
1394                                                   MachineBasicBlock *CurBB,
1395                                                   MachineBasicBlock *SwitchBB,
1396                                                   uint32_t TWeight,
1397                                                   uint32_t FWeight) {
1398   const BasicBlock *BB = CurBB->getBasicBlock();
1399
1400   // If the leaf of the tree is a comparison, merge the condition into
1401   // the caseblock.
1402   if (const CmpInst *BOp = dyn_cast<CmpInst>(Cond)) {
1403     // The operands of the cmp have to be in this block.  We don't know
1404     // how to export them from some other block.  If this is the first block
1405     // of the sequence, no exporting is needed.
1406     if (CurBB == SwitchBB ||
1407         (isExportableFromCurrentBlock(BOp->getOperand(0), BB) &&
1408          isExportableFromCurrentBlock(BOp->getOperand(1), BB))) {
1409       ISD::CondCode Condition;
1410       if (const ICmpInst *IC = dyn_cast<ICmpInst>(Cond)) {
1411         Condition = getICmpCondCode(IC->getPredicate());
1412       } else if (const FCmpInst *FC = dyn_cast<FCmpInst>(Cond)) {
1413         Condition = getFCmpCondCode(FC->getPredicate());
1414         if (TM.Options.NoNaNsFPMath)
1415           Condition = getFCmpCodeWithoutNaN(Condition);
1416       } else {
1417         (void)Condition; // silence warning.
1418         llvm_unreachable("Unknown compare instruction");
1419       }
1420
1421       CaseBlock CB(Condition, BOp->getOperand(0), BOp->getOperand(1), nullptr,
1422                    TBB, FBB, CurBB, TWeight, FWeight);
1423       SwitchCases.push_back(CB);
1424       return;
1425     }
1426   }
1427
1428   // Create a CaseBlock record representing this branch.
1429   CaseBlock CB(ISD::SETEQ, Cond, ConstantInt::getTrue(*DAG.getContext()),
1430                nullptr, TBB, FBB, CurBB, TWeight, FWeight);
1431   SwitchCases.push_back(CB);
1432 }
1433
1434 /// Scale down both weights to fit into uint32_t.
1435 static void ScaleWeights(uint64_t &NewTrue, uint64_t &NewFalse) {
1436   uint64_t NewMax = (NewTrue > NewFalse) ? NewTrue : NewFalse;
1437   uint32_t Scale = (NewMax / UINT32_MAX) + 1;
1438   NewTrue = NewTrue / Scale;
1439   NewFalse = NewFalse / Scale;
1440 }
1441
1442 /// FindMergedConditions - If Cond is an expression like
1443 void SelectionDAGBuilder::FindMergedConditions(const Value *Cond,
1444                                                MachineBasicBlock *TBB,
1445                                                MachineBasicBlock *FBB,
1446                                                MachineBasicBlock *CurBB,
1447                                                MachineBasicBlock *SwitchBB,
1448                                                unsigned Opc, uint32_t TWeight,
1449                                                uint32_t FWeight) {
1450   // If this node is not part of the or/and tree, emit it as a branch.
1451   const Instruction *BOp = dyn_cast<Instruction>(Cond);
1452   if (!BOp || !(isa<BinaryOperator>(BOp) || isa<CmpInst>(BOp)) ||
1453       (unsigned)BOp->getOpcode() != Opc || !BOp->hasOneUse() ||
1454       BOp->getParent() != CurBB->getBasicBlock() ||
1455       !InBlock(BOp->getOperand(0), CurBB->getBasicBlock()) ||
1456       !InBlock(BOp->getOperand(1), CurBB->getBasicBlock())) {
1457     EmitBranchForMergedCondition(Cond, TBB, FBB, CurBB, SwitchBB,
1458                                  TWeight, FWeight);
1459     return;
1460   }
1461
1462   //  Create TmpBB after CurBB.
1463   MachineFunction::iterator BBI = CurBB;
1464   MachineFunction &MF = DAG.getMachineFunction();
1465   MachineBasicBlock *TmpBB = MF.CreateMachineBasicBlock(CurBB->getBasicBlock());
1466   CurBB->getParent()->insert(++BBI, TmpBB);
1467
1468   if (Opc == Instruction::Or) {
1469     // Codegen X | Y as:
1470     // BB1:
1471     //   jmp_if_X TBB
1472     //   jmp TmpBB
1473     // TmpBB:
1474     //   jmp_if_Y TBB
1475     //   jmp FBB
1476     //
1477
1478     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1479     // The requirement is that
1480     //   TrueProb for BB1 + (FalseProb for BB1 * TrueProb for TmpBB)
1481     //     = TrueProb for orignal BB.
1482     // Assuming the orignal weights are A and B, one choice is to set BB1's
1483     // weights to A and A+2B, and set TmpBB's weights to A and 2B. This choice
1484     // assumes that
1485     //   TrueProb for BB1 == FalseProb for BB1 * TrueProb for TmpBB.
1486     // Another choice is to assume TrueProb for BB1 equals to TrueProb for
1487     // TmpBB, but the math is more complicated.
1488
1489     uint64_t NewTrueWeight = TWeight;
1490     uint64_t NewFalseWeight = (uint64_t)TWeight + 2 * (uint64_t)FWeight;
1491     ScaleWeights(NewTrueWeight, NewFalseWeight);
1492     // Emit the LHS condition.
1493     FindMergedConditions(BOp->getOperand(0), TBB, TmpBB, CurBB, SwitchBB, Opc,
1494                          NewTrueWeight, NewFalseWeight);
1495
1496     NewTrueWeight = TWeight;
1497     NewFalseWeight = 2 * (uint64_t)FWeight;
1498     ScaleWeights(NewTrueWeight, NewFalseWeight);
1499     // Emit the RHS condition into TmpBB.
1500     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1501                          NewTrueWeight, NewFalseWeight);
1502   } else {
1503     assert(Opc == Instruction::And && "Unknown merge op!");
1504     // Codegen X & Y as:
1505     // BB1:
1506     //   jmp_if_X TmpBB
1507     //   jmp FBB
1508     // TmpBB:
1509     //   jmp_if_Y TBB
1510     //   jmp FBB
1511     //
1512     //  This requires creation of TmpBB after CurBB.
1513
1514     // We have flexibility in setting Prob for BB1 and Prob for TmpBB.
1515     // The requirement is that
1516     //   FalseProb for BB1 + (TrueProb for BB1 * FalseProb for TmpBB)
1517     //     = FalseProb for orignal BB.
1518     // Assuming the orignal weights are A and B, one choice is to set BB1's
1519     // weights to 2A+B and B, and set TmpBB's weights to 2A and B. This choice
1520     // assumes that
1521     //   FalseProb for BB1 == TrueProb for BB1 * FalseProb for TmpBB.
1522
1523     uint64_t NewTrueWeight = 2 * (uint64_t)TWeight + (uint64_t)FWeight;
1524     uint64_t NewFalseWeight = FWeight;
1525     ScaleWeights(NewTrueWeight, NewFalseWeight);
1526     // Emit the LHS condition.
1527     FindMergedConditions(BOp->getOperand(0), TmpBB, FBB, CurBB, SwitchBB, Opc,
1528                          NewTrueWeight, NewFalseWeight);
1529
1530     NewTrueWeight = 2 * (uint64_t)TWeight;
1531     NewFalseWeight = FWeight;
1532     ScaleWeights(NewTrueWeight, NewFalseWeight);
1533     // Emit the RHS condition into TmpBB.
1534     FindMergedConditions(BOp->getOperand(1), TBB, FBB, TmpBB, SwitchBB, Opc,
1535                          NewTrueWeight, NewFalseWeight);
1536   }
1537 }
1538
1539 /// If the set of cases should be emitted as a series of branches, return true.
1540 /// If we should emit this as a bunch of and/or'd together conditions, return
1541 /// false.
1542 bool
1543 SelectionDAGBuilder::ShouldEmitAsBranches(const std::vector<CaseBlock> &Cases) {
1544   if (Cases.size() != 2) return true;
1545
1546   // If this is two comparisons of the same values or'd or and'd together, they
1547   // will get folded into a single comparison, so don't emit two blocks.
1548   if ((Cases[0].CmpLHS == Cases[1].CmpLHS &&
1549        Cases[0].CmpRHS == Cases[1].CmpRHS) ||
1550       (Cases[0].CmpRHS == Cases[1].CmpLHS &&
1551        Cases[0].CmpLHS == Cases[1].CmpRHS)) {
1552     return false;
1553   }
1554
1555   // Handle: (X != null) | (Y != null) --> (X|Y) != 0
1556   // Handle: (X == null) & (Y == null) --> (X|Y) == 0
1557   if (Cases[0].CmpRHS == Cases[1].CmpRHS &&
1558       Cases[0].CC == Cases[1].CC &&
1559       isa<Constant>(Cases[0].CmpRHS) &&
1560       cast<Constant>(Cases[0].CmpRHS)->isNullValue()) {
1561     if (Cases[0].CC == ISD::SETEQ && Cases[0].TrueBB == Cases[1].ThisBB)
1562       return false;
1563     if (Cases[0].CC == ISD::SETNE && Cases[0].FalseBB == Cases[1].ThisBB)
1564       return false;
1565   }
1566
1567   return true;
1568 }
1569
1570 void SelectionDAGBuilder::visitBr(const BranchInst &I) {
1571   MachineBasicBlock *BrMBB = FuncInfo.MBB;
1572
1573   // Update machine-CFG edges.
1574   MachineBasicBlock *Succ0MBB = FuncInfo.MBBMap[I.getSuccessor(0)];
1575
1576   // Figure out which block is immediately after the current one.
1577   MachineBasicBlock *NextBlock = nullptr;
1578   MachineFunction::iterator BBI = BrMBB;
1579   if (++BBI != FuncInfo.MF->end())
1580     NextBlock = BBI;
1581
1582   if (I.isUnconditional()) {
1583     // Update machine-CFG edges.
1584     BrMBB->addSuccessor(Succ0MBB);
1585
1586     // If this is not a fall-through branch or optimizations are switched off,
1587     // emit the branch.
1588     if (Succ0MBB != NextBlock || TM.getOptLevel() == CodeGenOpt::None)
1589       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
1590                               MVT::Other, getControlRoot(),
1591                               DAG.getBasicBlock(Succ0MBB)));
1592
1593     return;
1594   }
1595
1596   // If this condition is one of the special cases we handle, do special stuff
1597   // now.
1598   const Value *CondVal = I.getCondition();
1599   MachineBasicBlock *Succ1MBB = FuncInfo.MBBMap[I.getSuccessor(1)];
1600
1601   // If this is a series of conditions that are or'd or and'd together, emit
1602   // this as a sequence of branches instead of setcc's with and/or operations.
1603   // As long as jumps are not expensive, this should improve performance.
1604   // For example, instead of something like:
1605   //     cmp A, B
1606   //     C = seteq
1607   //     cmp D, E
1608   //     F = setle
1609   //     or C, F
1610   //     jnz foo
1611   // Emit:
1612   //     cmp A, B
1613   //     je foo
1614   //     cmp D, E
1615   //     jle foo
1616   //
1617   if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(CondVal)) {
1618     if (!DAG.getTargetLoweringInfo().isJumpExpensive() &&
1619         BOp->hasOneUse() && (BOp->getOpcode() == Instruction::And ||
1620                              BOp->getOpcode() == Instruction::Or)) {
1621       FindMergedConditions(BOp, Succ0MBB, Succ1MBB, BrMBB, BrMBB,
1622                            BOp->getOpcode(), getEdgeWeight(BrMBB, Succ0MBB),
1623                            getEdgeWeight(BrMBB, Succ1MBB));
1624       // If the compares in later blocks need to use values not currently
1625       // exported from this block, export them now.  This block should always
1626       // be the first entry.
1627       assert(SwitchCases[0].ThisBB == BrMBB && "Unexpected lowering!");
1628
1629       // Allow some cases to be rejected.
1630       if (ShouldEmitAsBranches(SwitchCases)) {
1631         for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i) {
1632           ExportFromCurrentBlock(SwitchCases[i].CmpLHS);
1633           ExportFromCurrentBlock(SwitchCases[i].CmpRHS);
1634         }
1635
1636         // Emit the branch for this block.
1637         visitSwitchCase(SwitchCases[0], BrMBB);
1638         SwitchCases.erase(SwitchCases.begin());
1639         return;
1640       }
1641
1642       // Okay, we decided not to do this, remove any inserted MBB's and clear
1643       // SwitchCases.
1644       for (unsigned i = 1, e = SwitchCases.size(); i != e; ++i)
1645         FuncInfo.MF->erase(SwitchCases[i].ThisBB);
1646
1647       SwitchCases.clear();
1648     }
1649   }
1650
1651   // Create a CaseBlock record representing this branch.
1652   CaseBlock CB(ISD::SETEQ, CondVal, ConstantInt::getTrue(*DAG.getContext()),
1653                nullptr, Succ0MBB, Succ1MBB, BrMBB);
1654
1655   // Use visitSwitchCase to actually insert the fast branch sequence for this
1656   // cond branch.
1657   visitSwitchCase(CB, BrMBB);
1658 }
1659
1660 /// visitSwitchCase - Emits the necessary code to represent a single node in
1661 /// the binary search tree resulting from lowering a switch instruction.
1662 void SelectionDAGBuilder::visitSwitchCase(CaseBlock &CB,
1663                                           MachineBasicBlock *SwitchBB) {
1664   SDValue Cond;
1665   SDValue CondLHS = getValue(CB.CmpLHS);
1666   SDLoc dl = getCurSDLoc();
1667
1668   // Build the setcc now.
1669   if (!CB.CmpMHS) {
1670     // Fold "(X == true)" to X and "(X == false)" to !X to
1671     // handle common cases produced by branch lowering.
1672     if (CB.CmpRHS == ConstantInt::getTrue(*DAG.getContext()) &&
1673         CB.CC == ISD::SETEQ)
1674       Cond = CondLHS;
1675     else if (CB.CmpRHS == ConstantInt::getFalse(*DAG.getContext()) &&
1676              CB.CC == ISD::SETEQ) {
1677       SDValue True = DAG.getConstant(1, CondLHS.getValueType());
1678       Cond = DAG.getNode(ISD::XOR, dl, CondLHS.getValueType(), CondLHS, True);
1679     } else
1680       Cond = DAG.getSetCC(dl, MVT::i1, CondLHS, getValue(CB.CmpRHS), CB.CC);
1681   } else {
1682     assert(CB.CC == ISD::SETLE && "Can handle only LE ranges now");
1683
1684     const APInt& Low = cast<ConstantInt>(CB.CmpLHS)->getValue();
1685     const APInt& High  = cast<ConstantInt>(CB.CmpRHS)->getValue();
1686
1687     SDValue CmpOp = getValue(CB.CmpMHS);
1688     EVT VT = CmpOp.getValueType();
1689
1690     if (cast<ConstantInt>(CB.CmpLHS)->isMinValue(true)) {
1691       Cond = DAG.getSetCC(dl, MVT::i1, CmpOp, DAG.getConstant(High, VT),
1692                           ISD::SETLE);
1693     } else {
1694       SDValue SUB = DAG.getNode(ISD::SUB, dl,
1695                                 VT, CmpOp, DAG.getConstant(Low, VT));
1696       Cond = DAG.getSetCC(dl, MVT::i1, SUB,
1697                           DAG.getConstant(High-Low, VT), ISD::SETULE);
1698     }
1699   }
1700
1701   // Update successor info
1702   addSuccessorWithWeight(SwitchBB, CB.TrueBB, CB.TrueWeight);
1703   // TrueBB and FalseBB are always different unless the incoming IR is
1704   // degenerate. This only happens when running llc on weird IR.
1705   if (CB.TrueBB != CB.FalseBB)
1706     addSuccessorWithWeight(SwitchBB, CB.FalseBB, CB.FalseWeight);
1707
1708   // Set NextBlock to be the MBB immediately after the current one, if any.
1709   // This is used to avoid emitting unnecessary branches to the next block.
1710   MachineBasicBlock *NextBlock = nullptr;
1711   MachineFunction::iterator BBI = SwitchBB;
1712   if (++BBI != FuncInfo.MF->end())
1713     NextBlock = BBI;
1714
1715   // If the lhs block is the next block, invert the condition so that we can
1716   // fall through to the lhs instead of the rhs block.
1717   if (CB.TrueBB == NextBlock) {
1718     std::swap(CB.TrueBB, CB.FalseBB);
1719     SDValue True = DAG.getConstant(1, Cond.getValueType());
1720     Cond = DAG.getNode(ISD::XOR, dl, Cond.getValueType(), Cond, True);
1721   }
1722
1723   SDValue BrCond = DAG.getNode(ISD::BRCOND, dl,
1724                                MVT::Other, getControlRoot(), Cond,
1725                                DAG.getBasicBlock(CB.TrueBB));
1726
1727   // Insert the false branch. Do this even if it's a fall through branch,
1728   // this makes it easier to do DAG optimizations which require inverting
1729   // the branch condition.
1730   BrCond = DAG.getNode(ISD::BR, dl, MVT::Other, BrCond,
1731                        DAG.getBasicBlock(CB.FalseBB));
1732
1733   DAG.setRoot(BrCond);
1734 }
1735
1736 /// visitJumpTable - Emit JumpTable node in the current MBB
1737 void SelectionDAGBuilder::visitJumpTable(JumpTable &JT) {
1738   // Emit the code for the jump table
1739   assert(JT.Reg != -1U && "Should lower JT Header first!");
1740   EVT PTy = DAG.getTargetLoweringInfo().getPointerTy();
1741   SDValue Index = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1742                                      JT.Reg, PTy);
1743   SDValue Table = DAG.getJumpTable(JT.JTI, PTy);
1744   SDValue BrJumpTable = DAG.getNode(ISD::BR_JT, getCurSDLoc(),
1745                                     MVT::Other, Index.getValue(1),
1746                                     Table, Index);
1747   DAG.setRoot(BrJumpTable);
1748 }
1749
1750 /// visitJumpTableHeader - This function emits necessary code to produce index
1751 /// in the JumpTable from switch case.
1752 void SelectionDAGBuilder::visitJumpTableHeader(JumpTable &JT,
1753                                                JumpTableHeader &JTH,
1754                                                MachineBasicBlock *SwitchBB) {
1755   // Subtract the lowest switch case value from the value being switched on and
1756   // conditional branch to default mbb if the result is greater than the
1757   // difference between smallest and largest cases.
1758   SDValue SwitchOp = getValue(JTH.SValue);
1759   EVT VT = SwitchOp.getValueType();
1760   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1761                             DAG.getConstant(JTH.First, VT));
1762
1763   // The SDNode we just created, which holds the value being switched on minus
1764   // the smallest case value, needs to be copied to a virtual register so it
1765   // can be used as an index into the jump table in a subsequent basic block.
1766   // This value may be smaller or larger than the target's pointer type, and
1767   // therefore require extension or truncating.
1768   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1769   SwitchOp = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), TLI.getPointerTy());
1770
1771   unsigned JumpTableReg = FuncInfo.CreateReg(TLI.getPointerTy());
1772   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1773                                     JumpTableReg, SwitchOp);
1774   JT.Reg = JumpTableReg;
1775
1776   // Emit the range check for the jump table, and branch to the default block
1777   // for the switch statement if the value being switched on exceeds the largest
1778   // case in the switch.
1779   SDValue CMP =
1780       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1781                                                          Sub.getValueType()),
1782                    Sub, DAG.getConstant(JTH.Last - JTH.First, VT), ISD::SETUGT);
1783
1784   // Set NextBlock to be the MBB immediately after the current one, if any.
1785   // This is used to avoid emitting unnecessary branches to the next block.
1786   MachineBasicBlock *NextBlock = nullptr;
1787   MachineFunction::iterator BBI = SwitchBB;
1788
1789   if (++BBI != FuncInfo.MF->end())
1790     NextBlock = BBI;
1791
1792   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1793                                MVT::Other, CopyTo, CMP,
1794                                DAG.getBasicBlock(JT.Default));
1795
1796   if (JT.MBB != NextBlock)
1797     BrCond = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrCond,
1798                          DAG.getBasicBlock(JT.MBB));
1799
1800   DAG.setRoot(BrCond);
1801 }
1802
1803 /// Codegen a new tail for a stack protector check ParentMBB which has had its
1804 /// tail spliced into a stack protector check success bb.
1805 ///
1806 /// For a high level explanation of how this fits into the stack protector
1807 /// generation see the comment on the declaration of class
1808 /// StackProtectorDescriptor.
1809 void SelectionDAGBuilder::visitSPDescriptorParent(StackProtectorDescriptor &SPD,
1810                                                   MachineBasicBlock *ParentBB) {
1811
1812   // First create the loads to the guard/stack slot for the comparison.
1813   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1814   EVT PtrTy = TLI.getPointerTy();
1815
1816   MachineFrameInfo *MFI = ParentBB->getParent()->getFrameInfo();
1817   int FI = MFI->getStackProtectorIndex();
1818
1819   const Value *IRGuard = SPD.getGuard();
1820   SDValue GuardPtr = getValue(IRGuard);
1821   SDValue StackSlotPtr = DAG.getFrameIndex(FI, PtrTy);
1822
1823   unsigned Align =
1824     TLI.getDataLayout()->getPrefTypeAlignment(IRGuard->getType());
1825
1826   SDValue Guard;
1827
1828   // If GuardReg is set and useLoadStackGuardNode returns true, retrieve the
1829   // guard value from the virtual register holding the value. Otherwise, emit a
1830   // volatile load to retrieve the stack guard value.
1831   unsigned GuardReg = SPD.getGuardReg();
1832
1833   if (GuardReg && TLI.useLoadStackGuardNode())
1834     Guard = DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(), GuardReg,
1835                                PtrTy);
1836   else
1837     Guard = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1838                         GuardPtr, MachinePointerInfo(IRGuard, 0),
1839                         true, false, false, Align);
1840
1841   SDValue StackSlot = DAG.getLoad(PtrTy, getCurSDLoc(), DAG.getEntryNode(),
1842                                   StackSlotPtr,
1843                                   MachinePointerInfo::getFixedStack(FI),
1844                                   true, false, false, Align);
1845
1846   // Perform the comparison via a subtract/getsetcc.
1847   EVT VT = Guard.getValueType();
1848   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, Guard, StackSlot);
1849
1850   SDValue Cmp =
1851       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1852                                                          Sub.getValueType()),
1853                    Sub, DAG.getConstant(0, VT), ISD::SETNE);
1854
1855   // If the sub is not 0, then we know the guard/stackslot do not equal, so
1856   // branch to failure MBB.
1857   SDValue BrCond = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1858                                MVT::Other, StackSlot.getOperand(0),
1859                                Cmp, DAG.getBasicBlock(SPD.getFailureMBB()));
1860   // Otherwise branch to success MBB.
1861   SDValue Br = DAG.getNode(ISD::BR, getCurSDLoc(),
1862                            MVT::Other, BrCond,
1863                            DAG.getBasicBlock(SPD.getSuccessMBB()));
1864
1865   DAG.setRoot(Br);
1866 }
1867
1868 /// Codegen the failure basic block for a stack protector check.
1869 ///
1870 /// A failure stack protector machine basic block consists simply of a call to
1871 /// __stack_chk_fail().
1872 ///
1873 /// For a high level explanation of how this fits into the stack protector
1874 /// generation see the comment on the declaration of class
1875 /// StackProtectorDescriptor.
1876 void
1877 SelectionDAGBuilder::visitSPDescriptorFailure(StackProtectorDescriptor &SPD) {
1878   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1879   SDValue Chain =
1880       TLI.makeLibCall(DAG, RTLIB::STACKPROTECTOR_CHECK_FAIL, MVT::isVoid,
1881                       nullptr, 0, false, getCurSDLoc(), false, false).second;
1882   DAG.setRoot(Chain);
1883 }
1884
1885 /// visitBitTestHeader - This function emits necessary code to produce value
1886 /// suitable for "bit tests"
1887 void SelectionDAGBuilder::visitBitTestHeader(BitTestBlock &B,
1888                                              MachineBasicBlock *SwitchBB) {
1889   // Subtract the minimum value
1890   SDValue SwitchOp = getValue(B.SValue);
1891   EVT VT = SwitchOp.getValueType();
1892   SDValue Sub = DAG.getNode(ISD::SUB, getCurSDLoc(), VT, SwitchOp,
1893                             DAG.getConstant(B.First, VT));
1894
1895   // Check range
1896   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1897   SDValue RangeCmp =
1898       DAG.getSetCC(getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(),
1899                                                          Sub.getValueType()),
1900                    Sub, DAG.getConstant(B.Range, VT), ISD::SETUGT);
1901
1902   // Determine the type of the test operands.
1903   bool UsePtrType = false;
1904   if (!TLI.isTypeLegal(VT))
1905     UsePtrType = true;
1906   else {
1907     for (unsigned i = 0, e = B.Cases.size(); i != e; ++i)
1908       if (!isUIntN(VT.getSizeInBits(), B.Cases[i].Mask)) {
1909         // Switch table case range are encoded into series of masks.
1910         // Just use pointer type, it's guaranteed to fit.
1911         UsePtrType = true;
1912         break;
1913       }
1914   }
1915   if (UsePtrType) {
1916     VT = TLI.getPointerTy();
1917     Sub = DAG.getZExtOrTrunc(Sub, getCurSDLoc(), VT);
1918   }
1919
1920   B.RegVT = VT.getSimpleVT();
1921   B.Reg = FuncInfo.CreateReg(B.RegVT);
1922   SDValue CopyTo = DAG.getCopyToReg(getControlRoot(), getCurSDLoc(),
1923                                     B.Reg, Sub);
1924
1925   // Set NextBlock to be the MBB immediately after the current one, if any.
1926   // This is used to avoid emitting unnecessary branches to the next block.
1927   MachineBasicBlock *NextBlock = nullptr;
1928   MachineFunction::iterator BBI = SwitchBB;
1929   if (++BBI != FuncInfo.MF->end())
1930     NextBlock = BBI;
1931
1932   MachineBasicBlock* MBB = B.Cases[0].ThisBB;
1933
1934   addSuccessorWithWeight(SwitchBB, B.Default);
1935   addSuccessorWithWeight(SwitchBB, MBB);
1936
1937   SDValue BrRange = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1938                                 MVT::Other, CopyTo, RangeCmp,
1939                                 DAG.getBasicBlock(B.Default));
1940
1941   if (MBB != NextBlock)
1942     BrRange = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, CopyTo,
1943                           DAG.getBasicBlock(MBB));
1944
1945   DAG.setRoot(BrRange);
1946 }
1947
1948 /// visitBitTestCase - this function produces one "bit test"
1949 void SelectionDAGBuilder::visitBitTestCase(BitTestBlock &BB,
1950                                            MachineBasicBlock* NextMBB,
1951                                            uint32_t BranchWeightToNext,
1952                                            unsigned Reg,
1953                                            BitTestCase &B,
1954                                            MachineBasicBlock *SwitchBB) {
1955   MVT VT = BB.RegVT;
1956   SDValue ShiftOp = DAG.getCopyFromReg(getControlRoot(), getCurSDLoc(),
1957                                        Reg, VT);
1958   SDValue Cmp;
1959   unsigned PopCount = CountPopulation_64(B.Mask);
1960   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
1961   if (PopCount == 1) {
1962     // Testing for a single bit; just compare the shift count with what it
1963     // would need to be to shift a 1 bit in that position.
1964     Cmp = DAG.getSetCC(
1965         getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1966         DAG.getConstant(countTrailingZeros(B.Mask), VT), ISD::SETEQ);
1967   } else if (PopCount == BB.Range) {
1968     // There is only one zero bit in the range, test for it directly.
1969     Cmp = DAG.getSetCC(
1970         getCurSDLoc(), TLI.getSetCCResultType(*DAG.getContext(), VT), ShiftOp,
1971         DAG.getConstant(CountTrailingOnes_64(B.Mask), VT), ISD::SETNE);
1972   } else {
1973     // Make desired shift
1974     SDValue SwitchVal = DAG.getNode(ISD::SHL, getCurSDLoc(), VT,
1975                                     DAG.getConstant(1, VT), ShiftOp);
1976
1977     // Emit bit tests and jumps
1978     SDValue AndOp = DAG.getNode(ISD::AND, getCurSDLoc(),
1979                                 VT, SwitchVal, DAG.getConstant(B.Mask, VT));
1980     Cmp = DAG.getSetCC(getCurSDLoc(),
1981                        TLI.getSetCCResultType(*DAG.getContext(), VT), AndOp,
1982                        DAG.getConstant(0, VT), ISD::SETNE);
1983   }
1984
1985   // The branch weight from SwitchBB to B.TargetBB is B.ExtraWeight.
1986   addSuccessorWithWeight(SwitchBB, B.TargetBB, B.ExtraWeight);
1987   // The branch weight from SwitchBB to NextMBB is BranchWeightToNext.
1988   addSuccessorWithWeight(SwitchBB, NextMBB, BranchWeightToNext);
1989
1990   SDValue BrAnd = DAG.getNode(ISD::BRCOND, getCurSDLoc(),
1991                               MVT::Other, getControlRoot(),
1992                               Cmp, DAG.getBasicBlock(B.TargetBB));
1993
1994   // Set NextBlock to be the MBB immediately after the current one, if any.
1995   // This is used to avoid emitting unnecessary branches to the next block.
1996   MachineBasicBlock *NextBlock = nullptr;
1997   MachineFunction::iterator BBI = SwitchBB;
1998   if (++BBI != FuncInfo.MF->end())
1999     NextBlock = BBI;
2000
2001   if (NextMBB != NextBlock)
2002     BrAnd = DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other, BrAnd,
2003                         DAG.getBasicBlock(NextMBB));
2004
2005   DAG.setRoot(BrAnd);
2006 }
2007
2008 void SelectionDAGBuilder::visitInvoke(const InvokeInst &I) {
2009   MachineBasicBlock *InvokeMBB = FuncInfo.MBB;
2010
2011   // Retrieve successors.
2012   MachineBasicBlock *Return = FuncInfo.MBBMap[I.getSuccessor(0)];
2013   MachineBasicBlock *LandingPad = FuncInfo.MBBMap[I.getSuccessor(1)];
2014
2015   const Value *Callee(I.getCalledValue());
2016   const Function *Fn = dyn_cast<Function>(Callee);
2017   if (isa<InlineAsm>(Callee))
2018     visitInlineAsm(&I);
2019   else if (Fn && Fn->isIntrinsic()) {
2020     switch (Fn->getIntrinsicID()) {
2021     default:
2022       llvm_unreachable("Cannot invoke this intrinsic");
2023     case Intrinsic::donothing:
2024       // Ignore invokes to @llvm.donothing: jump directly to the next BB.
2025       break;
2026     case Intrinsic::experimental_patchpoint_void:
2027     case Intrinsic::experimental_patchpoint_i64:
2028       visitPatchpoint(&I, LandingPad);
2029       break;
2030     }
2031   } else
2032     LowerCallTo(&I, getValue(Callee), false, LandingPad);
2033
2034   // If the value of the invoke is used outside of its defining block, make it
2035   // available as a virtual register.
2036   CopyToExportRegsIfNeeded(&I);
2037
2038   // Update successor info
2039   addSuccessorWithWeight(InvokeMBB, Return);
2040   addSuccessorWithWeight(InvokeMBB, LandingPad);
2041
2042   // Drop into normal successor.
2043   DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(),
2044                           MVT::Other, getControlRoot(),
2045                           DAG.getBasicBlock(Return)));
2046 }
2047
2048 void SelectionDAGBuilder::visitResume(const ResumeInst &RI) {
2049   llvm_unreachable("SelectionDAGBuilder shouldn't visit resume instructions!");
2050 }
2051
2052 void SelectionDAGBuilder::visitLandingPad(const LandingPadInst &LP) {
2053   assert(FuncInfo.MBB->isLandingPad() &&
2054          "Call to landingpad not in landing pad!");
2055
2056   MachineBasicBlock *MBB = FuncInfo.MBB;
2057   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
2058   AddLandingPadInfo(LP, MMI, MBB);
2059
2060   // If there aren't registers to copy the values into (e.g., during SjLj
2061   // exceptions), then don't bother to create these DAG nodes.
2062   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2063   if (TLI.getExceptionPointerRegister() == 0 &&
2064       TLI.getExceptionSelectorRegister() == 0)
2065     return;
2066
2067   SmallVector<EVT, 2> ValueVTs;
2068   ComputeValueVTs(TLI, LP.getType(), ValueVTs);
2069   assert(ValueVTs.size() == 2 && "Only two-valued landingpads are supported");
2070
2071   // Get the two live-in registers as SDValues. The physregs have already been
2072   // copied into virtual registers.
2073   SDValue Ops[2];
2074   Ops[0] = DAG.getZExtOrTrunc(
2075       DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2076                          FuncInfo.ExceptionPointerVirtReg, TLI.getPointerTy()),
2077       getCurSDLoc(), ValueVTs[0]);
2078   Ops[1] = DAG.getZExtOrTrunc(
2079       DAG.getCopyFromReg(DAG.getEntryNode(), getCurSDLoc(),
2080                          FuncInfo.ExceptionSelectorVirtReg, TLI.getPointerTy()),
2081       getCurSDLoc(), ValueVTs[1]);
2082
2083   // Merge into one.
2084   SDValue Res = DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2085                             DAG.getVTList(ValueVTs), Ops);
2086   setValue(&LP, Res);
2087 }
2088
2089 /// handleSmallSwitchCaseRange - Emit a series of specific tests (suitable for
2090 /// small case ranges).
2091 bool SelectionDAGBuilder::handleSmallSwitchRange(CaseRec& CR,
2092                                                  CaseRecVector& WorkList,
2093                                                  const Value* SV,
2094                                                  MachineBasicBlock *Default,
2095                                                  MachineBasicBlock *SwitchBB) {
2096   // Size is the number of Cases represented by this range.
2097   size_t Size = CR.Range.second - CR.Range.first;
2098   if (Size > 3)
2099     return false;
2100
2101   // Get the MachineFunction which holds the current MBB.  This is used when
2102   // inserting any additional MBBs necessary to represent the switch.
2103   MachineFunction *CurMF = FuncInfo.MF;
2104
2105   // Figure out which block is immediately after the current one.
2106   MachineBasicBlock *NextBlock = nullptr;
2107   MachineFunction::iterator BBI = CR.CaseBB;
2108
2109   if (++BBI != FuncInfo.MF->end())
2110     NextBlock = BBI;
2111
2112   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2113   // If any two of the cases has the same destination, and if one value
2114   // is the same as the other, but has one bit unset that the other has set,
2115   // use bit manipulation to do two compares at once.  For example:
2116   // "if (X == 6 || X == 4)" -> "if ((X|2) == 6)"
2117   // TODO: This could be extended to merge any 2 cases in switches with 3 cases.
2118   // TODO: Handle cases where CR.CaseBB != SwitchBB.
2119   if (Size == 2 && CR.CaseBB == SwitchBB) {
2120     Case &Small = *CR.Range.first;
2121     Case &Big = *(CR.Range.second-1);
2122
2123     if (Small.Low == Small.High && Big.Low == Big.High && Small.BB == Big.BB) {
2124       const APInt& SmallValue = cast<ConstantInt>(Small.Low)->getValue();
2125       const APInt& BigValue = cast<ConstantInt>(Big.Low)->getValue();
2126
2127       // Check that there is only one bit different.
2128       if (BigValue.countPopulation() == SmallValue.countPopulation() + 1 &&
2129           (SmallValue | BigValue) == BigValue) {
2130         // Isolate the common bit.
2131         APInt CommonBit = BigValue & ~SmallValue;
2132         assert((SmallValue | CommonBit) == BigValue &&
2133                CommonBit.countPopulation() == 1 && "Not a common bit?");
2134
2135         SDValue CondLHS = getValue(SV);
2136         EVT VT = CondLHS.getValueType();
2137         SDLoc DL = getCurSDLoc();
2138
2139         SDValue Or = DAG.getNode(ISD::OR, DL, VT, CondLHS,
2140                                  DAG.getConstant(CommonBit, VT));
2141         SDValue Cond = DAG.getSetCC(DL, MVT::i1,
2142                                     Or, DAG.getConstant(BigValue, VT),
2143                                     ISD::SETEQ);
2144
2145         // Update successor info.
2146         // Both Small and Big will jump to Small.BB, so we sum up the weights.
2147         addSuccessorWithWeight(SwitchBB, Small.BB,
2148                                Small.ExtraWeight + Big.ExtraWeight);
2149         addSuccessorWithWeight(SwitchBB, Default,
2150           // The default destination is the first successor in IR.
2151           BPI ? BPI->getEdgeWeight(SwitchBB->getBasicBlock(), (unsigned)0) : 0);
2152
2153         // Insert the true branch.
2154         SDValue BrCond = DAG.getNode(ISD::BRCOND, DL, MVT::Other,
2155                                      getControlRoot(), Cond,
2156                                      DAG.getBasicBlock(Small.BB));
2157
2158         // Insert the false branch.
2159         BrCond = DAG.getNode(ISD::BR, DL, MVT::Other, BrCond,
2160                              DAG.getBasicBlock(Default));
2161
2162         DAG.setRoot(BrCond);
2163         return true;
2164       }
2165     }
2166   }
2167
2168   // Order cases by weight so the most likely case will be checked first.
2169   uint32_t UnhandledWeights = 0;
2170   if (BPI) {
2171     for (CaseItr I = CR.Range.first, IE = CR.Range.second; I != IE; ++I) {
2172       uint32_t IWeight = I->ExtraWeight;
2173       UnhandledWeights += IWeight;
2174       for (CaseItr J = CR.Range.first; J < I; ++J) {
2175         uint32_t JWeight = J->ExtraWeight;
2176         if (IWeight > JWeight)
2177           std::swap(*I, *J);
2178       }
2179     }
2180   }
2181   // Rearrange the case blocks so that the last one falls through if possible.
2182   Case &BackCase = *(CR.Range.second-1);
2183   if (Size > 1 &&
2184       NextBlock && Default != NextBlock && BackCase.BB != NextBlock) {
2185     // The last case block won't fall through into 'NextBlock' if we emit the
2186     // branches in this order.  See if rearranging a case value would help.
2187     // We start at the bottom as it's the case with the least weight.
2188     for (Case *I = &*(CR.Range.second-2), *E = &*CR.Range.first-1; I != E; --I)
2189       if (I->BB == NextBlock) {
2190         std::swap(*I, BackCase);
2191         break;
2192       }
2193   }
2194
2195   // Create a CaseBlock record representing a conditional branch to
2196   // the Case's target mbb if the value being switched on SV is equal
2197   // to C.
2198   MachineBasicBlock *CurBlock = CR.CaseBB;
2199   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2200     MachineBasicBlock *FallThrough;
2201     if (I != E-1) {
2202       FallThrough = CurMF->CreateMachineBasicBlock(CurBlock->getBasicBlock());
2203       CurMF->insert(BBI, FallThrough);
2204
2205       // Put SV in a virtual register to make it available from the new blocks.
2206       ExportFromCurrentBlock(SV);
2207     } else {
2208       // If the last case doesn't match, go to the default block.
2209       FallThrough = Default;
2210     }
2211
2212     const Value *RHS, *LHS, *MHS;
2213     ISD::CondCode CC;
2214     if (I->High == I->Low) {
2215       // This is just small small case range :) containing exactly 1 case
2216       CC = ISD::SETEQ;
2217       LHS = SV; RHS = I->High; MHS = nullptr;
2218     } else {
2219       CC = ISD::SETLE;
2220       LHS = I->Low; MHS = SV; RHS = I->High;
2221     }
2222
2223     // The false weight should be sum of all un-handled cases.
2224     UnhandledWeights -= I->ExtraWeight;
2225     CaseBlock CB(CC, LHS, RHS, MHS, /* truebb */ I->BB, /* falsebb */ FallThrough,
2226                  /* me */ CurBlock,
2227                  /* trueweight */ I->ExtraWeight,
2228                  /* falseweight */ UnhandledWeights);
2229
2230     // If emitting the first comparison, just call visitSwitchCase to emit the
2231     // code into the current block.  Otherwise, push the CaseBlock onto the
2232     // vector to be later processed by SDISel, and insert the node's MBB
2233     // before the next MBB.
2234     if (CurBlock == SwitchBB)
2235       visitSwitchCase(CB, SwitchBB);
2236     else
2237       SwitchCases.push_back(CB);
2238
2239     CurBlock = FallThrough;
2240   }
2241
2242   return true;
2243 }
2244
2245 static inline bool areJTsAllowed(const TargetLowering &TLI) {
2246   return TLI.isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
2247          TLI.isOperationLegalOrCustom(ISD::BRIND, MVT::Other);
2248 }
2249
2250 static APInt ComputeRange(const APInt &First, const APInt &Last) {
2251   uint32_t BitWidth = std::max(Last.getBitWidth(), First.getBitWidth()) + 1;
2252   APInt LastExt = Last.sext(BitWidth), FirstExt = First.sext(BitWidth);
2253   return (LastExt - FirstExt + 1ULL);
2254 }
2255
2256 /// handleJTSwitchCase - Emit jumptable for current switch case range
2257 bool SelectionDAGBuilder::handleJTSwitchCase(CaseRec &CR,
2258                                              CaseRecVector &WorkList,
2259                                              const Value *SV,
2260                                              MachineBasicBlock *Default,
2261                                              MachineBasicBlock *SwitchBB) {
2262   Case& FrontCase = *CR.Range.first;
2263   Case& BackCase  = *(CR.Range.second-1);
2264
2265   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2266   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2267
2268   APInt TSize(First.getBitWidth(), 0);
2269   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I)
2270     TSize += I->size();
2271
2272   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2273   if (!areJTsAllowed(TLI) || TSize.ult(TLI.getMinimumJumpTableEntries()))
2274     return false;
2275
2276   APInt Range = ComputeRange(First, Last);
2277   // The density is TSize / Range. Require at least 40%.
2278   // It should not be possible for IntTSize to saturate for sane code, but make
2279   // sure we handle Range saturation correctly.
2280   uint64_t IntRange = Range.getLimitedValue(UINT64_MAX/10);
2281   uint64_t IntTSize = TSize.getLimitedValue(UINT64_MAX/10);
2282   if (IntTSize * 10 < IntRange * 4)
2283     return false;
2284
2285   DEBUG(dbgs() << "Lowering jump table\n"
2286                << "First entry: " << First << ". Last entry: " << Last << '\n'
2287                << "Range: " << Range << ". Size: " << TSize << ".\n\n");
2288
2289   // Get the MachineFunction which holds the current MBB.  This is used when
2290   // inserting any additional MBBs necessary to represent the switch.
2291   MachineFunction *CurMF = FuncInfo.MF;
2292
2293   // Figure out which block is immediately after the current one.
2294   MachineFunction::iterator BBI = CR.CaseBB;
2295   ++BBI;
2296
2297   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2298
2299   // Create a new basic block to hold the code for loading the address
2300   // of the jump table, and jumping to it.  Update successor information;
2301   // we will either branch to the default case for the switch, or the jump
2302   // table.
2303   MachineBasicBlock *JumpTableBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2304   CurMF->insert(BBI, JumpTableBB);
2305
2306   addSuccessorWithWeight(CR.CaseBB, Default);
2307   addSuccessorWithWeight(CR.CaseBB, JumpTableBB);
2308
2309   // Build a vector of destination BBs, corresponding to each target
2310   // of the jump table. If the value of the jump table slot corresponds to
2311   // a case statement, push the case's BB onto the vector, otherwise, push
2312   // the default BB.
2313   std::vector<MachineBasicBlock*> DestBBs;
2314   APInt TEI = First;
2315   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++TEI) {
2316     const APInt &Low = cast<ConstantInt>(I->Low)->getValue();
2317     const APInt &High = cast<ConstantInt>(I->High)->getValue();
2318
2319     if (Low.sle(TEI) && TEI.sle(High)) {
2320       DestBBs.push_back(I->BB);
2321       if (TEI==High)
2322         ++I;
2323     } else {
2324       DestBBs.push_back(Default);
2325     }
2326   }
2327
2328   // Calculate weight for each unique destination in CR.
2329   DenseMap<MachineBasicBlock*, uint32_t> DestWeights;
2330   if (FuncInfo.BPI)
2331     for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2332       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2333           DestWeights.find(I->BB);
2334       if (Itr != DestWeights.end())
2335         Itr->second += I->ExtraWeight;
2336       else
2337         DestWeights[I->BB] = I->ExtraWeight;
2338     }
2339
2340   // Update successor info. Add one edge to each unique successor.
2341   BitVector SuccsHandled(CR.CaseBB->getParent()->getNumBlockIDs());
2342   for (std::vector<MachineBasicBlock*>::iterator I = DestBBs.begin(),
2343          E = DestBBs.end(); I != E; ++I) {
2344     if (!SuccsHandled[(*I)->getNumber()]) {
2345       SuccsHandled[(*I)->getNumber()] = true;
2346       DenseMap<MachineBasicBlock*, uint32_t>::iterator Itr =
2347           DestWeights.find(*I);
2348       addSuccessorWithWeight(JumpTableBB, *I,
2349                              Itr != DestWeights.end() ? Itr->second : 0);
2350     }
2351   }
2352
2353   // Create a jump table index for this jump table.
2354   unsigned JTEncoding = TLI.getJumpTableEncoding();
2355   unsigned JTI = CurMF->getOrCreateJumpTableInfo(JTEncoding)
2356                        ->createJumpTableIndex(DestBBs);
2357
2358   // Set the jump table information so that we can codegen it as a second
2359   // MachineBasicBlock
2360   JumpTable JT(-1U, JTI, JumpTableBB, Default);
2361   JumpTableHeader JTH(First, Last, SV, CR.CaseBB, (CR.CaseBB == SwitchBB));
2362   if (CR.CaseBB == SwitchBB)
2363     visitJumpTableHeader(JT, JTH, SwitchBB);
2364
2365   JTCases.push_back(JumpTableBlock(JTH, JT));
2366   return true;
2367 }
2368
2369 /// handleBTSplitSwitchCase - emit comparison and split binary search tree into
2370 /// 2 subtrees.
2371 bool SelectionDAGBuilder::handleBTSplitSwitchCase(CaseRec& CR,
2372                                                   CaseRecVector& WorkList,
2373                                                   const Value* SV,
2374                                                   MachineBasicBlock* SwitchBB) {
2375   // Get the MachineFunction which holds the current MBB.  This is used when
2376   // inserting any additional MBBs necessary to represent the switch.
2377   MachineFunction *CurMF = FuncInfo.MF;
2378
2379   // Figure out which block is immediately after the current one.
2380   MachineFunction::iterator BBI = CR.CaseBB;
2381   ++BBI;
2382
2383   Case& FrontCase = *CR.Range.first;
2384   Case& BackCase  = *(CR.Range.second-1);
2385   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2386
2387   // Size is the number of Cases represented by this range.
2388   unsigned Size = CR.Range.second - CR.Range.first;
2389
2390   const APInt &First = cast<ConstantInt>(FrontCase.Low)->getValue();
2391   const APInt &Last  = cast<ConstantInt>(BackCase.High)->getValue();
2392   double FMetric = 0;
2393   CaseItr Pivot = CR.Range.first + Size/2;
2394
2395   // Select optimal pivot, maximizing sum density of LHS and RHS. This will
2396   // (heuristically) allow us to emit JumpTable's later.
2397   APInt TSize(First.getBitWidth(), 0);
2398   for (CaseItr I = CR.Range.first, E = CR.Range.second;
2399        I!=E; ++I)
2400     TSize += I->size();
2401
2402   APInt LSize = FrontCase.size();
2403   APInt RSize = TSize-LSize;
2404   DEBUG(dbgs() << "Selecting best pivot: \n"
2405                << "First: " << First << ", Last: " << Last <<'\n'
2406                << "LSize: " << LSize << ", RSize: " << RSize << '\n');
2407   for (CaseItr I = CR.Range.first, J=I+1, E = CR.Range.second;
2408        J!=E; ++I, ++J) {
2409     const APInt &LEnd = cast<ConstantInt>(I->High)->getValue();
2410     const APInt &RBegin = cast<ConstantInt>(J->Low)->getValue();
2411     APInt Range = ComputeRange(LEnd, RBegin);
2412     assert((Range - 2ULL).isNonNegative() &&
2413            "Invalid case distance");
2414     // Use volatile double here to avoid excess precision issues on some hosts,
2415     // e.g. that use 80-bit X87 registers.
2416     volatile double LDensity =
2417        (double)LSize.roundToDouble() /
2418                            (LEnd - First + 1ULL).roundToDouble();
2419     volatile double RDensity =
2420       (double)RSize.roundToDouble() /
2421                            (Last - RBegin + 1ULL).roundToDouble();
2422     volatile double Metric = Range.logBase2()*(LDensity+RDensity);
2423     // Should always split in some non-trivial place
2424     DEBUG(dbgs() <<"=>Step\n"
2425                  << "LEnd: " << LEnd << ", RBegin: " << RBegin << '\n'
2426                  << "LDensity: " << LDensity
2427                  << ", RDensity: " << RDensity << '\n'
2428                  << "Metric: " << Metric << '\n');
2429     if (FMetric < Metric) {
2430       Pivot = J;
2431       FMetric = Metric;
2432       DEBUG(dbgs() << "Current metric set to: " << FMetric << '\n');
2433     }
2434
2435     LSize += J->size();
2436     RSize -= J->size();
2437   }
2438
2439   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2440   if (areJTsAllowed(TLI)) {
2441     // If our case is dense we *really* should handle it earlier!
2442     assert((FMetric > 0) && "Should handle dense range earlier!");
2443   } else {
2444     Pivot = CR.Range.first + Size/2;
2445   }
2446
2447   CaseRange LHSR(CR.Range.first, Pivot);
2448   CaseRange RHSR(Pivot, CR.Range.second);
2449   const Constant *C = Pivot->Low;
2450   MachineBasicBlock *FalseBB = nullptr, *TrueBB = nullptr;
2451
2452   // We know that we branch to the LHS if the Value being switched on is
2453   // less than the Pivot value, C.  We use this to optimize our binary
2454   // tree a bit, by recognizing that if SV is greater than or equal to the
2455   // LHS's Case Value, and that Case Value is exactly one less than the
2456   // Pivot's Value, then we can branch directly to the LHS's Target,
2457   // rather than creating a leaf node for it.
2458   if ((LHSR.second - LHSR.first) == 1 &&
2459       LHSR.first->High == CR.GE &&
2460       cast<ConstantInt>(C)->getValue() ==
2461       (cast<ConstantInt>(CR.GE)->getValue() + 1LL)) {
2462     TrueBB = LHSR.first->BB;
2463   } else {
2464     TrueBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2465     CurMF->insert(BBI, TrueBB);
2466     WorkList.push_back(CaseRec(TrueBB, C, CR.GE, LHSR));
2467
2468     // Put SV in a virtual register to make it available from the new blocks.
2469     ExportFromCurrentBlock(SV);
2470   }
2471
2472   // Similar to the optimization above, if the Value being switched on is
2473   // known to be less than the Constant CR.LT, and the current Case Value
2474   // is CR.LT - 1, then we can branch directly to the target block for
2475   // the current Case Value, rather than emitting a RHS leaf node for it.
2476   if ((RHSR.second - RHSR.first) == 1 && CR.LT &&
2477       cast<ConstantInt>(RHSR.first->Low)->getValue() ==
2478       (cast<ConstantInt>(CR.LT)->getValue() - 1LL)) {
2479     FalseBB = RHSR.first->BB;
2480   } else {
2481     FalseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2482     CurMF->insert(BBI, FalseBB);
2483     WorkList.push_back(CaseRec(FalseBB,CR.LT,C,RHSR));
2484
2485     // Put SV in a virtual register to make it available from the new blocks.
2486     ExportFromCurrentBlock(SV);
2487   }
2488
2489   // Create a CaseBlock record representing a conditional branch to
2490   // the LHS node if the value being switched on SV is less than C.
2491   // Otherwise, branch to LHS.
2492   CaseBlock CB(ISD::SETLT, SV, C, nullptr, TrueBB, FalseBB, CR.CaseBB);
2493
2494   if (CR.CaseBB == SwitchBB)
2495     visitSwitchCase(CB, SwitchBB);
2496   else
2497     SwitchCases.push_back(CB);
2498
2499   return true;
2500 }
2501
2502 /// handleBitTestsSwitchCase - if current case range has few destination and
2503 /// range span less, than machine word bitwidth, encode case range into series
2504 /// of masks and emit bit tests with these masks.
2505 bool SelectionDAGBuilder::handleBitTestsSwitchCase(CaseRec& CR,
2506                                                    CaseRecVector& WorkList,
2507                                                    const Value* SV,
2508                                                    MachineBasicBlock* Default,
2509                                                    MachineBasicBlock* SwitchBB) {
2510   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2511   EVT PTy = TLI.getPointerTy();
2512   unsigned IntPtrBits = PTy.getSizeInBits();
2513
2514   Case& FrontCase = *CR.Range.first;
2515   Case& BackCase  = *(CR.Range.second-1);
2516
2517   // Get the MachineFunction which holds the current MBB.  This is used when
2518   // inserting any additional MBBs necessary to represent the switch.
2519   MachineFunction *CurMF = FuncInfo.MF;
2520
2521   // If target does not have legal shift left, do not emit bit tests at all.
2522   if (!TLI.isOperationLegal(ISD::SHL, PTy))
2523     return false;
2524
2525   size_t numCmps = 0;
2526   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2527     // Single case counts one, case range - two.
2528     numCmps += (I->Low == I->High ? 1 : 2);
2529   }
2530
2531   // Count unique destinations
2532   SmallSet<MachineBasicBlock*, 4> Dests;
2533   for (CaseItr I = CR.Range.first, E = CR.Range.second; I != E; ++I) {
2534     Dests.insert(I->BB);
2535     if (Dests.size() > 3)
2536       // Don't bother the code below, if there are too much unique destinations
2537       return false;
2538   }
2539   DEBUG(dbgs() << "Total number of unique destinations: "
2540         << Dests.size() << '\n'
2541         << "Total number of comparisons: " << numCmps << '\n');
2542
2543   // Compute span of values.
2544   const APInt& minValue = cast<ConstantInt>(FrontCase.Low)->getValue();
2545   const APInt& maxValue = cast<ConstantInt>(BackCase.High)->getValue();
2546   APInt cmpRange = maxValue - minValue;
2547
2548   DEBUG(dbgs() << "Compare range: " << cmpRange << '\n'
2549                << "Low bound: " << minValue << '\n'
2550                << "High bound: " << maxValue << '\n');
2551
2552   if (cmpRange.uge(IntPtrBits) ||
2553       (!(Dests.size() == 1 && numCmps >= 3) &&
2554        !(Dests.size() == 2 && numCmps >= 5) &&
2555        !(Dests.size() >= 3 && numCmps >= 6)))
2556     return false;
2557
2558   DEBUG(dbgs() << "Emitting bit tests\n");
2559   APInt lowBound = APInt::getNullValue(cmpRange.getBitWidth());
2560
2561   // Optimize the case where all the case values fit in a
2562   // word without having to subtract minValue. In this case,
2563   // we can optimize away the subtraction.
2564   if (minValue.isNonNegative() && maxValue.slt(IntPtrBits)) {
2565     cmpRange = maxValue;
2566   } else {
2567     lowBound = minValue;
2568   }
2569
2570   CaseBitsVector CasesBits;
2571   unsigned i, count = 0;
2572
2573   for (CaseItr I = CR.Range.first, E = CR.Range.second; I!=E; ++I) {
2574     MachineBasicBlock* Dest = I->BB;
2575     for (i = 0; i < count; ++i)
2576       if (Dest == CasesBits[i].BB)
2577         break;
2578
2579     if (i == count) {
2580       assert((count < 3) && "Too much destinations to test!");
2581       CasesBits.push_back(CaseBits(0, Dest, 0, 0/*Weight*/));
2582       count++;
2583     }
2584
2585     const APInt& lowValue = cast<ConstantInt>(I->Low)->getValue();
2586     const APInt& highValue = cast<ConstantInt>(I->High)->getValue();
2587
2588     uint64_t lo = (lowValue - lowBound).getZExtValue();
2589     uint64_t hi = (highValue - lowBound).getZExtValue();
2590     CasesBits[i].ExtraWeight += I->ExtraWeight;
2591
2592     for (uint64_t j = lo; j <= hi; j++) {
2593       CasesBits[i].Mask |=  1ULL << j;
2594       CasesBits[i].Bits++;
2595     }
2596
2597   }
2598   std::sort(CasesBits.begin(), CasesBits.end(), CaseBitsCmp());
2599
2600   BitTestInfo BTC;
2601
2602   // Figure out which block is immediately after the current one.
2603   MachineFunction::iterator BBI = CR.CaseBB;
2604   ++BBI;
2605
2606   const BasicBlock *LLVMBB = CR.CaseBB->getBasicBlock();
2607
2608   DEBUG(dbgs() << "Cases:\n");
2609   for (unsigned i = 0, e = CasesBits.size(); i!=e; ++i) {
2610     DEBUG(dbgs() << "Mask: " << CasesBits[i].Mask
2611                  << ", Bits: " << CasesBits[i].Bits
2612                  << ", BB: " << CasesBits[i].BB << '\n');
2613
2614     MachineBasicBlock *CaseBB = CurMF->CreateMachineBasicBlock(LLVMBB);
2615     CurMF->insert(BBI, CaseBB);
2616     BTC.push_back(BitTestCase(CasesBits[i].Mask,
2617                               CaseBB,
2618                               CasesBits[i].BB, CasesBits[i].ExtraWeight));
2619
2620     // Put SV in a virtual register to make it available from the new blocks.
2621     ExportFromCurrentBlock(SV);
2622   }
2623
2624   BitTestBlock BTB(lowBound, cmpRange, SV,
2625                    -1U, MVT::Other, (CR.CaseBB == SwitchBB),
2626                    CR.CaseBB, Default, std::move(BTC));
2627
2628   if (CR.CaseBB == SwitchBB)
2629     visitBitTestHeader(BTB, SwitchBB);
2630
2631   BitTestCases.push_back(std::move(BTB));
2632
2633   return true;
2634 }
2635
2636 /// Clusterify - Transform simple list of Cases into list of CaseRange's
2637 void SelectionDAGBuilder::Clusterify(CaseVector& Cases,
2638                                      const SwitchInst& SI) {
2639   BranchProbabilityInfo *BPI = FuncInfo.BPI;
2640   // Start with "simple" cases.
2641   for (SwitchInst::ConstCaseIt i : SI.cases()) {
2642     const BasicBlock *SuccBB = i.getCaseSuccessor();
2643     MachineBasicBlock *SMBB = FuncInfo.MBBMap[SuccBB];
2644
2645     uint32_t ExtraWeight =
2646       BPI ? BPI->getEdgeWeight(SI.getParent(), i.getSuccessorIndex()) : 0;
2647
2648     Cases.push_back(Case(i.getCaseValue(), i.getCaseValue(),
2649                          SMBB, ExtraWeight));
2650   }
2651   std::sort(Cases.begin(), Cases.end(), CaseCmp());
2652
2653   // Merge case into clusters
2654   if (Cases.size() >= 2)
2655     // Must recompute end() each iteration because it may be
2656     // invalidated by erase if we hold on to it
2657     for (CaseItr I = Cases.begin(), J = std::next(Cases.begin());
2658          J != Cases.end(); ) {
2659       const APInt& nextValue = cast<ConstantInt>(J->Low)->getValue();
2660       const APInt& currentValue = cast<ConstantInt>(I->High)->getValue();
2661       MachineBasicBlock* nextBB = J->BB;
2662       MachineBasicBlock* currentBB = I->BB;
2663
2664       // If the two neighboring cases go to the same destination, merge them
2665       // into a single case.
2666       if ((nextValue - currentValue == 1) && (currentBB == nextBB)) {
2667         I->High = J->High;
2668         I->ExtraWeight += J->ExtraWeight;
2669         J = Cases.erase(J);
2670       } else {
2671         I = J++;
2672       }
2673     }
2674
2675   DEBUG({
2676       size_t numCmps = 0;
2677       for (auto &I : Cases)
2678         // A range counts double, since it requires two compares.
2679         numCmps += I.Low != I.High ? 2 : 1;
2680
2681       dbgs() << "Clusterify finished. Total clusters: " << Cases.size()
2682              << ". Total compares: " << numCmps << '\n';
2683     });
2684 }
2685
2686 void SelectionDAGBuilder::UpdateSplitBlock(MachineBasicBlock *First,
2687                                            MachineBasicBlock *Last) {
2688   // Update JTCases.
2689   for (unsigned i = 0, e = JTCases.size(); i != e; ++i)
2690     if (JTCases[i].first.HeaderBB == First)
2691       JTCases[i].first.HeaderBB = Last;
2692
2693   // Update BitTestCases.
2694   for (unsigned i = 0, e = BitTestCases.size(); i != e; ++i)
2695     if (BitTestCases[i].Parent == First)
2696       BitTestCases[i].Parent = Last;
2697 }
2698
2699 void SelectionDAGBuilder::visitSwitch(const SwitchInst &SI) {
2700   MachineBasicBlock *SwitchMBB = FuncInfo.MBB;
2701
2702   // Figure out which block is immediately after the current one.
2703   MachineBasicBlock *NextBlock = nullptr;
2704   if (SwitchMBB + 1 != FuncInfo.MF->end())
2705     NextBlock = SwitchMBB + 1;
2706
2707
2708   // Create a vector of Cases, sorted so that we can efficiently create a binary
2709   // search tree from them.
2710   CaseVector Cases;
2711   Clusterify(Cases, SI);
2712
2713   // Get the default destination MBB.
2714   MachineBasicBlock *Default = FuncInfo.MBBMap[SI.getDefaultDest()];
2715
2716   if (isa<UnreachableInst>(SI.getDefaultDest()->getFirstNonPHIOrDbg()) &&
2717       !Cases.empty()) {
2718     // Replace an unreachable default destination with the most popular case
2719     // destination.
2720     DenseMap<const BasicBlock *, unsigned> Popularity;
2721     unsigned MaxPop = 0;
2722     const BasicBlock *MaxBB = nullptr;
2723     for (auto I : SI.cases()) {
2724       const BasicBlock *BB = I.getCaseSuccessor();
2725       if (++Popularity[BB] > MaxPop) {
2726         MaxPop = Popularity[BB];
2727         MaxBB = BB;
2728       }
2729     }
2730
2731     // Set new default.
2732     assert(MaxPop > 0);
2733     assert(MaxBB);
2734     Default = FuncInfo.MBBMap[MaxBB];
2735
2736     // Remove cases that were pointing to the destination that is now the default.
2737     Cases.erase(std::remove_if(Cases.begin(), Cases.end(),
2738                                [&](const Case &C) { return C.BB == Default; }),
2739                 Cases.end());
2740   }
2741
2742   // If there is only the default destination, go there directly.
2743   if (Cases.empty()) {
2744     // Update machine-CFG edges.
2745     SwitchMBB->addSuccessor(Default);
2746
2747     // If this is not a fall-through branch, emit the branch.
2748     if (Default != NextBlock) {
2749       DAG.setRoot(DAG.getNode(ISD::BR, getCurSDLoc(), MVT::Other,
2750                               getControlRoot(), DAG.getBasicBlock(Default)));
2751     }
2752     return;
2753   }
2754
2755   // Get the Value to be switched on.
2756   const Value *SV = SI.getCondition();
2757
2758   // Push the initial CaseRec onto the worklist
2759   CaseRecVector WorkList;
2760   WorkList.push_back(CaseRec(SwitchMBB,nullptr,nullptr,
2761                              CaseRange(Cases.begin(),Cases.end())));
2762
2763   while (!WorkList.empty()) {
2764     // Grab a record representing a case range to process off the worklist
2765     CaseRec CR = WorkList.back();
2766     WorkList.pop_back();
2767
2768     if (handleBitTestsSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2769       continue;
2770
2771     // If the range has few cases (two or less) emit a series of specific
2772     // tests.
2773     if (handleSmallSwitchRange(CR, WorkList, SV, Default, SwitchMBB))
2774       continue;
2775
2776     // If the switch has more than N blocks, and is at least 40% dense, and the
2777     // target supports indirect branches, then emit a jump table rather than
2778     // lowering the switch to a binary tree of conditional branches.
2779     // N defaults to 4 and is controlled via TLS.getMinimumJumpTableEntries().
2780     if (handleJTSwitchCase(CR, WorkList, SV, Default, SwitchMBB))
2781       continue;
2782
2783     // Emit binary tree. We need to pick a pivot, and push left and right ranges
2784     // onto the worklist. Leafs are handled via handleSmallSwitchRange() call.
2785     handleBTSplitSwitchCase(CR, WorkList, SV, SwitchMBB);
2786   }
2787 }
2788
2789 void SelectionDAGBuilder::visitIndirectBr(const IndirectBrInst &I) {
2790   MachineBasicBlock *IndirectBrMBB = FuncInfo.MBB;
2791
2792   // Update machine-CFG edges with unique successors.
2793   SmallSet<BasicBlock*, 32> Done;
2794   for (unsigned i = 0, e = I.getNumSuccessors(); i != e; ++i) {
2795     BasicBlock *BB = I.getSuccessor(i);
2796     bool Inserted = Done.insert(BB).second;
2797     if (!Inserted)
2798         continue;
2799
2800     MachineBasicBlock *Succ = FuncInfo.MBBMap[BB];
2801     addSuccessorWithWeight(IndirectBrMBB, Succ);
2802   }
2803
2804   DAG.setRoot(DAG.getNode(ISD::BRIND, getCurSDLoc(),
2805                           MVT::Other, getControlRoot(),
2806                           getValue(I.getAddress())));
2807 }
2808
2809 void SelectionDAGBuilder::visitUnreachable(const UnreachableInst &I) {
2810   if (DAG.getTarget().Options.TrapUnreachable)
2811     DAG.setRoot(DAG.getNode(ISD::TRAP, getCurSDLoc(), MVT::Other, DAG.getRoot()));
2812 }
2813
2814 void SelectionDAGBuilder::visitFSub(const User &I) {
2815   // -0.0 - X --> fneg
2816   Type *Ty = I.getType();
2817   if (isa<Constant>(I.getOperand(0)) &&
2818       I.getOperand(0) == ConstantFP::getZeroValueForNegation(Ty)) {
2819     SDValue Op2 = getValue(I.getOperand(1));
2820     setValue(&I, DAG.getNode(ISD::FNEG, getCurSDLoc(),
2821                              Op2.getValueType(), Op2));
2822     return;
2823   }
2824
2825   visitBinary(I, ISD::FSUB);
2826 }
2827
2828 void SelectionDAGBuilder::visitBinary(const User &I, unsigned OpCode) {
2829   SDValue Op1 = getValue(I.getOperand(0));
2830   SDValue Op2 = getValue(I.getOperand(1));
2831
2832   bool nuw = false;
2833   bool nsw = false;
2834   bool exact = false;
2835   if (const OverflowingBinaryOperator *OFBinOp =
2836           dyn_cast<const OverflowingBinaryOperator>(&I)) {
2837     nuw = OFBinOp->hasNoUnsignedWrap();
2838     nsw = OFBinOp->hasNoSignedWrap();
2839   }
2840   if (const PossiblyExactOperator *ExactOp =
2841           dyn_cast<const PossiblyExactOperator>(&I))
2842     exact = ExactOp->isExact();
2843
2844   SDValue BinNodeValue = DAG.getNode(OpCode, getCurSDLoc(), Op1.getValueType(),
2845                                      Op1, Op2, nuw, nsw, exact);
2846   setValue(&I, BinNodeValue);
2847 }
2848
2849 void SelectionDAGBuilder::visitShift(const User &I, unsigned Opcode) {
2850   SDValue Op1 = getValue(I.getOperand(0));
2851   SDValue Op2 = getValue(I.getOperand(1));
2852
2853   EVT ShiftTy =
2854       DAG.getTargetLoweringInfo().getShiftAmountTy(Op2.getValueType());
2855
2856   // Coerce the shift amount to the right type if we can.
2857   if (!I.getType()->isVectorTy() && Op2.getValueType() != ShiftTy) {
2858     unsigned ShiftSize = ShiftTy.getSizeInBits();
2859     unsigned Op2Size = Op2.getValueType().getSizeInBits();
2860     SDLoc DL = getCurSDLoc();
2861
2862     // If the operand is smaller than the shift count type, promote it.
2863     if (ShiftSize > Op2Size)
2864       Op2 = DAG.getNode(ISD::ZERO_EXTEND, DL, ShiftTy, Op2);
2865
2866     // If the operand is larger than the shift count type but the shift
2867     // count type has enough bits to represent any shift value, truncate
2868     // it now. This is a common case and it exposes the truncate to
2869     // optimization early.
2870     else if (ShiftSize >= Log2_32_Ceil(Op2.getValueType().getSizeInBits()))
2871       Op2 = DAG.getNode(ISD::TRUNCATE, DL, ShiftTy, Op2);
2872     // Otherwise we'll need to temporarily settle for some other convenient
2873     // type.  Type legalization will make adjustments once the shiftee is split.
2874     else
2875       Op2 = DAG.getZExtOrTrunc(Op2, DL, MVT::i32);
2876   }
2877
2878   bool nuw = false;
2879   bool nsw = false;
2880   bool exact = false;
2881
2882   if (Opcode == ISD::SRL || Opcode == ISD::SRA || Opcode == ISD::SHL) {
2883
2884     if (const OverflowingBinaryOperator *OFBinOp =
2885             dyn_cast<const OverflowingBinaryOperator>(&I)) {
2886       nuw = OFBinOp->hasNoUnsignedWrap();
2887       nsw = OFBinOp->hasNoSignedWrap();
2888     }
2889     if (const PossiblyExactOperator *ExactOp =
2890             dyn_cast<const PossiblyExactOperator>(&I))
2891       exact = ExactOp->isExact();
2892   }
2893
2894   SDValue Res = DAG.getNode(Opcode, getCurSDLoc(), Op1.getValueType(), Op1, Op2,
2895                             nuw, nsw, exact);
2896   setValue(&I, Res);
2897 }
2898
2899 void SelectionDAGBuilder::visitSDiv(const User &I) {
2900   SDValue Op1 = getValue(I.getOperand(0));
2901   SDValue Op2 = getValue(I.getOperand(1));
2902
2903   // Turn exact SDivs into multiplications.
2904   // FIXME: This should be in DAGCombiner, but it doesn't have access to the
2905   // exact bit.
2906   if (isa<BinaryOperator>(&I) && cast<BinaryOperator>(&I)->isExact() &&
2907       !isa<ConstantSDNode>(Op1) &&
2908       isa<ConstantSDNode>(Op2) && !cast<ConstantSDNode>(Op2)->isNullValue())
2909     setValue(&I, DAG.getTargetLoweringInfo()
2910                      .BuildExactSDIV(Op1, Op2, getCurSDLoc(), DAG));
2911   else
2912     setValue(&I, DAG.getNode(ISD::SDIV, getCurSDLoc(), Op1.getValueType(),
2913                              Op1, Op2));
2914 }
2915
2916 void SelectionDAGBuilder::visitICmp(const User &I) {
2917   ICmpInst::Predicate predicate = ICmpInst::BAD_ICMP_PREDICATE;
2918   if (const ICmpInst *IC = dyn_cast<ICmpInst>(&I))
2919     predicate = IC->getPredicate();
2920   else if (const ConstantExpr *IC = dyn_cast<ConstantExpr>(&I))
2921     predicate = ICmpInst::Predicate(IC->getPredicate());
2922   SDValue Op1 = getValue(I.getOperand(0));
2923   SDValue Op2 = getValue(I.getOperand(1));
2924   ISD::CondCode Opcode = getICmpCondCode(predicate);
2925
2926   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2927   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Opcode));
2928 }
2929
2930 void SelectionDAGBuilder::visitFCmp(const User &I) {
2931   FCmpInst::Predicate predicate = FCmpInst::BAD_FCMP_PREDICATE;
2932   if (const FCmpInst *FC = dyn_cast<FCmpInst>(&I))
2933     predicate = FC->getPredicate();
2934   else if (const ConstantExpr *FC = dyn_cast<ConstantExpr>(&I))
2935     predicate = FCmpInst::Predicate(FC->getPredicate());
2936   SDValue Op1 = getValue(I.getOperand(0));
2937   SDValue Op2 = getValue(I.getOperand(1));
2938   ISD::CondCode Condition = getFCmpCondCode(predicate);
2939   if (TM.Options.NoNaNsFPMath)
2940     Condition = getFCmpCodeWithoutNaN(Condition);
2941   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2942   setValue(&I, DAG.getSetCC(getCurSDLoc(), DestVT, Op1, Op2, Condition));
2943 }
2944
2945 void SelectionDAGBuilder::visitSelect(const User &I) {
2946   SmallVector<EVT, 4> ValueVTs;
2947   ComputeValueVTs(DAG.getTargetLoweringInfo(), I.getType(), ValueVTs);
2948   unsigned NumValues = ValueVTs.size();
2949   if (NumValues == 0) return;
2950
2951   SmallVector<SDValue, 4> Values(NumValues);
2952   SDValue Cond     = getValue(I.getOperand(0));
2953   SDValue TrueVal  = getValue(I.getOperand(1));
2954   SDValue FalseVal = getValue(I.getOperand(2));
2955   ISD::NodeType OpCode = Cond.getValueType().isVector() ?
2956     ISD::VSELECT : ISD::SELECT;
2957
2958   for (unsigned i = 0; i != NumValues; ++i)
2959     Values[i] = DAG.getNode(OpCode, getCurSDLoc(),
2960                             TrueVal.getNode()->getValueType(TrueVal.getResNo()+i),
2961                             Cond,
2962                             SDValue(TrueVal.getNode(),
2963                                     TrueVal.getResNo() + i),
2964                             SDValue(FalseVal.getNode(),
2965                                     FalseVal.getResNo() + i));
2966
2967   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
2968                            DAG.getVTList(ValueVTs), Values));
2969 }
2970
2971 void SelectionDAGBuilder::visitTrunc(const User &I) {
2972   // TruncInst cannot be a no-op cast because sizeof(src) > sizeof(dest).
2973   SDValue N = getValue(I.getOperand(0));
2974   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2975   setValue(&I, DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), DestVT, N));
2976 }
2977
2978 void SelectionDAGBuilder::visitZExt(const User &I) {
2979   // ZExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2980   // ZExt also can't be a cast to bool for same reason. So, nothing much to do
2981   SDValue N = getValue(I.getOperand(0));
2982   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2983   setValue(&I, DAG.getNode(ISD::ZERO_EXTEND, getCurSDLoc(), DestVT, N));
2984 }
2985
2986 void SelectionDAGBuilder::visitSExt(const User &I) {
2987   // SExt cannot be a no-op cast because sizeof(src) < sizeof(dest).
2988   // SExt also can't be a cast to bool for same reason. So, nothing much to do
2989   SDValue N = getValue(I.getOperand(0));
2990   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
2991   setValue(&I, DAG.getNode(ISD::SIGN_EXTEND, getCurSDLoc(), DestVT, N));
2992 }
2993
2994 void SelectionDAGBuilder::visitFPTrunc(const User &I) {
2995   // FPTrunc is never a no-op cast, no need to check
2996   SDValue N = getValue(I.getOperand(0));
2997   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
2998   EVT DestVT = TLI.getValueType(I.getType());
2999   setValue(&I, DAG.getNode(ISD::FP_ROUND, getCurSDLoc(), DestVT, N,
3000                            DAG.getTargetConstant(0, TLI.getPointerTy())));
3001 }
3002
3003 void SelectionDAGBuilder::visitFPExt(const User &I) {
3004   // FPExt is never a no-op cast, no need to check
3005   SDValue N = getValue(I.getOperand(0));
3006   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3007   setValue(&I, DAG.getNode(ISD::FP_EXTEND, getCurSDLoc(), DestVT, N));
3008 }
3009
3010 void SelectionDAGBuilder::visitFPToUI(const User &I) {
3011   // FPToUI is never a no-op cast, no need to check
3012   SDValue N = getValue(I.getOperand(0));
3013   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3014   setValue(&I, DAG.getNode(ISD::FP_TO_UINT, getCurSDLoc(), DestVT, N));
3015 }
3016
3017 void SelectionDAGBuilder::visitFPToSI(const User &I) {
3018   // FPToSI is never a no-op cast, no need to check
3019   SDValue N = getValue(I.getOperand(0));
3020   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3021   setValue(&I, DAG.getNode(ISD::FP_TO_SINT, getCurSDLoc(), DestVT, N));
3022 }
3023
3024 void SelectionDAGBuilder::visitUIToFP(const User &I) {
3025   // UIToFP is never a no-op cast, no need to check
3026   SDValue N = getValue(I.getOperand(0));
3027   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3028   setValue(&I, DAG.getNode(ISD::UINT_TO_FP, getCurSDLoc(), DestVT, N));
3029 }
3030
3031 void SelectionDAGBuilder::visitSIToFP(const User &I) {
3032   // SIToFP is never a no-op cast, no need to check
3033   SDValue N = getValue(I.getOperand(0));
3034   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3035   setValue(&I, DAG.getNode(ISD::SINT_TO_FP, getCurSDLoc(), DestVT, N));
3036 }
3037
3038 void SelectionDAGBuilder::visitPtrToInt(const User &I) {
3039   // What to do depends on the size of the integer and the size of the pointer.
3040   // We can either truncate, zero extend, or no-op, accordingly.
3041   SDValue N = getValue(I.getOperand(0));
3042   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3043   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3044 }
3045
3046 void SelectionDAGBuilder::visitIntToPtr(const User &I) {
3047   // What to do depends on the size of the integer and the size of the pointer.
3048   // We can either truncate, zero extend, or no-op, accordingly.
3049   SDValue N = getValue(I.getOperand(0));
3050   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3051   setValue(&I, DAG.getZExtOrTrunc(N, getCurSDLoc(), DestVT));
3052 }
3053
3054 void SelectionDAGBuilder::visitBitCast(const User &I) {
3055   SDValue N = getValue(I.getOperand(0));
3056   EVT DestVT = DAG.getTargetLoweringInfo().getValueType(I.getType());
3057
3058   // BitCast assures us that source and destination are the same size so this is
3059   // either a BITCAST or a no-op.
3060   if (DestVT != N.getValueType())
3061     setValue(&I, DAG.getNode(ISD::BITCAST, getCurSDLoc(),
3062                              DestVT, N)); // convert types.
3063   // Check if the original LLVM IR Operand was a ConstantInt, because getValue()
3064   // might fold any kind of constant expression to an integer constant and that
3065   // is not what we are looking for. Only regcognize a bitcast of a genuine
3066   // constant integer as an opaque constant.
3067   else if(ConstantInt *C = dyn_cast<ConstantInt>(I.getOperand(0)))
3068     setValue(&I, DAG.getConstant(C->getValue(), DestVT, /*isTarget=*/false,
3069                                  /*isOpaque*/true));
3070   else
3071     setValue(&I, N);            // noop cast.
3072 }
3073
3074 void SelectionDAGBuilder::visitAddrSpaceCast(const User &I) {
3075   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3076   const Value *SV = I.getOperand(0);
3077   SDValue N = getValue(SV);
3078   EVT DestVT = TLI.getValueType(I.getType());
3079
3080   unsigned SrcAS = SV->getType()->getPointerAddressSpace();
3081   unsigned DestAS = I.getType()->getPointerAddressSpace();
3082
3083   if (!TLI.isNoopAddrSpaceCast(SrcAS, DestAS))
3084     N = DAG.getAddrSpaceCast(getCurSDLoc(), DestVT, N, SrcAS, DestAS);
3085
3086   setValue(&I, N);
3087 }
3088
3089 void SelectionDAGBuilder::visitInsertElement(const User &I) {
3090   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3091   SDValue InVec = getValue(I.getOperand(0));
3092   SDValue InVal = getValue(I.getOperand(1));
3093   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(2)),
3094                                      getCurSDLoc(), TLI.getVectorIdxTy());
3095   setValue(&I, DAG.getNode(ISD::INSERT_VECTOR_ELT, getCurSDLoc(),
3096                            TLI.getValueType(I.getType()), InVec, InVal, InIdx));
3097 }
3098
3099 void SelectionDAGBuilder::visitExtractElement(const User &I) {
3100   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3101   SDValue InVec = getValue(I.getOperand(0));
3102   SDValue InIdx = DAG.getSExtOrTrunc(getValue(I.getOperand(1)),
3103                                      getCurSDLoc(), TLI.getVectorIdxTy());
3104   setValue(&I, DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3105                            TLI.getValueType(I.getType()), InVec, InIdx));
3106 }
3107
3108 // Utility for visitShuffleVector - Return true if every element in Mask,
3109 // beginning from position Pos and ending in Pos+Size, falls within the
3110 // specified sequential range [L, L+Pos). or is undef.
3111 static bool isSequentialInRange(const SmallVectorImpl<int> &Mask,
3112                                 unsigned Pos, unsigned Size, int Low) {
3113   for (unsigned i = Pos, e = Pos+Size; i != e; ++i, ++Low)
3114     if (Mask[i] >= 0 && Mask[i] != Low)
3115       return false;
3116   return true;
3117 }
3118
3119 void SelectionDAGBuilder::visitShuffleVector(const User &I) {
3120   SDValue Src1 = getValue(I.getOperand(0));
3121   SDValue Src2 = getValue(I.getOperand(1));
3122
3123   SmallVector<int, 8> Mask;
3124   ShuffleVectorInst::getShuffleMask(cast<Constant>(I.getOperand(2)), Mask);
3125   unsigned MaskNumElts = Mask.size();
3126
3127   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3128   EVT VT = TLI.getValueType(I.getType());
3129   EVT SrcVT = Src1.getValueType();
3130   unsigned SrcNumElts = SrcVT.getVectorNumElements();
3131
3132   if (SrcNumElts == MaskNumElts) {
3133     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3134                                       &Mask[0]));
3135     return;
3136   }
3137
3138   // Normalize the shuffle vector since mask and vector length don't match.
3139   if (SrcNumElts < MaskNumElts && MaskNumElts % SrcNumElts == 0) {
3140     // Mask is longer than the source vectors and is a multiple of the source
3141     // vectors.  We can use concatenate vector to make the mask and vectors
3142     // lengths match.
3143     if (SrcNumElts*2 == MaskNumElts) {
3144       // First check for Src1 in low and Src2 in high
3145       if (isSequentialInRange(Mask, 0, SrcNumElts, 0) &&
3146           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, SrcNumElts)) {
3147         // The shuffle is concatenating two vectors together.
3148         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3149                                  VT, Src1, Src2));
3150         return;
3151       }
3152       // Then check for Src2 in low and Src1 in high
3153       if (isSequentialInRange(Mask, 0, SrcNumElts, SrcNumElts) &&
3154           isSequentialInRange(Mask, SrcNumElts, SrcNumElts, 0)) {
3155         // The shuffle is concatenating two vectors together.
3156         setValue(&I, DAG.getNode(ISD::CONCAT_VECTORS, getCurSDLoc(),
3157                                  VT, Src2, Src1));
3158         return;
3159       }
3160     }
3161
3162     // Pad both vectors with undefs to make them the same length as the mask.
3163     unsigned NumConcat = MaskNumElts / SrcNumElts;
3164     bool Src1U = Src1.getOpcode() == ISD::UNDEF;
3165     bool Src2U = Src2.getOpcode() == ISD::UNDEF;
3166     SDValue UndefVal = DAG.getUNDEF(SrcVT);
3167
3168     SmallVector<SDValue, 8> MOps1(NumConcat, UndefVal);
3169     SmallVector<SDValue, 8> MOps2(NumConcat, UndefVal);
3170     MOps1[0] = Src1;
3171     MOps2[0] = Src2;
3172
3173     Src1 = Src1U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3174                                                   getCurSDLoc(), VT, MOps1);
3175     Src2 = Src2U ? DAG.getUNDEF(VT) : DAG.getNode(ISD::CONCAT_VECTORS,
3176                                                   getCurSDLoc(), VT, MOps2);
3177
3178     // Readjust mask for new input vector length.
3179     SmallVector<int, 8> MappedOps;
3180     for (unsigned i = 0; i != MaskNumElts; ++i) {
3181       int Idx = Mask[i];
3182       if (Idx >= (int)SrcNumElts)
3183         Idx -= SrcNumElts - MaskNumElts;
3184       MappedOps.push_back(Idx);
3185     }
3186
3187     setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3188                                       &MappedOps[0]));
3189     return;
3190   }
3191
3192   if (SrcNumElts > MaskNumElts) {
3193     // Analyze the access pattern of the vector to see if we can extract
3194     // two subvectors and do the shuffle. The analysis is done by calculating
3195     // the range of elements the mask access on both vectors.
3196     int MinRange[2] = { static_cast<int>(SrcNumElts),
3197                         static_cast<int>(SrcNumElts)};
3198     int MaxRange[2] = {-1, -1};
3199
3200     for (unsigned i = 0; i != MaskNumElts; ++i) {
3201       int Idx = Mask[i];
3202       unsigned Input = 0;
3203       if (Idx < 0)
3204         continue;
3205
3206       if (Idx >= (int)SrcNumElts) {
3207         Input = 1;
3208         Idx -= SrcNumElts;
3209       }
3210       if (Idx > MaxRange[Input])
3211         MaxRange[Input] = Idx;
3212       if (Idx < MinRange[Input])
3213         MinRange[Input] = Idx;
3214     }
3215
3216     // Check if the access is smaller than the vector size and can we find
3217     // a reasonable extract index.
3218     int RangeUse[2] = { -1, -1 };  // 0 = Unused, 1 = Extract, -1 = Can not
3219                                    // Extract.
3220     int StartIdx[2];  // StartIdx to extract from
3221     for (unsigned Input = 0; Input < 2; ++Input) {
3222       if (MinRange[Input] >= (int)SrcNumElts && MaxRange[Input] < 0) {
3223         RangeUse[Input] = 0; // Unused
3224         StartIdx[Input] = 0;
3225         continue;
3226       }
3227
3228       // Find a good start index that is a multiple of the mask length. Then
3229       // see if the rest of the elements are in range.
3230       StartIdx[Input] = (MinRange[Input]/MaskNumElts)*MaskNumElts;
3231       if (MaxRange[Input] - StartIdx[Input] < (int)MaskNumElts &&
3232           StartIdx[Input] + MaskNumElts <= SrcNumElts)
3233         RangeUse[Input] = 1; // Extract from a multiple of the mask length.
3234     }
3235
3236     if (RangeUse[0] == 0 && RangeUse[1] == 0) {
3237       setValue(&I, DAG.getUNDEF(VT)); // Vectors are not used.
3238       return;
3239     }
3240     if (RangeUse[0] >= 0 && RangeUse[1] >= 0) {
3241       // Extract appropriate subvector and generate a vector shuffle
3242       for (unsigned Input = 0; Input < 2; ++Input) {
3243         SDValue &Src = Input == 0 ? Src1 : Src2;
3244         if (RangeUse[Input] == 0)
3245           Src = DAG.getUNDEF(VT);
3246         else
3247           Src = DAG.getNode(
3248               ISD::EXTRACT_SUBVECTOR, getCurSDLoc(), VT, Src,
3249               DAG.getConstant(StartIdx[Input], TLI.getVectorIdxTy()));
3250       }
3251
3252       // Calculate new mask.
3253       SmallVector<int, 8> MappedOps;
3254       for (unsigned i = 0; i != MaskNumElts; ++i) {
3255         int Idx = Mask[i];
3256         if (Idx >= 0) {
3257           if (Idx < (int)SrcNumElts)
3258             Idx -= StartIdx[0];
3259           else
3260             Idx -= SrcNumElts + StartIdx[1] - MaskNumElts;
3261         }
3262         MappedOps.push_back(Idx);
3263       }
3264
3265       setValue(&I, DAG.getVectorShuffle(VT, getCurSDLoc(), Src1, Src2,
3266                                         &MappedOps[0]));
3267       return;
3268     }
3269   }
3270
3271   // We can't use either concat vectors or extract subvectors so fall back to
3272   // replacing the shuffle with extract and build vector.
3273   // to insert and build vector.
3274   EVT EltVT = VT.getVectorElementType();
3275   EVT IdxVT = TLI.getVectorIdxTy();
3276   SmallVector<SDValue,8> Ops;
3277   for (unsigned i = 0; i != MaskNumElts; ++i) {
3278     int Idx = Mask[i];
3279     SDValue Res;
3280
3281     if (Idx < 0) {
3282       Res = DAG.getUNDEF(EltVT);
3283     } else {
3284       SDValue &Src = Idx < (int)SrcNumElts ? Src1 : Src2;
3285       if (Idx >= (int)SrcNumElts) Idx -= SrcNumElts;
3286
3287       Res = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, getCurSDLoc(),
3288                         EltVT, Src, DAG.getConstant(Idx, IdxVT));
3289     }
3290
3291     Ops.push_back(Res);
3292   }
3293
3294   setValue(&I, DAG.getNode(ISD::BUILD_VECTOR, getCurSDLoc(), VT, Ops));
3295 }
3296
3297 void SelectionDAGBuilder::visitInsertValue(const InsertValueInst &I) {
3298   const Value *Op0 = I.getOperand(0);
3299   const Value *Op1 = I.getOperand(1);
3300   Type *AggTy = I.getType();
3301   Type *ValTy = Op1->getType();
3302   bool IntoUndef = isa<UndefValue>(Op0);
3303   bool FromUndef = isa<UndefValue>(Op1);
3304
3305   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3306
3307   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3308   SmallVector<EVT, 4> AggValueVTs;
3309   ComputeValueVTs(TLI, AggTy, AggValueVTs);
3310   SmallVector<EVT, 4> ValValueVTs;
3311   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3312
3313   unsigned NumAggValues = AggValueVTs.size();
3314   unsigned NumValValues = ValValueVTs.size();
3315   SmallVector<SDValue, 4> Values(NumAggValues);
3316
3317   // Ignore an insertvalue that produces an empty object
3318   if (!NumAggValues) {
3319     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3320     return;
3321   }
3322
3323   SDValue Agg = getValue(Op0);
3324   unsigned i = 0;
3325   // Copy the beginning value(s) from the original aggregate.
3326   for (; i != LinearIndex; ++i)
3327     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3328                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3329   // Copy values from the inserted value(s).
3330   if (NumValValues) {
3331     SDValue Val = getValue(Op1);
3332     for (; i != LinearIndex + NumValValues; ++i)
3333       Values[i] = FromUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3334                   SDValue(Val.getNode(), Val.getResNo() + i - LinearIndex);
3335   }
3336   // Copy remaining value(s) from the original aggregate.
3337   for (; i != NumAggValues; ++i)
3338     Values[i] = IntoUndef ? DAG.getUNDEF(AggValueVTs[i]) :
3339                 SDValue(Agg.getNode(), Agg.getResNo() + i);
3340
3341   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3342                            DAG.getVTList(AggValueVTs), Values));
3343 }
3344
3345 void SelectionDAGBuilder::visitExtractValue(const ExtractValueInst &I) {
3346   const Value *Op0 = I.getOperand(0);
3347   Type *AggTy = Op0->getType();
3348   Type *ValTy = I.getType();
3349   bool OutOfUndef = isa<UndefValue>(Op0);
3350
3351   unsigned LinearIndex = ComputeLinearIndex(AggTy, I.getIndices());
3352
3353   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3354   SmallVector<EVT, 4> ValValueVTs;
3355   ComputeValueVTs(TLI, ValTy, ValValueVTs);
3356
3357   unsigned NumValValues = ValValueVTs.size();
3358
3359   // Ignore a extractvalue that produces an empty object
3360   if (!NumValValues) {
3361     setValue(&I, DAG.getUNDEF(MVT(MVT::Other)));
3362     return;
3363   }
3364
3365   SmallVector<SDValue, 4> Values(NumValValues);
3366
3367   SDValue Agg = getValue(Op0);
3368   // Copy out the selected value(s).
3369   for (unsigned i = LinearIndex; i != LinearIndex + NumValValues; ++i)
3370     Values[i - LinearIndex] =
3371       OutOfUndef ?
3372         DAG.getUNDEF(Agg.getNode()->getValueType(Agg.getResNo() + i)) :
3373         SDValue(Agg.getNode(), Agg.getResNo() + i);
3374
3375   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3376                            DAG.getVTList(ValValueVTs), Values));
3377 }
3378
3379 void SelectionDAGBuilder::visitGetElementPtr(const User &I) {
3380   Value *Op0 = I.getOperand(0);
3381   // Note that the pointer operand may be a vector of pointers. Take the scalar
3382   // element which holds a pointer.
3383   Type *Ty = Op0->getType()->getScalarType();
3384   unsigned AS = Ty->getPointerAddressSpace();
3385   SDValue N = getValue(Op0);
3386
3387   for (GetElementPtrInst::const_op_iterator OI = I.op_begin()+1, E = I.op_end();
3388        OI != E; ++OI) {
3389     const Value *Idx = *OI;
3390     if (StructType *StTy = dyn_cast<StructType>(Ty)) {
3391       unsigned Field = cast<Constant>(Idx)->getUniqueInteger().getZExtValue();
3392       if (Field) {
3393         // N = N + Offset
3394         uint64_t Offset = DL->getStructLayout(StTy)->getElementOffset(Field);
3395         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3396                         DAG.getConstant(Offset, N.getValueType()));
3397       }
3398
3399       Ty = StTy->getElementType(Field);
3400     } else {
3401       Ty = cast<SequentialType>(Ty)->getElementType();
3402
3403       // If this is a constant subscript, handle it quickly.
3404       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3405       if (const ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
3406         if (CI->isZero()) continue;
3407         uint64_t Offs =
3408             DL->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
3409         SDValue OffsVal;
3410         EVT PTy = TLI.getPointerTy(AS);
3411         unsigned PtrBits = PTy.getSizeInBits();
3412         if (PtrBits < 64)
3413           OffsVal = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), PTy,
3414                                 DAG.getConstant(Offs, MVT::i64));
3415         else
3416           OffsVal = DAG.getConstant(Offs, PTy);
3417
3418         N = DAG.getNode(ISD::ADD, getCurSDLoc(), N.getValueType(), N,
3419                         OffsVal);
3420         continue;
3421       }
3422
3423       // N = N + Idx * ElementSize;
3424       APInt ElementSize =
3425           APInt(TLI.getPointerSizeInBits(AS), DL->getTypeAllocSize(Ty));
3426       SDValue IdxN = getValue(Idx);
3427
3428       // If the index is smaller or larger than intptr_t, truncate or extend
3429       // it.
3430       IdxN = DAG.getSExtOrTrunc(IdxN, getCurSDLoc(), N.getValueType());
3431
3432       // If this is a multiply by a power of two, turn it into a shl
3433       // immediately.  This is a very common case.
3434       if (ElementSize != 1) {
3435         if (ElementSize.isPowerOf2()) {
3436           unsigned Amt = ElementSize.logBase2();
3437           IdxN = DAG.getNode(ISD::SHL, getCurSDLoc(),
3438                              N.getValueType(), IdxN,
3439                              DAG.getConstant(Amt, IdxN.getValueType()));
3440         } else {
3441           SDValue Scale = DAG.getConstant(ElementSize, IdxN.getValueType());
3442           IdxN = DAG.getNode(ISD::MUL, getCurSDLoc(),
3443                              N.getValueType(), IdxN, Scale);
3444         }
3445       }
3446
3447       N = DAG.getNode(ISD::ADD, getCurSDLoc(),
3448                       N.getValueType(), N, IdxN);
3449     }
3450   }
3451
3452   setValue(&I, N);
3453 }
3454
3455 void SelectionDAGBuilder::visitAlloca(const AllocaInst &I) {
3456   // If this is a fixed sized alloca in the entry block of the function,
3457   // allocate it statically on the stack.
3458   if (FuncInfo.StaticAllocaMap.count(&I))
3459     return;   // getValue will auto-populate this.
3460
3461   Type *Ty = I.getAllocatedType();
3462   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3463   uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
3464   unsigned Align =
3465       std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty),
3466                I.getAlignment());
3467
3468   SDValue AllocSize = getValue(I.getArraySize());
3469
3470   EVT IntPtr = TLI.getPointerTy();
3471   if (AllocSize.getValueType() != IntPtr)
3472     AllocSize = DAG.getZExtOrTrunc(AllocSize, getCurSDLoc(), IntPtr);
3473
3474   AllocSize = DAG.getNode(ISD::MUL, getCurSDLoc(), IntPtr,
3475                           AllocSize,
3476                           DAG.getConstant(TySize, IntPtr));
3477
3478   // Handle alignment.  If the requested alignment is less than or equal to
3479   // the stack alignment, ignore it.  If the size is greater than or equal to
3480   // the stack alignment, we note this in the DYNAMIC_STACKALLOC node.
3481   unsigned StackAlign =
3482       DAG.getSubtarget().getFrameLowering()->getStackAlignment();
3483   if (Align <= StackAlign)
3484     Align = 0;
3485
3486   // Round the size of the allocation up to the stack alignment size
3487   // by add SA-1 to the size.
3488   AllocSize = DAG.getNode(ISD::ADD, getCurSDLoc(),
3489                           AllocSize.getValueType(), AllocSize,
3490                           DAG.getIntPtrConstant(StackAlign-1));
3491
3492   // Mask out the low bits for alignment purposes.
3493   AllocSize = DAG.getNode(ISD::AND, getCurSDLoc(),
3494                           AllocSize.getValueType(), AllocSize,
3495                           DAG.getIntPtrConstant(~(uint64_t)(StackAlign-1)));
3496
3497   SDValue Ops[] = { getRoot(), AllocSize, DAG.getIntPtrConstant(Align) };
3498   SDVTList VTs = DAG.getVTList(AllocSize.getValueType(), MVT::Other);
3499   SDValue DSA = DAG.getNode(ISD::DYNAMIC_STACKALLOC, getCurSDLoc(), VTs, Ops);
3500   setValue(&I, DSA);
3501   DAG.setRoot(DSA.getValue(1));
3502
3503   assert(FuncInfo.MF->getFrameInfo()->hasVarSizedObjects());
3504 }
3505
3506 void SelectionDAGBuilder::visitLoad(const LoadInst &I) {
3507   if (I.isAtomic())
3508     return visitAtomicLoad(I);
3509
3510   const Value *SV = I.getOperand(0);
3511   SDValue Ptr = getValue(SV);
3512
3513   Type *Ty = I.getType();
3514
3515   bool isVolatile = I.isVolatile();
3516   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3517   bool isInvariant = I.getMetadata(LLVMContext::MD_invariant_load) != nullptr;
3518   unsigned Alignment = I.getAlignment();
3519
3520   AAMDNodes AAInfo;
3521   I.getAAMetadata(AAInfo);
3522   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3523
3524   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3525   SmallVector<EVT, 4> ValueVTs;
3526   SmallVector<uint64_t, 4> Offsets;
3527   ComputeValueVTs(TLI, Ty, ValueVTs, &Offsets);
3528   unsigned NumValues = ValueVTs.size();
3529   if (NumValues == 0)
3530     return;
3531
3532   SDValue Root;
3533   bool ConstantMemory = false;
3534   if (isVolatile || NumValues > MaxParallelChains)
3535     // Serialize volatile loads with other side effects.
3536     Root = getRoot();
3537   else if (AA->pointsToConstantMemory(
3538              AliasAnalysis::Location(SV, AA->getTypeStoreSize(Ty), AAInfo))) {
3539     // Do not serialize (non-volatile) loads of constant memory with anything.
3540     Root = DAG.getEntryNode();
3541     ConstantMemory = true;
3542   } else {
3543     // Do not serialize non-volatile loads against each other.
3544     Root = DAG.getRoot();
3545   }
3546
3547   if (isVolatile)
3548     Root = TLI.prepareVolatileOrAtomicLoad(Root, getCurSDLoc(), DAG);
3549
3550   SmallVector<SDValue, 4> Values(NumValues);
3551   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3552                                           NumValues));
3553   EVT PtrVT = Ptr.getValueType();
3554   unsigned ChainI = 0;
3555   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3556     // Serializing loads here may result in excessive register pressure, and
3557     // TokenFactor places arbitrary choke points on the scheduler. SD scheduling
3558     // could recover a bit by hoisting nodes upward in the chain by recognizing
3559     // they are side-effect free or do not alias. The optimizer should really
3560     // avoid this case by converting large object/array copies to llvm.memcpy
3561     // (MaxParallelChains should always remain as failsafe).
3562     if (ChainI == MaxParallelChains) {
3563       assert(PendingLoads.empty() && "PendingLoads must be serialized first");
3564       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3565                                   makeArrayRef(Chains.data(), ChainI));
3566       Root = Chain;
3567       ChainI = 0;
3568     }
3569     SDValue A = DAG.getNode(ISD::ADD, getCurSDLoc(),
3570                             PtrVT, Ptr,
3571                             DAG.getConstant(Offsets[i], PtrVT));
3572     SDValue L = DAG.getLoad(ValueVTs[i], getCurSDLoc(), Root,
3573                             A, MachinePointerInfo(SV, Offsets[i]), isVolatile,
3574                             isNonTemporal, isInvariant, Alignment, AAInfo,
3575                             Ranges);
3576
3577     Values[i] = L;
3578     Chains[ChainI] = L.getValue(1);
3579   }
3580
3581   if (!ConstantMemory) {
3582     SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3583                                 makeArrayRef(Chains.data(), ChainI));
3584     if (isVolatile)
3585       DAG.setRoot(Chain);
3586     else
3587       PendingLoads.push_back(Chain);
3588   }
3589
3590   setValue(&I, DAG.getNode(ISD::MERGE_VALUES, getCurSDLoc(),
3591                            DAG.getVTList(ValueVTs), Values));
3592 }
3593
3594 void SelectionDAGBuilder::visitStore(const StoreInst &I) {
3595   if (I.isAtomic())
3596     return visitAtomicStore(I);
3597
3598   const Value *SrcV = I.getOperand(0);
3599   const Value *PtrV = I.getOperand(1);
3600
3601   SmallVector<EVT, 4> ValueVTs;
3602   SmallVector<uint64_t, 4> Offsets;
3603   ComputeValueVTs(DAG.getTargetLoweringInfo(), SrcV->getType(),
3604                   ValueVTs, &Offsets);
3605   unsigned NumValues = ValueVTs.size();
3606   if (NumValues == 0)
3607     return;
3608
3609   // Get the lowered operands. Note that we do this after
3610   // checking if NumResults is zero, because with zero results
3611   // the operands won't have values in the map.
3612   SDValue Src = getValue(SrcV);
3613   SDValue Ptr = getValue(PtrV);
3614
3615   SDValue Root = getRoot();
3616   SmallVector<SDValue, 4> Chains(std::min(unsigned(MaxParallelChains),
3617                                           NumValues));
3618   EVT PtrVT = Ptr.getValueType();
3619   bool isVolatile = I.isVolatile();
3620   bool isNonTemporal = I.getMetadata(LLVMContext::MD_nontemporal) != nullptr;
3621   unsigned Alignment = I.getAlignment();
3622
3623   AAMDNodes AAInfo;
3624   I.getAAMetadata(AAInfo);
3625
3626   unsigned ChainI = 0;
3627   for (unsigned i = 0; i != NumValues; ++i, ++ChainI) {
3628     // See visitLoad comments.
3629     if (ChainI == MaxParallelChains) {
3630       SDValue Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3631                                   makeArrayRef(Chains.data(), ChainI));
3632       Root = Chain;
3633       ChainI = 0;
3634     }
3635     SDValue Add = DAG.getNode(ISD::ADD, getCurSDLoc(), PtrVT, Ptr,
3636                               DAG.getConstant(Offsets[i], PtrVT));
3637     SDValue St = DAG.getStore(Root, getCurSDLoc(),
3638                               SDValue(Src.getNode(), Src.getResNo() + i),
3639                               Add, MachinePointerInfo(PtrV, Offsets[i]),
3640                               isVolatile, isNonTemporal, Alignment, AAInfo);
3641     Chains[ChainI] = St;
3642   }
3643
3644   SDValue StoreNode = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other,
3645                                   makeArrayRef(Chains.data(), ChainI));
3646   DAG.setRoot(StoreNode);
3647 }
3648
3649 void SelectionDAGBuilder::visitMaskedStore(const CallInst &I) {
3650   SDLoc sdl = getCurSDLoc();
3651
3652   // llvm.masked.store.*(Src0, Ptr, alignemt, Mask)
3653   Value  *PtrOperand = I.getArgOperand(1);
3654   SDValue Ptr = getValue(PtrOperand);
3655   SDValue Src0 = getValue(I.getArgOperand(0));
3656   SDValue Mask = getValue(I.getArgOperand(3));
3657   EVT VT = Src0.getValueType();
3658   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(2)))->getZExtValue();
3659   if (!Alignment)
3660     Alignment = DAG.getEVTAlignment(VT);
3661
3662   AAMDNodes AAInfo;
3663   I.getAAMetadata(AAInfo);
3664
3665   MachineMemOperand *MMO =
3666     DAG.getMachineFunction().
3667     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3668                           MachineMemOperand::MOStore,  VT.getStoreSize(),
3669                           Alignment, AAInfo);
3670   SDValue StoreNode = DAG.getMaskedStore(getRoot(), sdl, Src0, Ptr, Mask, MMO);
3671   DAG.setRoot(StoreNode);
3672   setValue(&I, StoreNode);
3673 }
3674
3675 void SelectionDAGBuilder::visitMaskedLoad(const CallInst &I) {
3676   SDLoc sdl = getCurSDLoc();
3677
3678   // @llvm.masked.load.*(Ptr, alignment, Mask, Src0)
3679   Value  *PtrOperand = I.getArgOperand(0);
3680   SDValue Ptr = getValue(PtrOperand);
3681   SDValue Src0 = getValue(I.getArgOperand(3));
3682   SDValue Mask = getValue(I.getArgOperand(2));
3683
3684   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3685   EVT VT = TLI.getValueType(I.getType());
3686   unsigned Alignment = (cast<ConstantInt>(I.getArgOperand(1)))->getZExtValue();
3687   if (!Alignment)
3688     Alignment = DAG.getEVTAlignment(VT);
3689
3690   AAMDNodes AAInfo;
3691   I.getAAMetadata(AAInfo);
3692   const MDNode *Ranges = I.getMetadata(LLVMContext::MD_range);
3693
3694   SDValue InChain = DAG.getRoot();
3695   if (AA->pointsToConstantMemory(
3696       AliasAnalysis::Location(PtrOperand,
3697                               AA->getTypeStoreSize(I.getType()),
3698                               AAInfo))) {
3699     // Do not serialize (non-volatile) loads of constant memory with anything.
3700     InChain = DAG.getEntryNode();
3701   }
3702
3703   MachineMemOperand *MMO =
3704     DAG.getMachineFunction().
3705     getMachineMemOperand(MachinePointerInfo(PtrOperand),
3706                           MachineMemOperand::MOLoad,  VT.getStoreSize(),
3707                           Alignment, AAInfo, Ranges);
3708
3709   SDValue Load = DAG.getMaskedLoad(VT, sdl, InChain, Ptr, Mask, Src0, MMO);
3710   SDValue OutChain = Load.getValue(1);
3711   DAG.setRoot(OutChain);
3712   setValue(&I, Load);
3713 }
3714
3715 void SelectionDAGBuilder::visitAtomicCmpXchg(const AtomicCmpXchgInst &I) {
3716   SDLoc dl = getCurSDLoc();
3717   AtomicOrdering SuccessOrder = I.getSuccessOrdering();
3718   AtomicOrdering FailureOrder = I.getFailureOrdering();
3719   SynchronizationScope Scope = I.getSynchScope();
3720
3721   SDValue InChain = getRoot();
3722
3723   MVT MemVT = getValue(I.getCompareOperand()).getSimpleValueType();
3724   SDVTList VTs = DAG.getVTList(MemVT, MVT::i1, MVT::Other);
3725   SDValue L = DAG.getAtomicCmpSwap(
3726       ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, dl, MemVT, VTs, InChain,
3727       getValue(I.getPointerOperand()), getValue(I.getCompareOperand()),
3728       getValue(I.getNewValOperand()), MachinePointerInfo(I.getPointerOperand()),
3729       /*Alignment=*/ 0, SuccessOrder, FailureOrder, Scope);
3730
3731   SDValue OutChain = L.getValue(2);
3732
3733   setValue(&I, L);
3734   DAG.setRoot(OutChain);
3735 }
3736
3737 void SelectionDAGBuilder::visitAtomicRMW(const AtomicRMWInst &I) {
3738   SDLoc dl = getCurSDLoc();
3739   ISD::NodeType NT;
3740   switch (I.getOperation()) {
3741   default: llvm_unreachable("Unknown atomicrmw operation");
3742   case AtomicRMWInst::Xchg: NT = ISD::ATOMIC_SWAP; break;
3743   case AtomicRMWInst::Add:  NT = ISD::ATOMIC_LOAD_ADD; break;
3744   case AtomicRMWInst::Sub:  NT = ISD::ATOMIC_LOAD_SUB; break;
3745   case AtomicRMWInst::And:  NT = ISD::ATOMIC_LOAD_AND; break;
3746   case AtomicRMWInst::Nand: NT = ISD::ATOMIC_LOAD_NAND; break;
3747   case AtomicRMWInst::Or:   NT = ISD::ATOMIC_LOAD_OR; break;
3748   case AtomicRMWInst::Xor:  NT = ISD::ATOMIC_LOAD_XOR; break;
3749   case AtomicRMWInst::Max:  NT = ISD::ATOMIC_LOAD_MAX; break;
3750   case AtomicRMWInst::Min:  NT = ISD::ATOMIC_LOAD_MIN; break;
3751   case AtomicRMWInst::UMax: NT = ISD::ATOMIC_LOAD_UMAX; break;
3752   case AtomicRMWInst::UMin: NT = ISD::ATOMIC_LOAD_UMIN; break;
3753   }
3754   AtomicOrdering Order = I.getOrdering();
3755   SynchronizationScope Scope = I.getSynchScope();
3756
3757   SDValue InChain = getRoot();
3758
3759   SDValue L =
3760     DAG.getAtomic(NT, dl,
3761                   getValue(I.getValOperand()).getSimpleValueType(),
3762                   InChain,
3763                   getValue(I.getPointerOperand()),
3764                   getValue(I.getValOperand()),
3765                   I.getPointerOperand(),
3766                   /* Alignment=*/ 0, Order, Scope);
3767
3768   SDValue OutChain = L.getValue(1);
3769
3770   setValue(&I, L);
3771   DAG.setRoot(OutChain);
3772 }
3773
3774 void SelectionDAGBuilder::visitFence(const FenceInst &I) {
3775   SDLoc dl = getCurSDLoc();
3776   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3777   SDValue Ops[3];
3778   Ops[0] = getRoot();
3779   Ops[1] = DAG.getConstant(I.getOrdering(), TLI.getPointerTy());
3780   Ops[2] = DAG.getConstant(I.getSynchScope(), TLI.getPointerTy());
3781   DAG.setRoot(DAG.getNode(ISD::ATOMIC_FENCE, dl, MVT::Other, Ops));
3782 }
3783
3784 void SelectionDAGBuilder::visitAtomicLoad(const LoadInst &I) {
3785   SDLoc dl = getCurSDLoc();
3786   AtomicOrdering Order = I.getOrdering();
3787   SynchronizationScope Scope = I.getSynchScope();
3788
3789   SDValue InChain = getRoot();
3790
3791   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3792   EVT VT = TLI.getValueType(I.getType());
3793
3794   if (I.getAlignment() < VT.getSizeInBits() / 8)
3795     report_fatal_error("Cannot generate unaligned atomic load");
3796
3797   MachineMemOperand *MMO =
3798       DAG.getMachineFunction().
3799       getMachineMemOperand(MachinePointerInfo(I.getPointerOperand()),
3800                            MachineMemOperand::MOVolatile |
3801                            MachineMemOperand::MOLoad,
3802                            VT.getStoreSize(),
3803                            I.getAlignment() ? I.getAlignment() :
3804                                               DAG.getEVTAlignment(VT));
3805
3806   InChain = TLI.prepareVolatileOrAtomicLoad(InChain, dl, DAG);
3807   SDValue L =
3808       DAG.getAtomic(ISD::ATOMIC_LOAD, dl, VT, VT, InChain,
3809                     getValue(I.getPointerOperand()), MMO,
3810                     Order, Scope);
3811
3812   SDValue OutChain = L.getValue(1);
3813
3814   setValue(&I, L);
3815   DAG.setRoot(OutChain);
3816 }
3817
3818 void SelectionDAGBuilder::visitAtomicStore(const StoreInst &I) {
3819   SDLoc dl = getCurSDLoc();
3820
3821   AtomicOrdering Order = I.getOrdering();
3822   SynchronizationScope Scope = I.getSynchScope();
3823
3824   SDValue InChain = getRoot();
3825
3826   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3827   EVT VT = TLI.getValueType(I.getValueOperand()->getType());
3828
3829   if (I.getAlignment() < VT.getSizeInBits() / 8)
3830     report_fatal_error("Cannot generate unaligned atomic store");
3831
3832   SDValue OutChain =
3833     DAG.getAtomic(ISD::ATOMIC_STORE, dl, VT,
3834                   InChain,
3835                   getValue(I.getPointerOperand()),
3836                   getValue(I.getValueOperand()),
3837                   I.getPointerOperand(), I.getAlignment(),
3838                   Order, Scope);
3839
3840   DAG.setRoot(OutChain);
3841 }
3842
3843 /// visitTargetIntrinsic - Lower a call of a target intrinsic to an INTRINSIC
3844 /// node.
3845 void SelectionDAGBuilder::visitTargetIntrinsic(const CallInst &I,
3846                                                unsigned Intrinsic) {
3847   bool HasChain = !I.doesNotAccessMemory();
3848   bool OnlyLoad = HasChain && I.onlyReadsMemory();
3849
3850   // Build the operand list.
3851   SmallVector<SDValue, 8> Ops;
3852   if (HasChain) {  // If this intrinsic has side-effects, chainify it.
3853     if (OnlyLoad) {
3854       // We don't need to serialize loads against other loads.
3855       Ops.push_back(DAG.getRoot());
3856     } else {
3857       Ops.push_back(getRoot());
3858     }
3859   }
3860
3861   // Info is set by getTgtMemInstrinsic
3862   TargetLowering::IntrinsicInfo Info;
3863   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
3864   bool IsTgtIntrinsic = TLI.getTgtMemIntrinsic(Info, I, Intrinsic);
3865
3866   // Add the intrinsic ID as an integer operand if it's not a target intrinsic.
3867   if (!IsTgtIntrinsic || Info.opc == ISD::INTRINSIC_VOID ||
3868       Info.opc == ISD::INTRINSIC_W_CHAIN)
3869     Ops.push_back(DAG.getTargetConstant(Intrinsic, TLI.getPointerTy()));
3870
3871   // Add all operands of the call to the operand list.
3872   for (unsigned i = 0, e = I.getNumArgOperands(); i != e; ++i) {
3873     SDValue Op = getValue(I.getArgOperand(i));
3874     Ops.push_back(Op);
3875   }
3876
3877   SmallVector<EVT, 4> ValueVTs;
3878   ComputeValueVTs(TLI, I.getType(), ValueVTs);
3879
3880   if (HasChain)
3881     ValueVTs.push_back(MVT::Other);
3882
3883   SDVTList VTs = DAG.getVTList(ValueVTs);
3884
3885   // Create the node.
3886   SDValue Result;
3887   if (IsTgtIntrinsic) {
3888     // This is target intrinsic that touches memory
3889     Result = DAG.getMemIntrinsicNode(Info.opc, getCurSDLoc(),
3890                                      VTs, Ops, Info.memVT,
3891                                    MachinePointerInfo(Info.ptrVal, Info.offset),
3892                                      Info.align, Info.vol,
3893                                      Info.readMem, Info.writeMem, Info.size);
3894   } else if (!HasChain) {
3895     Result = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, getCurSDLoc(), VTs, Ops);
3896   } else if (!I.getType()->isVoidTy()) {
3897     Result = DAG.getNode(ISD::INTRINSIC_W_CHAIN, getCurSDLoc(), VTs, Ops);
3898   } else {
3899     Result = DAG.getNode(ISD::INTRINSIC_VOID, getCurSDLoc(), VTs, Ops);
3900   }
3901
3902   if (HasChain) {
3903     SDValue Chain = Result.getValue(Result.getNode()->getNumValues()-1);
3904     if (OnlyLoad)
3905       PendingLoads.push_back(Chain);
3906     else
3907       DAG.setRoot(Chain);
3908   }
3909
3910   if (!I.getType()->isVoidTy()) {
3911     if (VectorType *PTy = dyn_cast<VectorType>(I.getType())) {
3912       EVT VT = TLI.getValueType(PTy);
3913       Result = DAG.getNode(ISD::BITCAST, getCurSDLoc(), VT, Result);
3914     }
3915
3916     setValue(&I, Result);
3917   }
3918 }
3919
3920 /// GetSignificand - Get the significand and build it into a floating-point
3921 /// number with exponent of 1:
3922 ///
3923 ///   Op = (Op & 0x007fffff) | 0x3f800000;
3924 ///
3925 /// where Op is the hexadecimal representation of floating point value.
3926 static SDValue
3927 GetSignificand(SelectionDAG &DAG, SDValue Op, SDLoc dl) {
3928   SDValue t1 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3929                            DAG.getConstant(0x007fffff, MVT::i32));
3930   SDValue t2 = DAG.getNode(ISD::OR, dl, MVT::i32, t1,
3931                            DAG.getConstant(0x3f800000, MVT::i32));
3932   return DAG.getNode(ISD::BITCAST, dl, MVT::f32, t2);
3933 }
3934
3935 /// GetExponent - Get the exponent:
3936 ///
3937 ///   (float)(int)(((Op & 0x7f800000) >> 23) - 127);
3938 ///
3939 /// where Op is the hexadecimal representation of floating point value.
3940 static SDValue
3941 GetExponent(SelectionDAG &DAG, SDValue Op, const TargetLowering &TLI,
3942             SDLoc dl) {
3943   SDValue t0 = DAG.getNode(ISD::AND, dl, MVT::i32, Op,
3944                            DAG.getConstant(0x7f800000, MVT::i32));
3945   SDValue t1 = DAG.getNode(ISD::SRL, dl, MVT::i32, t0,
3946                            DAG.getConstant(23, TLI.getPointerTy()));
3947   SDValue t2 = DAG.getNode(ISD::SUB, dl, MVT::i32, t1,
3948                            DAG.getConstant(127, MVT::i32));
3949   return DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, t2);
3950 }
3951
3952 /// getF32Constant - Get 32-bit floating point constant.
3953 static SDValue
3954 getF32Constant(SelectionDAG &DAG, unsigned Flt) {
3955   return DAG.getConstantFP(APFloat(APFloat::IEEEsingle, APInt(32, Flt)),
3956                            MVT::f32);
3957 }
3958
3959 /// expandExp - Lower an exp intrinsic. Handles the special sequences for
3960 /// limited-precision mode.
3961 static SDValue expandExp(SDLoc dl, SDValue Op, SelectionDAG &DAG,
3962                          const TargetLowering &TLI) {
3963   if (Op.getValueType() == MVT::f32 &&
3964       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
3965
3966     // Put the exponent in the right bit position for later addition to the
3967     // final result:
3968     //
3969     //   #define LOG2OFe 1.4426950f
3970     //   IntegerPartOfX = ((int32_t)(X * LOG2OFe));
3971     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, Op,
3972                              getF32Constant(DAG, 0x3fb8aa3b));
3973     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
3974
3975     //   FractionalPartOfX = (X * LOG2OFe) - (float)IntegerPartOfX;
3976     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
3977     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
3978
3979     //   IntegerPartOfX <<= 23;
3980     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
3981                                  DAG.getConstant(23, TLI.getPointerTy()));
3982
3983     SDValue TwoToFracPartOfX;
3984     if (LimitFloatPrecision <= 6) {
3985       // For floating-point precision of 6:
3986       //
3987       //   TwoToFractionalPartOfX =
3988       //     0.997535578f +
3989       //       (0.735607626f + 0.252464424f * x) * x;
3990       //
3991       // error 0.0144103317, which is 6 bits
3992       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
3993                                getF32Constant(DAG, 0x3e814304));
3994       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
3995                                getF32Constant(DAG, 0x3f3c50c8));
3996       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
3997       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
3998                                      getF32Constant(DAG, 0x3f7f5e7e));
3999     } else if (LimitFloatPrecision <= 12) {
4000       // For floating-point precision of 12:
4001       //
4002       //   TwoToFractionalPartOfX =
4003       //     0.999892986f +
4004       //       (0.696457318f +
4005       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4006       //
4007       // 0.000107046256 error, which is 13 to 14 bits
4008       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4009                                getF32Constant(DAG, 0x3da235e3));
4010       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4011                                getF32Constant(DAG, 0x3e65b8f3));
4012       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4013       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4014                                getF32Constant(DAG, 0x3f324b07));
4015       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4016       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4017                                      getF32Constant(DAG, 0x3f7ff8fd));
4018     } else { // LimitFloatPrecision <= 18
4019       // For floating-point precision of 18:
4020       //
4021       //   TwoToFractionalPartOfX =
4022       //     0.999999982f +
4023       //       (0.693148872f +
4024       //         (0.240227044f +
4025       //           (0.554906021e-1f +
4026       //             (0.961591928e-2f +
4027       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4028       //
4029       // error 2.47208000*10^(-7), which is better than 18 bits
4030       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4031                                getF32Constant(DAG, 0x3924b03e));
4032       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4033                                getF32Constant(DAG, 0x3ab24b87));
4034       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4035       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4036                                getF32Constant(DAG, 0x3c1d8c17));
4037       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4038       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4039                                getF32Constant(DAG, 0x3d634a1d));
4040       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4041       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4042                                getF32Constant(DAG, 0x3e75fe14));
4043       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4044       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4045                                 getF32Constant(DAG, 0x3f317234));
4046       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4047       TwoToFracPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4048                                      getF32Constant(DAG, 0x3f800000));
4049     }
4050
4051     // Add the exponent into the result in integer domain.
4052     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, TwoToFracPartOfX);
4053     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4054                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4055                                    t13, IntegerPartOfX));
4056   }
4057
4058   // No special expansion.
4059   return DAG.getNode(ISD::FEXP, dl, Op.getValueType(), Op);
4060 }
4061
4062 /// expandLog - Lower a log intrinsic. Handles the special sequences for
4063 /// limited-precision mode.
4064 static SDValue expandLog(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4065                          const TargetLowering &TLI) {
4066   if (Op.getValueType() == MVT::f32 &&
4067       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4068     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4069
4070     // Scale the exponent by log(2) [0.69314718f].
4071     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4072     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4073                                         getF32Constant(DAG, 0x3f317218));
4074
4075     // Get the significand and build it into a floating-point number with
4076     // exponent of 1.
4077     SDValue X = GetSignificand(DAG, Op1, dl);
4078
4079     SDValue LogOfMantissa;
4080     if (LimitFloatPrecision <= 6) {
4081       // For floating-point precision of 6:
4082       //
4083       //   LogofMantissa =
4084       //     -1.1609546f +
4085       //       (1.4034025f - 0.23903021f * x) * x;
4086       //
4087       // error 0.0034276066, which is better than 8 bits
4088       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4089                                getF32Constant(DAG, 0xbe74c456));
4090       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4091                                getF32Constant(DAG, 0x3fb3a2b1));
4092       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4093       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4094                                   getF32Constant(DAG, 0x3f949a29));
4095     } else if (LimitFloatPrecision <= 12) {
4096       // For floating-point precision of 12:
4097       //
4098       //   LogOfMantissa =
4099       //     -1.7417939f +
4100       //       (2.8212026f +
4101       //         (-1.4699568f +
4102       //           (0.44717955f - 0.56570851e-1f * x) * x) * x) * x;
4103       //
4104       // error 0.000061011436, which is 14 bits
4105       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4106                                getF32Constant(DAG, 0xbd67b6d6));
4107       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4108                                getF32Constant(DAG, 0x3ee4f4b8));
4109       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4110       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4111                                getF32Constant(DAG, 0x3fbc278b));
4112       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4113       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4114                                getF32Constant(DAG, 0x40348e95));
4115       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4116       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4117                                   getF32Constant(DAG, 0x3fdef31a));
4118     } else { // LimitFloatPrecision <= 18
4119       // For floating-point precision of 18:
4120       //
4121       //   LogOfMantissa =
4122       //     -2.1072184f +
4123       //       (4.2372794f +
4124       //         (-3.7029485f +
4125       //           (2.2781945f +
4126       //             (-0.87823314f +
4127       //               (0.19073739f - 0.17809712e-1f * x) * x) * x) * x) * x)*x;
4128       //
4129       // error 0.0000023660568, which is better than 18 bits
4130       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4131                                getF32Constant(DAG, 0xbc91e5ac));
4132       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4133                                getF32Constant(DAG, 0x3e4350aa));
4134       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4135       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4136                                getF32Constant(DAG, 0x3f60d3e3));
4137       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4138       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4139                                getF32Constant(DAG, 0x4011cdf0));
4140       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4141       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4142                                getF32Constant(DAG, 0x406cfd1c));
4143       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4144       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4145                                getF32Constant(DAG, 0x408797cb));
4146       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4147       LogOfMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4148                                   getF32Constant(DAG, 0x4006dcab));
4149     }
4150
4151     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, LogOfMantissa);
4152   }
4153
4154   // No special expansion.
4155   return DAG.getNode(ISD::FLOG, dl, Op.getValueType(), Op);
4156 }
4157
4158 /// expandLog2 - Lower a log2 intrinsic. Handles the special sequences for
4159 /// limited-precision mode.
4160 static SDValue expandLog2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4161                           const TargetLowering &TLI) {
4162   if (Op.getValueType() == MVT::f32 &&
4163       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4164     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4165
4166     // Get the exponent.
4167     SDValue LogOfExponent = GetExponent(DAG, Op1, TLI, dl);
4168
4169     // Get the significand and build it into a floating-point number with
4170     // exponent of 1.
4171     SDValue X = GetSignificand(DAG, Op1, dl);
4172
4173     // Different possible minimax approximations of significand in
4174     // floating-point for various degrees of accuracy over [1,2].
4175     SDValue Log2ofMantissa;
4176     if (LimitFloatPrecision <= 6) {
4177       // For floating-point precision of 6:
4178       //
4179       //   Log2ofMantissa = -1.6749035f + (2.0246817f - .34484768f * x) * x;
4180       //
4181       // error 0.0049451742, which is more than 7 bits
4182       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4183                                getF32Constant(DAG, 0xbeb08fe0));
4184       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4185                                getF32Constant(DAG, 0x40019463));
4186       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4187       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4188                                    getF32Constant(DAG, 0x3fd6633d));
4189     } else if (LimitFloatPrecision <= 12) {
4190       // For floating-point precision of 12:
4191       //
4192       //   Log2ofMantissa =
4193       //     -2.51285454f +
4194       //       (4.07009056f +
4195       //         (-2.12067489f +
4196       //           (.645142248f - 0.816157886e-1f * x) * x) * x) * x;
4197       //
4198       // error 0.0000876136000, which is better than 13 bits
4199       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4200                                getF32Constant(DAG, 0xbda7262e));
4201       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4202                                getF32Constant(DAG, 0x3f25280b));
4203       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4204       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4205                                getF32Constant(DAG, 0x4007b923));
4206       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4207       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4208                                getF32Constant(DAG, 0x40823e2f));
4209       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4210       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4211                                    getF32Constant(DAG, 0x4020d29c));
4212     } else { // LimitFloatPrecision <= 18
4213       // For floating-point precision of 18:
4214       //
4215       //   Log2ofMantissa =
4216       //     -3.0400495f +
4217       //       (6.1129976f +
4218       //         (-5.3420409f +
4219       //           (3.2865683f +
4220       //             (-1.2669343f +
4221       //               (0.27515199f -
4222       //                 0.25691327e-1f * x) * x) * x) * x) * x) * x;
4223       //
4224       // error 0.0000018516, which is better than 18 bits
4225       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4226                                getF32Constant(DAG, 0xbcd2769e));
4227       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4228                                getF32Constant(DAG, 0x3e8ce0b9));
4229       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4230       SDValue t3 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4231                                getF32Constant(DAG, 0x3fa22ae7));
4232       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4233       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4234                                getF32Constant(DAG, 0x40525723));
4235       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4236       SDValue t7 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t6,
4237                                getF32Constant(DAG, 0x40aaf200));
4238       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4239       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4240                                getF32Constant(DAG, 0x40c39dad));
4241       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4242       Log2ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t10,
4243                                    getF32Constant(DAG, 0x4042902c));
4244     }
4245
4246     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log2ofMantissa);
4247   }
4248
4249   // No special expansion.
4250   return DAG.getNode(ISD::FLOG2, dl, Op.getValueType(), Op);
4251 }
4252
4253 /// expandLog10 - Lower a log10 intrinsic. Handles the special sequences for
4254 /// limited-precision mode.
4255 static SDValue expandLog10(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4256                            const TargetLowering &TLI) {
4257   if (Op.getValueType() == MVT::f32 &&
4258       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4259     SDValue Op1 = DAG.getNode(ISD::BITCAST, dl, MVT::i32, Op);
4260
4261     // Scale the exponent by log10(2) [0.30102999f].
4262     SDValue Exp = GetExponent(DAG, Op1, TLI, dl);
4263     SDValue LogOfExponent = DAG.getNode(ISD::FMUL, dl, MVT::f32, Exp,
4264                                         getF32Constant(DAG, 0x3e9a209a));
4265
4266     // Get the significand and build it into a floating-point number with
4267     // exponent of 1.
4268     SDValue X = GetSignificand(DAG, Op1, dl);
4269
4270     SDValue Log10ofMantissa;
4271     if (LimitFloatPrecision <= 6) {
4272       // For floating-point precision of 6:
4273       //
4274       //   Log10ofMantissa =
4275       //     -0.50419619f +
4276       //       (0.60948995f - 0.10380950f * x) * x;
4277       //
4278       // error 0.0014886165, which is 6 bits
4279       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4280                                getF32Constant(DAG, 0xbdd49a13));
4281       SDValue t1 = DAG.getNode(ISD::FADD, dl, MVT::f32, t0,
4282                                getF32Constant(DAG, 0x3f1c0789));
4283       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4284       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t2,
4285                                     getF32Constant(DAG, 0x3f011300));
4286     } else if (LimitFloatPrecision <= 12) {
4287       // For floating-point precision of 12:
4288       //
4289       //   Log10ofMantissa =
4290       //     -0.64831180f +
4291       //       (0.91751397f +
4292       //         (-0.31664806f + 0.47637168e-1f * x) * x) * x;
4293       //
4294       // error 0.00019228036, which is better than 12 bits
4295       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4296                                getF32Constant(DAG, 0x3d431f31));
4297       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4298                                getF32Constant(DAG, 0x3ea21fb2));
4299       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4300       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4301                                getF32Constant(DAG, 0x3f6ae232));
4302       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4303       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4304                                     getF32Constant(DAG, 0x3f25f7c3));
4305     } else { // LimitFloatPrecision <= 18
4306       // For floating-point precision of 18:
4307       //
4308       //   Log10ofMantissa =
4309       //     -0.84299375f +
4310       //       (1.5327582f +
4311       //         (-1.0688956f +
4312       //           (0.49102474f +
4313       //             (-0.12539807f + 0.13508273e-1f * x) * x) * x) * x) * x;
4314       //
4315       // error 0.0000037995730, which is better than 18 bits
4316       SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4317                                getF32Constant(DAG, 0x3c5d51ce));
4318       SDValue t1 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0,
4319                                getF32Constant(DAG, 0x3e00685a));
4320       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t1, X);
4321       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4322                                getF32Constant(DAG, 0x3efb6798));
4323       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4324       SDValue t5 = DAG.getNode(ISD::FSUB, dl, MVT::f32, t4,
4325                                getF32Constant(DAG, 0x3f88d192));
4326       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4327       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4328                                getF32Constant(DAG, 0x3fc4316c));
4329       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4330       Log10ofMantissa = DAG.getNode(ISD::FSUB, dl, MVT::f32, t8,
4331                                     getF32Constant(DAG, 0x3f57ce70));
4332     }
4333
4334     return DAG.getNode(ISD::FADD, dl, MVT::f32, LogOfExponent, Log10ofMantissa);
4335   }
4336
4337   // No special expansion.
4338   return DAG.getNode(ISD::FLOG10, dl, Op.getValueType(), Op);
4339 }
4340
4341 /// expandExp2 - Lower an exp2 intrinsic. Handles the special sequences for
4342 /// limited-precision mode.
4343 static SDValue expandExp2(SDLoc dl, SDValue Op, SelectionDAG &DAG,
4344                           const TargetLowering &TLI) {
4345   if (Op.getValueType() == MVT::f32 &&
4346       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4347     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, Op);
4348
4349     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4350     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4351     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, Op, t1);
4352
4353     //   IntegerPartOfX <<= 23;
4354     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4355                                  DAG.getConstant(23, TLI.getPointerTy()));
4356
4357     SDValue TwoToFractionalPartOfX;
4358     if (LimitFloatPrecision <= 6) {
4359       // For floating-point precision of 6:
4360       //
4361       //   TwoToFractionalPartOfX =
4362       //     0.997535578f +
4363       //       (0.735607626f + 0.252464424f * x) * x;
4364       //
4365       // error 0.0144103317, which is 6 bits
4366       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4367                                getF32Constant(DAG, 0x3e814304));
4368       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4369                                getF32Constant(DAG, 0x3f3c50c8));
4370       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4371       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4372                                            getF32Constant(DAG, 0x3f7f5e7e));
4373     } else if (LimitFloatPrecision <= 12) {
4374       // For floating-point precision of 12:
4375       //
4376       //   TwoToFractionalPartOfX =
4377       //     0.999892986f +
4378       //       (0.696457318f +
4379       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4380       //
4381       // error 0.000107046256, which is 13 to 14 bits
4382       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4383                                getF32Constant(DAG, 0x3da235e3));
4384       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4385                                getF32Constant(DAG, 0x3e65b8f3));
4386       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4387       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4388                                getF32Constant(DAG, 0x3f324b07));
4389       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4390       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4391                                            getF32Constant(DAG, 0x3f7ff8fd));
4392     } else { // LimitFloatPrecision <= 18
4393       // For floating-point precision of 18:
4394       //
4395       //   TwoToFractionalPartOfX =
4396       //     0.999999982f +
4397       //       (0.693148872f +
4398       //         (0.240227044f +
4399       //           (0.554906021e-1f +
4400       //             (0.961591928e-2f +
4401       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4402       // error 2.47208000*10^(-7), which is better than 18 bits
4403       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4404                                getF32Constant(DAG, 0x3924b03e));
4405       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4406                                getF32Constant(DAG, 0x3ab24b87));
4407       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4408       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4409                                getF32Constant(DAG, 0x3c1d8c17));
4410       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4411       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4412                                getF32Constant(DAG, 0x3d634a1d));
4413       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4414       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4415                                getF32Constant(DAG, 0x3e75fe14));
4416       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4417       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4418                                 getF32Constant(DAG, 0x3f317234));
4419       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4420       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4421                                            getF32Constant(DAG, 0x3f800000));
4422     }
4423
4424     // Add the exponent into the result in integer domain.
4425     SDValue t13 = DAG.getNode(ISD::BITCAST, dl, MVT::i32,
4426                               TwoToFractionalPartOfX);
4427     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4428                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4429                                    t13, IntegerPartOfX));
4430   }
4431
4432   // No special expansion.
4433   return DAG.getNode(ISD::FEXP2, dl, Op.getValueType(), Op);
4434 }
4435
4436 /// visitPow - Lower a pow intrinsic. Handles the special sequences for
4437 /// limited-precision mode with x == 10.0f.
4438 static SDValue expandPow(SDLoc dl, SDValue LHS, SDValue RHS,
4439                          SelectionDAG &DAG, const TargetLowering &TLI) {
4440   bool IsExp10 = false;
4441   if (LHS.getValueType() == MVT::f32 && RHS.getValueType() == MVT::f32 &&
4442       LimitFloatPrecision > 0 && LimitFloatPrecision <= 18) {
4443     if (ConstantFPSDNode *LHSC = dyn_cast<ConstantFPSDNode>(LHS)) {
4444       APFloat Ten(10.0f);
4445       IsExp10 = LHSC->isExactlyValue(Ten);
4446     }
4447   }
4448
4449   if (IsExp10) {
4450     // Put the exponent in the right bit position for later addition to the
4451     // final result:
4452     //
4453     //   #define LOG2OF10 3.3219281f
4454     //   IntegerPartOfX = (int32_t)(x * LOG2OF10);
4455     SDValue t0 = DAG.getNode(ISD::FMUL, dl, MVT::f32, RHS,
4456                              getF32Constant(DAG, 0x40549a78));
4457     SDValue IntegerPartOfX = DAG.getNode(ISD::FP_TO_SINT, dl, MVT::i32, t0);
4458
4459     //   FractionalPartOfX = x - (float)IntegerPartOfX;
4460     SDValue t1 = DAG.getNode(ISD::SINT_TO_FP, dl, MVT::f32, IntegerPartOfX);
4461     SDValue X = DAG.getNode(ISD::FSUB, dl, MVT::f32, t0, t1);
4462
4463     //   IntegerPartOfX <<= 23;
4464     IntegerPartOfX = DAG.getNode(ISD::SHL, dl, MVT::i32, IntegerPartOfX,
4465                                  DAG.getConstant(23, TLI.getPointerTy()));
4466
4467     SDValue TwoToFractionalPartOfX;
4468     if (LimitFloatPrecision <= 6) {
4469       // For floating-point precision of 6:
4470       //
4471       //   twoToFractionalPartOfX =
4472       //     0.997535578f +
4473       //       (0.735607626f + 0.252464424f * x) * x;
4474       //
4475       // error 0.0144103317, which is 6 bits
4476       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4477                                getF32Constant(DAG, 0x3e814304));
4478       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4479                                getF32Constant(DAG, 0x3f3c50c8));
4480       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4481       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4482                                            getF32Constant(DAG, 0x3f7f5e7e));
4483     } else if (LimitFloatPrecision <= 12) {
4484       // For floating-point precision of 12:
4485       //
4486       //   TwoToFractionalPartOfX =
4487       //     0.999892986f +
4488       //       (0.696457318f +
4489       //         (0.224338339f + 0.792043434e-1f * x) * x) * x;
4490       //
4491       // error 0.000107046256, which is 13 to 14 bits
4492       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4493                                getF32Constant(DAG, 0x3da235e3));
4494       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4495                                getF32Constant(DAG, 0x3e65b8f3));
4496       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4497       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4498                                getF32Constant(DAG, 0x3f324b07));
4499       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4500       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4501                                            getF32Constant(DAG, 0x3f7ff8fd));
4502     } else { // LimitFloatPrecision <= 18
4503       // For floating-point precision of 18:
4504       //
4505       //   TwoToFractionalPartOfX =
4506       //     0.999999982f +
4507       //       (0.693148872f +
4508       //         (0.240227044f +
4509       //           (0.554906021e-1f +
4510       //             (0.961591928e-2f +
4511       //               (0.136028312e-2f + 0.157059148e-3f *x)*x)*x)*x)*x)*x;
4512       // error 2.47208000*10^(-7), which is better than 18 bits
4513       SDValue t2 = DAG.getNode(ISD::FMUL, dl, MVT::f32, X,
4514                                getF32Constant(DAG, 0x3924b03e));
4515       SDValue t3 = DAG.getNode(ISD::FADD, dl, MVT::f32, t2,
4516                                getF32Constant(DAG, 0x3ab24b87));
4517       SDValue t4 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t3, X);
4518       SDValue t5 = DAG.getNode(ISD::FADD, dl, MVT::f32, t4,
4519                                getF32Constant(DAG, 0x3c1d8c17));
4520       SDValue t6 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t5, X);
4521       SDValue t7 = DAG.getNode(ISD::FADD, dl, MVT::f32, t6,
4522                                getF32Constant(DAG, 0x3d634a1d));
4523       SDValue t8 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t7, X);
4524       SDValue t9 = DAG.getNode(ISD::FADD, dl, MVT::f32, t8,
4525                                getF32Constant(DAG, 0x3e75fe14));
4526       SDValue t10 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t9, X);
4527       SDValue t11 = DAG.getNode(ISD::FADD, dl, MVT::f32, t10,
4528                                 getF32Constant(DAG, 0x3f317234));
4529       SDValue t12 = DAG.getNode(ISD::FMUL, dl, MVT::f32, t11, X);
4530       TwoToFractionalPartOfX = DAG.getNode(ISD::FADD, dl, MVT::f32, t12,
4531                                            getF32Constant(DAG, 0x3f800000));
4532     }
4533
4534     SDValue t13 = DAG.getNode(ISD::BITCAST, dl,MVT::i32,TwoToFractionalPartOfX);
4535     return DAG.getNode(ISD::BITCAST, dl, MVT::f32,
4536                        DAG.getNode(ISD::ADD, dl, MVT::i32,
4537                                    t13, IntegerPartOfX));
4538   }
4539
4540   // No special expansion.
4541   return DAG.getNode(ISD::FPOW, dl, LHS.getValueType(), LHS, RHS);
4542 }
4543
4544
4545 /// ExpandPowI - Expand a llvm.powi intrinsic.
4546 static SDValue ExpandPowI(SDLoc DL, SDValue LHS, SDValue RHS,
4547                           SelectionDAG &DAG) {
4548   // If RHS is a constant, we can expand this out to a multiplication tree,
4549   // otherwise we end up lowering to a call to __powidf2 (for example).  When
4550   // optimizing for size, we only want to do this if the expansion would produce
4551   // a small number of multiplies, otherwise we do the full expansion.
4552   if (ConstantSDNode *RHSC = dyn_cast<ConstantSDNode>(RHS)) {
4553     // Get the exponent as a positive value.
4554     unsigned Val = RHSC->getSExtValue();
4555     if ((int)Val < 0) Val = -Val;
4556
4557     // powi(x, 0) -> 1.0
4558     if (Val == 0)
4559       return DAG.getConstantFP(1.0, LHS.getValueType());
4560
4561     const Function *F = DAG.getMachineFunction().getFunction();
4562     if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
4563                                          Attribute::OptimizeForSize) ||
4564         // If optimizing for size, don't insert too many multiplies.  This
4565         // inserts up to 5 multiplies.
4566         CountPopulation_32(Val)+Log2_32(Val) < 7) {
4567       // We use the simple binary decomposition method to generate the multiply
4568       // sequence.  There are more optimal ways to do this (for example,
4569       // powi(x,15) generates one more multiply than it should), but this has
4570       // the benefit of being both really simple and much better than a libcall.
4571       SDValue Res;  // Logically starts equal to 1.0
4572       SDValue CurSquare = LHS;
4573       while (Val) {
4574         if (Val & 1) {
4575           if (Res.getNode())
4576             Res = DAG.getNode(ISD::FMUL, DL,Res.getValueType(), Res, CurSquare);
4577           else
4578             Res = CurSquare;  // 1.0*CurSquare.
4579         }
4580
4581         CurSquare = DAG.getNode(ISD::FMUL, DL, CurSquare.getValueType(),
4582                                 CurSquare, CurSquare);
4583         Val >>= 1;
4584       }
4585
4586       // If the original was negative, invert the result, producing 1/(x*x*x).
4587       if (RHSC->getSExtValue() < 0)
4588         Res = DAG.getNode(ISD::FDIV, DL, LHS.getValueType(),
4589                           DAG.getConstantFP(1.0, LHS.getValueType()), Res);
4590       return Res;
4591     }
4592   }
4593
4594   // Otherwise, expand to a libcall.
4595   return DAG.getNode(ISD::FPOWI, DL, LHS.getValueType(), LHS, RHS);
4596 }
4597
4598 // getTruncatedArgReg - Find underlying register used for an truncated
4599 // argument.
4600 static unsigned getTruncatedArgReg(const SDValue &N) {
4601   if (N.getOpcode() != ISD::TRUNCATE)
4602     return 0;
4603
4604   const SDValue &Ext = N.getOperand(0);
4605   if (Ext.getOpcode() == ISD::AssertZext ||
4606       Ext.getOpcode() == ISD::AssertSext) {
4607     const SDValue &CFR = Ext.getOperand(0);
4608     if (CFR.getOpcode() == ISD::CopyFromReg)
4609       return cast<RegisterSDNode>(CFR.getOperand(1))->getReg();
4610     if (CFR.getOpcode() == ISD::TRUNCATE)
4611       return getTruncatedArgReg(CFR);
4612   }
4613   return 0;
4614 }
4615
4616 /// EmitFuncArgumentDbgValue - If the DbgValueInst is a dbg_value of a function
4617 /// argument, create the corresponding DBG_VALUE machine instruction for it now.
4618 /// At the end of instruction selection, they will be inserted to the entry BB.
4619 bool SelectionDAGBuilder::EmitFuncArgumentDbgValue(const Value *V,
4620                                                    MDNode *Variable,
4621                                                    MDNode *Expr, int64_t Offset,
4622                                                    bool IsIndirect,
4623                                                    const SDValue &N) {
4624   const Argument *Arg = dyn_cast<Argument>(V);
4625   if (!Arg)
4626     return false;
4627
4628   MachineFunction &MF = DAG.getMachineFunction();
4629   const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
4630
4631   // Ignore inlined function arguments here.
4632   DIVariable DV(Variable);
4633   if (DV.isInlinedFnArgument(MF.getFunction()))
4634     return false;
4635
4636   Optional<MachineOperand> Op;
4637   // Some arguments' frame index is recorded during argument lowering.
4638   if (int FI = FuncInfo.getArgumentFrameIndex(Arg))
4639     Op = MachineOperand::CreateFI(FI);
4640
4641   if (!Op && N.getNode()) {
4642     unsigned Reg;
4643     if (N.getOpcode() == ISD::CopyFromReg)
4644       Reg = cast<RegisterSDNode>(N.getOperand(1))->getReg();
4645     else
4646       Reg = getTruncatedArgReg(N);
4647     if (Reg && TargetRegisterInfo::isVirtualRegister(Reg)) {
4648       MachineRegisterInfo &RegInfo = MF.getRegInfo();
4649       unsigned PR = RegInfo.getLiveInPhysReg(Reg);
4650       if (PR)
4651         Reg = PR;
4652     }
4653     if (Reg)
4654       Op = MachineOperand::CreateReg(Reg, false);
4655   }
4656
4657   if (!Op) {
4658     // Check if ValueMap has reg number.
4659     DenseMap<const Value *, unsigned>::iterator VMI = FuncInfo.ValueMap.find(V);
4660     if (VMI != FuncInfo.ValueMap.end())
4661       Op = MachineOperand::CreateReg(VMI->second, false);
4662   }
4663
4664   if (!Op && N.getNode())
4665     // Check if frame index is available.
4666     if (LoadSDNode *LNode = dyn_cast<LoadSDNode>(N.getNode()))
4667       if (FrameIndexSDNode *FINode =
4668           dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
4669         Op = MachineOperand::CreateFI(FINode->getIndex());
4670
4671   if (!Op)
4672     return false;
4673
4674   if (Op->isReg())
4675     FuncInfo.ArgDbgValues.push_back(
4676         BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE),
4677                 IsIndirect, Op->getReg(), Offset, Variable, Expr));
4678   else
4679     FuncInfo.ArgDbgValues.push_back(
4680         BuildMI(MF, getCurDebugLoc(), TII->get(TargetOpcode::DBG_VALUE))
4681             .addOperand(*Op)
4682             .addImm(Offset)
4683             .addMetadata(Variable)
4684             .addMetadata(Expr));
4685
4686   return true;
4687 }
4688
4689 // VisualStudio defines setjmp as _setjmp
4690 #if defined(_MSC_VER) && defined(setjmp) && \
4691                          !defined(setjmp_undefined_for_msvc)
4692 #  pragma push_macro("setjmp")
4693 #  undef setjmp
4694 #  define setjmp_undefined_for_msvc
4695 #endif
4696
4697 /// visitIntrinsicCall - Lower the call to the specified intrinsic function.  If
4698 /// we want to emit this as a call to a named external function, return the name
4699 /// otherwise lower it and return null.
4700 const char *
4701 SelectionDAGBuilder::visitIntrinsicCall(const CallInst &I, unsigned Intrinsic) {
4702   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
4703   SDLoc sdl = getCurSDLoc();
4704   DebugLoc dl = getCurDebugLoc();
4705   SDValue Res;
4706
4707   switch (Intrinsic) {
4708   default:
4709     // By default, turn this into a target intrinsic node.
4710     visitTargetIntrinsic(I, Intrinsic);
4711     return nullptr;
4712   case Intrinsic::vastart:  visitVAStart(I); return nullptr;
4713   case Intrinsic::vaend:    visitVAEnd(I); return nullptr;
4714   case Intrinsic::vacopy:   visitVACopy(I); return nullptr;
4715   case Intrinsic::returnaddress:
4716     setValue(&I, DAG.getNode(ISD::RETURNADDR, sdl, TLI.getPointerTy(),
4717                              getValue(I.getArgOperand(0))));
4718     return nullptr;
4719   case Intrinsic::frameaddress:
4720     setValue(&I, DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4721                              getValue(I.getArgOperand(0))));
4722     return nullptr;
4723   case Intrinsic::read_register: {
4724     Value *Reg = I.getArgOperand(0);
4725     SDValue RegName =
4726         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4727     EVT VT = TLI.getValueType(I.getType());
4728     setValue(&I, DAG.getNode(ISD::READ_REGISTER, sdl, VT, RegName));
4729     return nullptr;
4730   }
4731   case Intrinsic::write_register: {
4732     Value *Reg = I.getArgOperand(0);
4733     Value *RegValue = I.getArgOperand(1);
4734     SDValue Chain = getValue(RegValue).getOperand(0);
4735     SDValue RegName =
4736         DAG.getMDNode(cast<MDNode>(cast<MetadataAsValue>(Reg)->getMetadata()));
4737     DAG.setRoot(DAG.getNode(ISD::WRITE_REGISTER, sdl, MVT::Other, Chain,
4738                             RegName, getValue(RegValue)));
4739     return nullptr;
4740   }
4741   case Intrinsic::setjmp:
4742     return &"_setjmp"[!TLI.usesUnderscoreSetJmp()];
4743   case Intrinsic::longjmp:
4744     return &"_longjmp"[!TLI.usesUnderscoreLongJmp()];
4745   case Intrinsic::memcpy: {
4746     // Assert for address < 256 since we support only user defined address
4747     // spaces.
4748     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4749            < 256 &&
4750            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4751            < 256 &&
4752            "Unknown address space");
4753     SDValue Op1 = getValue(I.getArgOperand(0));
4754     SDValue Op2 = getValue(I.getArgOperand(1));
4755     SDValue Op3 = getValue(I.getArgOperand(2));
4756     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4757     if (!Align)
4758       Align = 1; // @llvm.memcpy defines 0 and 1 to both mean no alignment.
4759     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4760     DAG.setRoot(DAG.getMemcpy(getRoot(), sdl, Op1, Op2, Op3, Align, isVol, false,
4761                               MachinePointerInfo(I.getArgOperand(0)),
4762                               MachinePointerInfo(I.getArgOperand(1))));
4763     return nullptr;
4764   }
4765   case Intrinsic::memset: {
4766     // Assert for address < 256 since we support only user defined address
4767     // spaces.
4768     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4769            < 256 &&
4770            "Unknown address space");
4771     SDValue Op1 = getValue(I.getArgOperand(0));
4772     SDValue Op2 = getValue(I.getArgOperand(1));
4773     SDValue Op3 = getValue(I.getArgOperand(2));
4774     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4775     if (!Align)
4776       Align = 1; // @llvm.memset defines 0 and 1 to both mean no alignment.
4777     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4778     DAG.setRoot(DAG.getMemset(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4779                               MachinePointerInfo(I.getArgOperand(0))));
4780     return nullptr;
4781   }
4782   case Intrinsic::memmove: {
4783     // Assert for address < 256 since we support only user defined address
4784     // spaces.
4785     assert(cast<PointerType>(I.getArgOperand(0)->getType())->getAddressSpace()
4786            < 256 &&
4787            cast<PointerType>(I.getArgOperand(1)->getType())->getAddressSpace()
4788            < 256 &&
4789            "Unknown address space");
4790     SDValue Op1 = getValue(I.getArgOperand(0));
4791     SDValue Op2 = getValue(I.getArgOperand(1));
4792     SDValue Op3 = getValue(I.getArgOperand(2));
4793     unsigned Align = cast<ConstantInt>(I.getArgOperand(3))->getZExtValue();
4794     if (!Align)
4795       Align = 1; // @llvm.memmove defines 0 and 1 to both mean no alignment.
4796     bool isVol = cast<ConstantInt>(I.getArgOperand(4))->getZExtValue();
4797     DAG.setRoot(DAG.getMemmove(getRoot(), sdl, Op1, Op2, Op3, Align, isVol,
4798                                MachinePointerInfo(I.getArgOperand(0)),
4799                                MachinePointerInfo(I.getArgOperand(1))));
4800     return nullptr;
4801   }
4802   case Intrinsic::dbg_declare: {
4803     const DbgDeclareInst &DI = cast<DbgDeclareInst>(I);
4804     MDNode *Variable = DI.getVariable();
4805     MDNode *Expression = DI.getExpression();
4806     const Value *Address = DI.getAddress();
4807     DIVariable DIVar(Variable);
4808     assert((!DIVar || DIVar.isVariable()) &&
4809       "Variable in DbgDeclareInst should be either null or a DIVariable.");
4810     if (!Address || !DIVar) {
4811       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4812       return nullptr;
4813     }
4814
4815     // Check if address has undef value.
4816     if (isa<UndefValue>(Address) ||
4817         (Address->use_empty() && !isa<Argument>(Address))) {
4818       DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4819       return nullptr;
4820     }
4821
4822     SDValue &N = NodeMap[Address];
4823     if (!N.getNode() && isa<Argument>(Address))
4824       // Check unused arguments map.
4825       N = UnusedArgNodeMap[Address];
4826     SDDbgValue *SDV;
4827     if (N.getNode()) {
4828       if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
4829         Address = BCI->getOperand(0);
4830       // Parameters are handled specially.
4831       bool isParameter =
4832         (DIVariable(Variable).getTag() == dwarf::DW_TAG_arg_variable ||
4833          isa<Argument>(Address));
4834
4835       const AllocaInst *AI = dyn_cast<AllocaInst>(Address);
4836
4837       if (isParameter && !AI) {
4838         FrameIndexSDNode *FINode = dyn_cast<FrameIndexSDNode>(N.getNode());
4839         if (FINode)
4840           // Byval parameter.  We have a frame index at this point.
4841           SDV = DAG.getFrameIndexDbgValue(
4842               Variable, Expression, FINode->getIndex(), 0, dl, SDNodeOrder);
4843         else {
4844           // Address is an argument, so try to emit its dbg value using
4845           // virtual register info from the FuncInfo.ValueMap.
4846           EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false, N);
4847           return nullptr;
4848         }
4849       } else if (AI)
4850         SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4851                               true, 0, dl, SDNodeOrder);
4852       else {
4853         // Can't do anything with other non-AI cases yet.
4854         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4855         DEBUG(dbgs() << "non-AllocaInst issue for Address: \n\t");
4856         DEBUG(Address->dump());
4857         return nullptr;
4858       }
4859       DAG.AddDbgValue(SDV, N.getNode(), isParameter);
4860     } else {
4861       // If Address is an argument then try to emit its dbg value using
4862       // virtual register info from the FuncInfo.ValueMap.
4863       if (!EmitFuncArgumentDbgValue(Address, Variable, Expression, 0, false,
4864                                     N)) {
4865         // If variable is pinned by a alloca in dominating bb then
4866         // use StaticAllocaMap.
4867         if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
4868           if (AI->getParent() != DI.getParent()) {
4869             DenseMap<const AllocaInst*, int>::iterator SI =
4870               FuncInfo.StaticAllocaMap.find(AI);
4871             if (SI != FuncInfo.StaticAllocaMap.end()) {
4872               SDV = DAG.getFrameIndexDbgValue(Variable, Expression, SI->second,
4873                                               0, dl, SDNodeOrder);
4874               DAG.AddDbgValue(SDV, nullptr, false);
4875               return nullptr;
4876             }
4877           }
4878         }
4879         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4880       }
4881     }
4882     return nullptr;
4883   }
4884   case Intrinsic::dbg_value: {
4885     const DbgValueInst &DI = cast<DbgValueInst>(I);
4886     DIVariable DIVar(DI.getVariable());
4887     assert((!DIVar || DIVar.isVariable()) &&
4888       "Variable in DbgValueInst should be either null or a DIVariable.");
4889     if (!DIVar)
4890       return nullptr;
4891
4892     MDNode *Variable = DI.getVariable();
4893     MDNode *Expression = DI.getExpression();
4894     uint64_t Offset = DI.getOffset();
4895     const Value *V = DI.getValue();
4896     if (!V)
4897       return nullptr;
4898
4899     SDDbgValue *SDV;
4900     if (isa<ConstantInt>(V) || isa<ConstantFP>(V) || isa<UndefValue>(V)) {
4901       SDV = DAG.getConstantDbgValue(Variable, Expression, V, Offset, dl,
4902                                     SDNodeOrder);
4903       DAG.AddDbgValue(SDV, nullptr, false);
4904     } else {
4905       // Do not use getValue() in here; we don't want to generate code at
4906       // this point if it hasn't been done yet.
4907       SDValue N = NodeMap[V];
4908       if (!N.getNode() && isa<Argument>(V))
4909         // Check unused arguments map.
4910         N = UnusedArgNodeMap[V];
4911       if (N.getNode()) {
4912         // A dbg.value for an alloca is always indirect.
4913         bool IsIndirect = isa<AllocaInst>(V) || Offset != 0;
4914         if (!EmitFuncArgumentDbgValue(V, Variable, Expression, Offset,
4915                                       IsIndirect, N)) {
4916           SDV = DAG.getDbgValue(Variable, Expression, N.getNode(), N.getResNo(),
4917                                 IsIndirect, Offset, dl, SDNodeOrder);
4918           DAG.AddDbgValue(SDV, N.getNode(), false);
4919         }
4920       } else if (!V->use_empty() ) {
4921         // Do not call getValue(V) yet, as we don't want to generate code.
4922         // Remember it for later.
4923         DanglingDebugInfo DDI(&DI, dl, SDNodeOrder);
4924         DanglingDebugInfoMap[V] = DDI;
4925       } else {
4926         // We may expand this to cover more cases.  One case where we have no
4927         // data available is an unreferenced parameter.
4928         DEBUG(dbgs() << "Dropping debug info for " << DI << "\n");
4929       }
4930     }
4931
4932     // Build a debug info table entry.
4933     if (const BitCastInst *BCI = dyn_cast<BitCastInst>(V))
4934       V = BCI->getOperand(0);
4935     const AllocaInst *AI = dyn_cast<AllocaInst>(V);
4936     // Don't handle byval struct arguments or VLAs, for example.
4937     if (!AI) {
4938       DEBUG(dbgs() << "Dropping debug location info for:\n  " << DI << "\n");
4939       DEBUG(dbgs() << "  Last seen at:\n    " << *V << "\n");
4940       return nullptr;
4941     }
4942     DenseMap<const AllocaInst*, int>::iterator SI =
4943       FuncInfo.StaticAllocaMap.find(AI);
4944     if (SI == FuncInfo.StaticAllocaMap.end())
4945       return nullptr; // VLAs.
4946     return nullptr;
4947   }
4948
4949   case Intrinsic::eh_typeid_for: {
4950     // Find the type id for the given typeinfo.
4951     GlobalValue *GV = ExtractTypeInfo(I.getArgOperand(0));
4952     unsigned TypeID = DAG.getMachineFunction().getMMI().getTypeIDFor(GV);
4953     Res = DAG.getConstant(TypeID, MVT::i32);
4954     setValue(&I, Res);
4955     return nullptr;
4956   }
4957
4958   case Intrinsic::eh_return_i32:
4959   case Intrinsic::eh_return_i64:
4960     DAG.getMachineFunction().getMMI().setCallsEHReturn(true);
4961     DAG.setRoot(DAG.getNode(ISD::EH_RETURN, sdl,
4962                             MVT::Other,
4963                             getControlRoot(),
4964                             getValue(I.getArgOperand(0)),
4965                             getValue(I.getArgOperand(1))));
4966     return nullptr;
4967   case Intrinsic::eh_unwind_init:
4968     DAG.getMachineFunction().getMMI().setCallsUnwindInit(true);
4969     return nullptr;
4970   case Intrinsic::eh_dwarf_cfa: {
4971     SDValue CfaArg = DAG.getSExtOrTrunc(getValue(I.getArgOperand(0)), sdl,
4972                                         TLI.getPointerTy());
4973     SDValue Offset = DAG.getNode(ISD::ADD, sdl,
4974                                  CfaArg.getValueType(),
4975                                  DAG.getNode(ISD::FRAME_TO_ARGS_OFFSET, sdl,
4976                                              CfaArg.getValueType()),
4977                                  CfaArg);
4978     SDValue FA = DAG.getNode(ISD::FRAMEADDR, sdl, TLI.getPointerTy(),
4979                              DAG.getConstant(0, TLI.getPointerTy()));
4980     setValue(&I, DAG.getNode(ISD::ADD, sdl, FA.getValueType(),
4981                              FA, Offset));
4982     return nullptr;
4983   }
4984   case Intrinsic::eh_sjlj_callsite: {
4985     MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
4986     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(0));
4987     assert(CI && "Non-constant call site value in eh.sjlj.callsite!");
4988     assert(MMI.getCurrentCallSite() == 0 && "Overlapping call sites!");
4989
4990     MMI.setCurrentCallSite(CI->getZExtValue());
4991     return nullptr;
4992   }
4993   case Intrinsic::eh_sjlj_functioncontext: {
4994     // Get and store the index of the function context.
4995     MachineFrameInfo *MFI = DAG.getMachineFunction().getFrameInfo();
4996     AllocaInst *FnCtx =
4997       cast<AllocaInst>(I.getArgOperand(0)->stripPointerCasts());
4998     int FI = FuncInfo.StaticAllocaMap[FnCtx];
4999     MFI->setFunctionContextIndex(FI);
5000     return nullptr;
5001   }
5002   case Intrinsic::eh_sjlj_setjmp: {
5003     SDValue Ops[2];
5004     Ops[0] = getRoot();
5005     Ops[1] = getValue(I.getArgOperand(0));
5006     SDValue Op = DAG.getNode(ISD::EH_SJLJ_SETJMP, sdl,
5007                              DAG.getVTList(MVT::i32, MVT::Other), Ops);
5008     setValue(&I, Op.getValue(0));
5009     DAG.setRoot(Op.getValue(1));
5010     return nullptr;
5011   }
5012   case Intrinsic::eh_sjlj_longjmp: {
5013     DAG.setRoot(DAG.getNode(ISD::EH_SJLJ_LONGJMP, sdl, MVT::Other,
5014                             getRoot(), getValue(I.getArgOperand(0))));
5015     return nullptr;
5016   }
5017
5018   case Intrinsic::masked_load:
5019     visitMaskedLoad(I);
5020     return nullptr;
5021   case Intrinsic::masked_store:
5022     visitMaskedStore(I);
5023     return nullptr;
5024   case Intrinsic::x86_mmx_pslli_w:
5025   case Intrinsic::x86_mmx_pslli_d:
5026   case Intrinsic::x86_mmx_pslli_q:
5027   case Intrinsic::x86_mmx_psrli_w:
5028   case Intrinsic::x86_mmx_psrli_d:
5029   case Intrinsic::x86_mmx_psrli_q:
5030   case Intrinsic::x86_mmx_psrai_w:
5031   case Intrinsic::x86_mmx_psrai_d: {
5032     SDValue ShAmt = getValue(I.getArgOperand(1));
5033     if (isa<ConstantSDNode>(ShAmt)) {
5034       visitTargetIntrinsic(I, Intrinsic);
5035       return nullptr;
5036     }
5037     unsigned NewIntrinsic = 0;
5038     EVT ShAmtVT = MVT::v2i32;
5039     switch (Intrinsic) {
5040     case Intrinsic::x86_mmx_pslli_w:
5041       NewIntrinsic = Intrinsic::x86_mmx_psll_w;
5042       break;
5043     case Intrinsic::x86_mmx_pslli_d:
5044       NewIntrinsic = Intrinsic::x86_mmx_psll_d;
5045       break;
5046     case Intrinsic::x86_mmx_pslli_q:
5047       NewIntrinsic = Intrinsic::x86_mmx_psll_q;
5048       break;
5049     case Intrinsic::x86_mmx_psrli_w:
5050       NewIntrinsic = Intrinsic::x86_mmx_psrl_w;
5051       break;
5052     case Intrinsic::x86_mmx_psrli_d:
5053       NewIntrinsic = Intrinsic::x86_mmx_psrl_d;
5054       break;
5055     case Intrinsic::x86_mmx_psrli_q:
5056       NewIntrinsic = Intrinsic::x86_mmx_psrl_q;
5057       break;
5058     case Intrinsic::x86_mmx_psrai_w:
5059       NewIntrinsic = Intrinsic::x86_mmx_psra_w;
5060       break;
5061     case Intrinsic::x86_mmx_psrai_d:
5062       NewIntrinsic = Intrinsic::x86_mmx_psra_d;
5063       break;
5064     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5065     }
5066
5067     // The vector shift intrinsics with scalars uses 32b shift amounts but
5068     // the sse2/mmx shift instructions reads 64 bits. Set the upper 32 bits
5069     // to be zero.
5070     // We must do this early because v2i32 is not a legal type.
5071     SDValue ShOps[2];
5072     ShOps[0] = ShAmt;
5073     ShOps[1] = DAG.getConstant(0, MVT::i32);
5074     ShAmt =  DAG.getNode(ISD::BUILD_VECTOR, sdl, ShAmtVT, ShOps);
5075     EVT DestVT = TLI.getValueType(I.getType());
5076     ShAmt = DAG.getNode(ISD::BITCAST, sdl, DestVT, ShAmt);
5077     Res = DAG.getNode(ISD::INTRINSIC_WO_CHAIN, sdl, DestVT,
5078                        DAG.getConstant(NewIntrinsic, MVT::i32),
5079                        getValue(I.getArgOperand(0)), ShAmt);
5080     setValue(&I, Res);
5081     return nullptr;
5082   }
5083   case Intrinsic::x86_avx_vinsertf128_pd_256:
5084   case Intrinsic::x86_avx_vinsertf128_ps_256:
5085   case Intrinsic::x86_avx_vinsertf128_si_256:
5086   case Intrinsic::x86_avx2_vinserti128: {
5087     EVT DestVT = TLI.getValueType(I.getType());
5088     EVT ElVT = TLI.getValueType(I.getArgOperand(1)->getType());
5089     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(2))->getZExtValue() & 1) *
5090                    ElVT.getVectorNumElements();
5091     Res =
5092         DAG.getNode(ISD::INSERT_SUBVECTOR, sdl, DestVT,
5093                     getValue(I.getArgOperand(0)), getValue(I.getArgOperand(1)),
5094                     DAG.getConstant(Idx, TLI.getVectorIdxTy()));
5095     setValue(&I, Res);
5096     return nullptr;
5097   }
5098   case Intrinsic::x86_avx_vextractf128_pd_256:
5099   case Intrinsic::x86_avx_vextractf128_ps_256:
5100   case Intrinsic::x86_avx_vextractf128_si_256:
5101   case Intrinsic::x86_avx2_vextracti128: {
5102     EVT DestVT = TLI.getValueType(I.getType());
5103     uint64_t Idx = (cast<ConstantInt>(I.getArgOperand(1))->getZExtValue() & 1) *
5104                    DestVT.getVectorNumElements();
5105     Res = DAG.getNode(ISD::EXTRACT_SUBVECTOR, sdl, DestVT,
5106                       getValue(I.getArgOperand(0)),
5107                       DAG.getConstant(Idx, TLI.getVectorIdxTy()));
5108     setValue(&I, Res);
5109     return nullptr;
5110   }
5111   case Intrinsic::convertff:
5112   case Intrinsic::convertfsi:
5113   case Intrinsic::convertfui:
5114   case Intrinsic::convertsif:
5115   case Intrinsic::convertuif:
5116   case Intrinsic::convertss:
5117   case Intrinsic::convertsu:
5118   case Intrinsic::convertus:
5119   case Intrinsic::convertuu: {
5120     ISD::CvtCode Code = ISD::CVT_INVALID;
5121     switch (Intrinsic) {
5122     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5123     case Intrinsic::convertff:  Code = ISD::CVT_FF; break;
5124     case Intrinsic::convertfsi: Code = ISD::CVT_FS; break;
5125     case Intrinsic::convertfui: Code = ISD::CVT_FU; break;
5126     case Intrinsic::convertsif: Code = ISD::CVT_SF; break;
5127     case Intrinsic::convertuif: Code = ISD::CVT_UF; break;
5128     case Intrinsic::convertss:  Code = ISD::CVT_SS; break;
5129     case Intrinsic::convertsu:  Code = ISD::CVT_SU; break;
5130     case Intrinsic::convertus:  Code = ISD::CVT_US; break;
5131     case Intrinsic::convertuu:  Code = ISD::CVT_UU; break;
5132     }
5133     EVT DestVT = TLI.getValueType(I.getType());
5134     const Value *Op1 = I.getArgOperand(0);
5135     Res = DAG.getConvertRndSat(DestVT, sdl, getValue(Op1),
5136                                DAG.getValueType(DestVT),
5137                                DAG.getValueType(getValue(Op1).getValueType()),
5138                                getValue(I.getArgOperand(1)),
5139                                getValue(I.getArgOperand(2)),
5140                                Code);
5141     setValue(&I, Res);
5142     return nullptr;
5143   }
5144   case Intrinsic::powi:
5145     setValue(&I, ExpandPowI(sdl, getValue(I.getArgOperand(0)),
5146                             getValue(I.getArgOperand(1)), DAG));
5147     return nullptr;
5148   case Intrinsic::log:
5149     setValue(&I, expandLog(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5150     return nullptr;
5151   case Intrinsic::log2:
5152     setValue(&I, expandLog2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5153     return nullptr;
5154   case Intrinsic::log10:
5155     setValue(&I, expandLog10(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5156     return nullptr;
5157   case Intrinsic::exp:
5158     setValue(&I, expandExp(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5159     return nullptr;
5160   case Intrinsic::exp2:
5161     setValue(&I, expandExp2(sdl, getValue(I.getArgOperand(0)), DAG, TLI));
5162     return nullptr;
5163   case Intrinsic::pow:
5164     setValue(&I, expandPow(sdl, getValue(I.getArgOperand(0)),
5165                            getValue(I.getArgOperand(1)), DAG, TLI));
5166     return nullptr;
5167   case Intrinsic::sqrt:
5168   case Intrinsic::fabs:
5169   case Intrinsic::sin:
5170   case Intrinsic::cos:
5171   case Intrinsic::floor:
5172   case Intrinsic::ceil:
5173   case Intrinsic::trunc:
5174   case Intrinsic::rint:
5175   case Intrinsic::nearbyint:
5176   case Intrinsic::round: {
5177     unsigned Opcode;
5178     switch (Intrinsic) {
5179     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5180     case Intrinsic::sqrt:      Opcode = ISD::FSQRT;      break;
5181     case Intrinsic::fabs:      Opcode = ISD::FABS;       break;
5182     case Intrinsic::sin:       Opcode = ISD::FSIN;       break;
5183     case Intrinsic::cos:       Opcode = ISD::FCOS;       break;
5184     case Intrinsic::floor:     Opcode = ISD::FFLOOR;     break;
5185     case Intrinsic::ceil:      Opcode = ISD::FCEIL;      break;
5186     case Intrinsic::trunc:     Opcode = ISD::FTRUNC;     break;
5187     case Intrinsic::rint:      Opcode = ISD::FRINT;      break;
5188     case Intrinsic::nearbyint: Opcode = ISD::FNEARBYINT; break;
5189     case Intrinsic::round:     Opcode = ISD::FROUND;     break;
5190     }
5191
5192     setValue(&I, DAG.getNode(Opcode, sdl,
5193                              getValue(I.getArgOperand(0)).getValueType(),
5194                              getValue(I.getArgOperand(0))));
5195     return nullptr;
5196   }
5197   case Intrinsic::minnum:
5198     setValue(&I, DAG.getNode(ISD::FMINNUM, sdl,
5199                              getValue(I.getArgOperand(0)).getValueType(),
5200                              getValue(I.getArgOperand(0)),
5201                              getValue(I.getArgOperand(1))));
5202     return nullptr;
5203   case Intrinsic::maxnum:
5204     setValue(&I, DAG.getNode(ISD::FMAXNUM, sdl,
5205                              getValue(I.getArgOperand(0)).getValueType(),
5206                              getValue(I.getArgOperand(0)),
5207                              getValue(I.getArgOperand(1))));
5208     return nullptr;
5209   case Intrinsic::copysign:
5210     setValue(&I, DAG.getNode(ISD::FCOPYSIGN, sdl,
5211                              getValue(I.getArgOperand(0)).getValueType(),
5212                              getValue(I.getArgOperand(0)),
5213                              getValue(I.getArgOperand(1))));
5214     return nullptr;
5215   case Intrinsic::fma:
5216     setValue(&I, DAG.getNode(ISD::FMA, sdl,
5217                              getValue(I.getArgOperand(0)).getValueType(),
5218                              getValue(I.getArgOperand(0)),
5219                              getValue(I.getArgOperand(1)),
5220                              getValue(I.getArgOperand(2))));
5221     return nullptr;
5222   case Intrinsic::fmuladd: {
5223     EVT VT = TLI.getValueType(I.getType());
5224     if (TM.Options.AllowFPOpFusion != FPOpFusion::Strict &&
5225         TLI.isFMAFasterThanFMulAndFAdd(VT)) {
5226       setValue(&I, DAG.getNode(ISD::FMA, sdl,
5227                                getValue(I.getArgOperand(0)).getValueType(),
5228                                getValue(I.getArgOperand(0)),
5229                                getValue(I.getArgOperand(1)),
5230                                getValue(I.getArgOperand(2))));
5231     } else {
5232       SDValue Mul = DAG.getNode(ISD::FMUL, sdl,
5233                                 getValue(I.getArgOperand(0)).getValueType(),
5234                                 getValue(I.getArgOperand(0)),
5235                                 getValue(I.getArgOperand(1)));
5236       SDValue Add = DAG.getNode(ISD::FADD, sdl,
5237                                 getValue(I.getArgOperand(0)).getValueType(),
5238                                 Mul,
5239                                 getValue(I.getArgOperand(2)));
5240       setValue(&I, Add);
5241     }
5242     return nullptr;
5243   }
5244   case Intrinsic::convert_to_fp16:
5245     setValue(&I, DAG.getNode(ISD::BITCAST, sdl, MVT::i16,
5246                              DAG.getNode(ISD::FP_ROUND, sdl, MVT::f16,
5247                                          getValue(I.getArgOperand(0)),
5248                                          DAG.getTargetConstant(0, MVT::i32))));
5249     return nullptr;
5250   case Intrinsic::convert_from_fp16:
5251     setValue(&I,
5252              DAG.getNode(ISD::FP_EXTEND, sdl, TLI.getValueType(I.getType()),
5253                          DAG.getNode(ISD::BITCAST, sdl, MVT::f16,
5254                                      getValue(I.getArgOperand(0)))));
5255     return nullptr;
5256   case Intrinsic::pcmarker: {
5257     SDValue Tmp = getValue(I.getArgOperand(0));
5258     DAG.setRoot(DAG.getNode(ISD::PCMARKER, sdl, MVT::Other, getRoot(), Tmp));
5259     return nullptr;
5260   }
5261   case Intrinsic::readcyclecounter: {
5262     SDValue Op = getRoot();
5263     Res = DAG.getNode(ISD::READCYCLECOUNTER, sdl,
5264                       DAG.getVTList(MVT::i64, MVT::Other), Op);
5265     setValue(&I, Res);
5266     DAG.setRoot(Res.getValue(1));
5267     return nullptr;
5268   }
5269   case Intrinsic::bswap:
5270     setValue(&I, DAG.getNode(ISD::BSWAP, sdl,
5271                              getValue(I.getArgOperand(0)).getValueType(),
5272                              getValue(I.getArgOperand(0))));
5273     return nullptr;
5274   case Intrinsic::cttz: {
5275     SDValue Arg = getValue(I.getArgOperand(0));
5276     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5277     EVT Ty = Arg.getValueType();
5278     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTTZ : ISD::CTTZ_ZERO_UNDEF,
5279                              sdl, Ty, Arg));
5280     return nullptr;
5281   }
5282   case Intrinsic::ctlz: {
5283     SDValue Arg = getValue(I.getArgOperand(0));
5284     ConstantInt *CI = cast<ConstantInt>(I.getArgOperand(1));
5285     EVT Ty = Arg.getValueType();
5286     setValue(&I, DAG.getNode(CI->isZero() ? ISD::CTLZ : ISD::CTLZ_ZERO_UNDEF,
5287                              sdl, Ty, Arg));
5288     return nullptr;
5289   }
5290   case Intrinsic::ctpop: {
5291     SDValue Arg = getValue(I.getArgOperand(0));
5292     EVT Ty = Arg.getValueType();
5293     setValue(&I, DAG.getNode(ISD::CTPOP, sdl, Ty, Arg));
5294     return nullptr;
5295   }
5296   case Intrinsic::stacksave: {
5297     SDValue Op = getRoot();
5298     Res = DAG.getNode(ISD::STACKSAVE, sdl,
5299                       DAG.getVTList(TLI.getPointerTy(), MVT::Other), Op);
5300     setValue(&I, Res);
5301     DAG.setRoot(Res.getValue(1));
5302     return nullptr;
5303   }
5304   case Intrinsic::stackrestore: {
5305     Res = getValue(I.getArgOperand(0));
5306     DAG.setRoot(DAG.getNode(ISD::STACKRESTORE, sdl, MVT::Other, getRoot(), Res));
5307     return nullptr;
5308   }
5309   case Intrinsic::stackprotector: {
5310     // Emit code into the DAG to store the stack guard onto the stack.
5311     MachineFunction &MF = DAG.getMachineFunction();
5312     MachineFrameInfo *MFI = MF.getFrameInfo();
5313     EVT PtrTy = TLI.getPointerTy();
5314     SDValue Src, Chain = getRoot();
5315     const Value *Ptr = cast<LoadInst>(I.getArgOperand(0))->getPointerOperand();
5316     const GlobalVariable *GV = dyn_cast<GlobalVariable>(Ptr);
5317
5318     // See if Ptr is a bitcast. If it is, look through it and see if we can get
5319     // global variable __stack_chk_guard.
5320     if (!GV)
5321       if (const Operator *BC = dyn_cast<Operator>(Ptr))
5322         if (BC->getOpcode() == Instruction::BitCast)
5323           GV = dyn_cast<GlobalVariable>(BC->getOperand(0));
5324
5325     if (GV && TLI.useLoadStackGuardNode()) {
5326       // Emit a LOAD_STACK_GUARD node.
5327       MachineSDNode *Node = DAG.getMachineNode(TargetOpcode::LOAD_STACK_GUARD,
5328                                                sdl, PtrTy, Chain);
5329       MachinePointerInfo MPInfo(GV);
5330       MachineInstr::mmo_iterator MemRefs = MF.allocateMemRefsArray(1);
5331       unsigned Flags = MachineMemOperand::MOLoad |
5332                        MachineMemOperand::MOInvariant;
5333       *MemRefs = MF.getMachineMemOperand(MPInfo, Flags,
5334                                          PtrTy.getSizeInBits() / 8,
5335                                          DAG.getEVTAlignment(PtrTy));
5336       Node->setMemRefs(MemRefs, MemRefs + 1);
5337
5338       // Copy the guard value to a virtual register so that it can be
5339       // retrieved in the epilogue.
5340       Src = SDValue(Node, 0);
5341       const TargetRegisterClass *RC =
5342           TLI.getRegClassFor(Src.getSimpleValueType());
5343       unsigned Reg = MF.getRegInfo().createVirtualRegister(RC);
5344
5345       SPDescriptor.setGuardReg(Reg);
5346       Chain = DAG.getCopyToReg(Chain, sdl, Reg, Src);
5347     } else {
5348       Src = getValue(I.getArgOperand(0));   // The guard's value.
5349     }
5350
5351     AllocaInst *Slot = cast<AllocaInst>(I.getArgOperand(1));
5352
5353     int FI = FuncInfo.StaticAllocaMap[Slot];
5354     MFI->setStackProtectorIndex(FI);
5355
5356     SDValue FIN = DAG.getFrameIndex(FI, PtrTy);
5357
5358     // Store the stack protector onto the stack.
5359     Res = DAG.getStore(Chain, sdl, Src, FIN,
5360                        MachinePointerInfo::getFixedStack(FI),
5361                        true, false, 0);
5362     setValue(&I, Res);
5363     DAG.setRoot(Res);
5364     return nullptr;
5365   }
5366   case Intrinsic::objectsize: {
5367     // If we don't know by now, we're never going to know.
5368     ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(1));
5369
5370     assert(CI && "Non-constant type in __builtin_object_size?");
5371
5372     SDValue Arg = getValue(I.getCalledValue());
5373     EVT Ty = Arg.getValueType();
5374
5375     if (CI->isZero())
5376       Res = DAG.getConstant(-1ULL, Ty);
5377     else
5378       Res = DAG.getConstant(0, Ty);
5379
5380     setValue(&I, Res);
5381     return nullptr;
5382   }
5383   case Intrinsic::annotation:
5384   case Intrinsic::ptr_annotation:
5385     // Drop the intrinsic, but forward the value
5386     setValue(&I, getValue(I.getOperand(0)));
5387     return nullptr;
5388   case Intrinsic::assume:
5389   case Intrinsic::var_annotation:
5390     // Discard annotate attributes and assumptions
5391     return nullptr;
5392
5393   case Intrinsic::init_trampoline: {
5394     const Function *F = cast<Function>(I.getArgOperand(1)->stripPointerCasts());
5395
5396     SDValue Ops[6];
5397     Ops[0] = getRoot();
5398     Ops[1] = getValue(I.getArgOperand(0));
5399     Ops[2] = getValue(I.getArgOperand(1));
5400     Ops[3] = getValue(I.getArgOperand(2));
5401     Ops[4] = DAG.getSrcValue(I.getArgOperand(0));
5402     Ops[5] = DAG.getSrcValue(F);
5403
5404     Res = DAG.getNode(ISD::INIT_TRAMPOLINE, sdl, MVT::Other, Ops);
5405
5406     DAG.setRoot(Res);
5407     return nullptr;
5408   }
5409   case Intrinsic::adjust_trampoline: {
5410     setValue(&I, DAG.getNode(ISD::ADJUST_TRAMPOLINE, sdl,
5411                              TLI.getPointerTy(),
5412                              getValue(I.getArgOperand(0))));
5413     return nullptr;
5414   }
5415   case Intrinsic::gcroot:
5416     if (GFI) {
5417       const Value *Alloca = I.getArgOperand(0)->stripPointerCasts();
5418       const Constant *TypeMap = cast<Constant>(I.getArgOperand(1));
5419
5420       FrameIndexSDNode *FI = cast<FrameIndexSDNode>(getValue(Alloca).getNode());
5421       GFI->addStackRoot(FI->getIndex(), TypeMap);
5422     }
5423     return nullptr;
5424   case Intrinsic::gcread:
5425   case Intrinsic::gcwrite:
5426     llvm_unreachable("GC failed to lower gcread/gcwrite intrinsics!");
5427   case Intrinsic::flt_rounds:
5428     setValue(&I, DAG.getNode(ISD::FLT_ROUNDS_, sdl, MVT::i32));
5429     return nullptr;
5430
5431   case Intrinsic::expect: {
5432     // Just replace __builtin_expect(exp, c) with EXP.
5433     setValue(&I, getValue(I.getArgOperand(0)));
5434     return nullptr;
5435   }
5436
5437   case Intrinsic::debugtrap:
5438   case Intrinsic::trap: {
5439     StringRef TrapFuncName = TM.Options.getTrapFunctionName();
5440     if (TrapFuncName.empty()) {
5441       ISD::NodeType Op = (Intrinsic == Intrinsic::trap) ?
5442         ISD::TRAP : ISD::DEBUGTRAP;
5443       DAG.setRoot(DAG.getNode(Op, sdl,MVT::Other, getRoot()));
5444       return nullptr;
5445     }
5446     TargetLowering::ArgListTy Args;
5447
5448     TargetLowering::CallLoweringInfo CLI(DAG);
5449     CLI.setDebugLoc(sdl).setChain(getRoot())
5450       .setCallee(CallingConv::C, I.getType(),
5451                  DAG.getExternalSymbol(TrapFuncName.data(), TLI.getPointerTy()),
5452                  std::move(Args), 0);
5453
5454     std::pair<SDValue, SDValue> Result = TLI.LowerCallTo(CLI);
5455     DAG.setRoot(Result.second);
5456     return nullptr;
5457   }
5458
5459   case Intrinsic::uadd_with_overflow:
5460   case Intrinsic::sadd_with_overflow:
5461   case Intrinsic::usub_with_overflow:
5462   case Intrinsic::ssub_with_overflow:
5463   case Intrinsic::umul_with_overflow:
5464   case Intrinsic::smul_with_overflow: {
5465     ISD::NodeType Op;
5466     switch (Intrinsic) {
5467     default: llvm_unreachable("Impossible intrinsic");  // Can't reach here.
5468     case Intrinsic::uadd_with_overflow: Op = ISD::UADDO; break;
5469     case Intrinsic::sadd_with_overflow: Op = ISD::SADDO; break;
5470     case Intrinsic::usub_with_overflow: Op = ISD::USUBO; break;
5471     case Intrinsic::ssub_with_overflow: Op = ISD::SSUBO; break;
5472     case Intrinsic::umul_with_overflow: Op = ISD::UMULO; break;
5473     case Intrinsic::smul_with_overflow: Op = ISD::SMULO; break;
5474     }
5475     SDValue Op1 = getValue(I.getArgOperand(0));
5476     SDValue Op2 = getValue(I.getArgOperand(1));
5477
5478     SDVTList VTs = DAG.getVTList(Op1.getValueType(), MVT::i1);
5479     setValue(&I, DAG.getNode(Op, sdl, VTs, Op1, Op2));
5480     return nullptr;
5481   }
5482   case Intrinsic::prefetch: {
5483     SDValue Ops[5];
5484     unsigned rw = cast<ConstantInt>(I.getArgOperand(1))->getZExtValue();
5485     Ops[0] = getRoot();
5486     Ops[1] = getValue(I.getArgOperand(0));
5487     Ops[2] = getValue(I.getArgOperand(1));
5488     Ops[3] = getValue(I.getArgOperand(2));
5489     Ops[4] = getValue(I.getArgOperand(3));
5490     DAG.setRoot(DAG.getMemIntrinsicNode(ISD::PREFETCH, sdl,
5491                                         DAG.getVTList(MVT::Other), Ops,
5492                                         EVT::getIntegerVT(*Context, 8),
5493                                         MachinePointerInfo(I.getArgOperand(0)),
5494                                         0, /* align */
5495                                         false, /* volatile */
5496                                         rw==0, /* read */
5497                                         rw==1)); /* write */
5498     return nullptr;
5499   }
5500   case Intrinsic::lifetime_start:
5501   case Intrinsic::lifetime_end: {
5502     bool IsStart = (Intrinsic == Intrinsic::lifetime_start);
5503     // Stack coloring is not enabled in O0, discard region information.
5504     if (TM.getOptLevel() == CodeGenOpt::None)
5505       return nullptr;
5506
5507     SmallVector<Value *, 4> Allocas;
5508     GetUnderlyingObjects(I.getArgOperand(1), Allocas, DL);
5509
5510     for (SmallVectorImpl<Value*>::iterator Object = Allocas.begin(),
5511            E = Allocas.end(); Object != E; ++Object) {
5512       AllocaInst *LifetimeObject = dyn_cast_or_null<AllocaInst>(*Object);
5513
5514       // Could not find an Alloca.
5515       if (!LifetimeObject)
5516         continue;
5517
5518       // First check that the Alloca is static, otherwise it won't have a
5519       // valid frame index.
5520       auto SI = FuncInfo.StaticAllocaMap.find(LifetimeObject);
5521       if (SI == FuncInfo.StaticAllocaMap.end())
5522         return nullptr;
5523
5524       int FI = SI->second;
5525
5526       SDValue Ops[2];
5527       Ops[0] = getRoot();
5528       Ops[1] = DAG.getFrameIndex(FI, TLI.getPointerTy(), true);
5529       unsigned Opcode = (IsStart ? ISD::LIFETIME_START : ISD::LIFETIME_END);
5530
5531       Res = DAG.getNode(Opcode, sdl, MVT::Other, Ops);
5532       DAG.setRoot(Res);
5533     }
5534     return nullptr;
5535   }
5536   case Intrinsic::invariant_start:
5537     // Discard region information.
5538     setValue(&I, DAG.getUNDEF(TLI.getPointerTy()));
5539     return nullptr;
5540   case Intrinsic::invariant_end:
5541     // Discard region information.
5542     return nullptr;
5543   case Intrinsic::stackprotectorcheck: {
5544     // Do not actually emit anything for this basic block. Instead we initialize
5545     // the stack protector descriptor and export the guard variable so we can
5546     // access it in FinishBasicBlock.
5547     const BasicBlock *BB = I.getParent();
5548     SPDescriptor.initialize(BB, FuncInfo.MBBMap[BB], I);
5549     ExportFromCurrentBlock(SPDescriptor.getGuard());
5550
5551     // Flush our exports since we are going to process a terminator.
5552     (void)getControlRoot();
5553     return nullptr;
5554   }
5555   case Intrinsic::clear_cache:
5556     return TLI.getClearCacheBuiltinName();
5557   case Intrinsic::donothing:
5558     // ignore
5559     return nullptr;
5560   case Intrinsic::experimental_stackmap: {
5561     visitStackmap(I);
5562     return nullptr;
5563   }
5564   case Intrinsic::experimental_patchpoint_void:
5565   case Intrinsic::experimental_patchpoint_i64: {
5566     visitPatchpoint(&I);
5567     return nullptr;
5568   }
5569   case Intrinsic::experimental_gc_statepoint: {
5570     visitStatepoint(I);
5571     return nullptr;
5572   }
5573   case Intrinsic::experimental_gc_result_int:
5574   case Intrinsic::experimental_gc_result_float:
5575   case Intrinsic::experimental_gc_result_ptr: {
5576     visitGCResult(I);
5577     return nullptr;
5578   }
5579   case Intrinsic::experimental_gc_relocate: {
5580     visitGCRelocate(I);
5581     return nullptr;
5582   }
5583   case Intrinsic::instrprof_increment:
5584     llvm_unreachable("instrprof failed to lower an increment");
5585
5586   case Intrinsic::frameallocate: {
5587     MachineFunction &MF = DAG.getMachineFunction();
5588     const TargetInstrInfo *TII = DAG.getSubtarget().getInstrInfo();
5589
5590     // Do the allocation and map it as a normal value.
5591     // FIXME: Maybe we should add this to the alloca map so that we don't have
5592     // to register allocate it?
5593     uint64_t Size = cast<ConstantInt>(I.getArgOperand(0))->getZExtValue();
5594     int Alloc = MF.getFrameInfo()->CreateFrameAllocation(Size);
5595     MVT PtrVT = TLI.getPointerTy(0);
5596     SDValue FIVal = DAG.getFrameIndex(Alloc, PtrVT);
5597     setValue(&I, FIVal);
5598
5599     // Directly emit a FRAME_ALLOC machine instr. Label assignment emission is
5600     // the same on all targets.
5601     MCSymbol *FrameAllocSym =
5602         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(MF.getName());
5603     BuildMI(*FuncInfo.MBB, FuncInfo.InsertPt, dl,
5604             TII->get(TargetOpcode::FRAME_ALLOC))
5605         .addSym(FrameAllocSym)
5606         .addFrameIndex(Alloc);
5607
5608     return nullptr;
5609   }
5610
5611   case Intrinsic::framerecover: {
5612     // i8* @llvm.framerecover(i8* %fn, i8* %fp)
5613     MachineFunction &MF = DAG.getMachineFunction();
5614     MVT PtrVT = TLI.getPointerTy(0);
5615
5616     // Get the symbol that defines the frame offset.
5617     Function *Fn = cast<Function>(I.getArgOperand(0)->stripPointerCasts());
5618     MCSymbol *FrameAllocSym =
5619         MF.getMMI().getContext().getOrCreateFrameAllocSymbol(Fn->getName());
5620
5621     // Create a TargetExternalSymbol for the label to avoid any target lowering
5622     // that would make this PC relative.
5623     StringRef Name = FrameAllocSym->getName();
5624     assert(Name.size() == strlen(Name.data()) && "not null terminated");
5625     SDValue OffsetSym = DAG.getTargetExternalSymbol(Name.data(), PtrVT);
5626     SDValue OffsetVal =
5627         DAG.getNode(ISD::FRAME_ALLOC_RECOVER, sdl, PtrVT, OffsetSym);
5628
5629     // Add the offset to the FP.
5630     Value *FP = I.getArgOperand(1);
5631     SDValue FPVal = getValue(FP);
5632     SDValue Add = DAG.getNode(ISD::ADD, sdl, PtrVT, FPVal, OffsetVal);
5633     setValue(&I, Add);
5634
5635     return nullptr;
5636   }
5637   }
5638 }
5639
5640 std::pair<SDValue, SDValue>
5641 SelectionDAGBuilder::lowerInvokable(TargetLowering::CallLoweringInfo &CLI,
5642                                     MachineBasicBlock *LandingPad) {
5643   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
5644   MCSymbol *BeginLabel = nullptr;
5645
5646   if (LandingPad) {
5647     // Insert a label before the invoke call to mark the try range.  This can be
5648     // used to detect deletion of the invoke via the MachineModuleInfo.
5649     BeginLabel = MMI.getContext().CreateTempSymbol();
5650
5651     // For SjLj, keep track of which landing pads go with which invokes
5652     // so as to maintain the ordering of pads in the LSDA.
5653     unsigned CallSiteIndex = MMI.getCurrentCallSite();
5654     if (CallSiteIndex) {
5655       MMI.setCallSiteBeginLabel(BeginLabel, CallSiteIndex);
5656       LPadToCallSiteMap[LandingPad].push_back(CallSiteIndex);
5657
5658       // Now that the call site is handled, stop tracking it.
5659       MMI.setCurrentCallSite(0);
5660     }
5661
5662     // Both PendingLoads and PendingExports must be flushed here;
5663     // this call might not return.
5664     (void)getRoot();
5665     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getControlRoot(), BeginLabel));
5666
5667     CLI.setChain(getRoot());
5668   }
5669
5670   const TargetLowering *TLI = TM.getSubtargetImpl()->getTargetLowering();
5671   std::pair<SDValue, SDValue> Result = TLI->LowerCallTo(CLI);
5672
5673   assert((CLI.IsTailCall || Result.second.getNode()) &&
5674          "Non-null chain expected with non-tail call!");
5675   assert((Result.second.getNode() || !Result.first.getNode()) &&
5676          "Null value expected with tail call!");
5677
5678   if (!Result.second.getNode()) {
5679     // As a special case, a null chain means that a tail call has been emitted
5680     // and the DAG root is already updated.
5681     HasTailCall = true;
5682
5683     // Since there's no actual continuation from this block, nothing can be
5684     // relying on us setting vregs for them.
5685     PendingExports.clear();
5686   } else {
5687     DAG.setRoot(Result.second);
5688   }
5689
5690   if (LandingPad) {
5691     // Insert a label at the end of the invoke call to mark the try range.  This
5692     // can be used to detect deletion of the invoke via the MachineModuleInfo.
5693     MCSymbol *EndLabel = MMI.getContext().CreateTempSymbol();
5694     DAG.setRoot(DAG.getEHLabel(getCurSDLoc(), getRoot(), EndLabel));
5695
5696     // Inform MachineModuleInfo of range.
5697     MMI.addInvoke(LandingPad, BeginLabel, EndLabel);
5698   }
5699
5700   return Result;
5701 }
5702
5703 void SelectionDAGBuilder::LowerCallTo(ImmutableCallSite CS, SDValue Callee,
5704                                       bool isTailCall,
5705                                       MachineBasicBlock *LandingPad) {
5706   PointerType *PT = cast<PointerType>(CS.getCalledValue()->getType());
5707   FunctionType *FTy = cast<FunctionType>(PT->getElementType());
5708   Type *RetTy = FTy->getReturnType();
5709
5710   TargetLowering::ArgListTy Args;
5711   TargetLowering::ArgListEntry Entry;
5712   Args.reserve(CS.arg_size());
5713
5714   for (ImmutableCallSite::arg_iterator i = CS.arg_begin(), e = CS.arg_end();
5715        i != e; ++i) {
5716     const Value *V = *i;
5717
5718     // Skip empty types
5719     if (V->getType()->isEmptyTy())
5720       continue;
5721
5722     SDValue ArgNode = getValue(V);
5723     Entry.Node = ArgNode; Entry.Ty = V->getType();
5724
5725     // Skip the first return-type Attribute to get to params.
5726     Entry.setAttributes(&CS, i - CS.arg_begin() + 1);
5727     Args.push_back(Entry);
5728   }
5729
5730   // Check if target-independent constraints permit a tail call here.
5731   // Target-dependent constraints are checked within TLI->LowerCallTo.
5732   if (isTailCall && !isInTailCallPosition(CS, DAG.getTarget()))
5733     isTailCall = false;
5734
5735   TargetLowering::CallLoweringInfo CLI(DAG);
5736   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
5737     .setCallee(RetTy, FTy, Callee, std::move(Args), CS)
5738     .setTailCall(isTailCall);
5739   std::pair<SDValue,SDValue> Result = lowerInvokable(CLI, LandingPad);
5740
5741   if (Result.first.getNode())
5742     setValue(CS.getInstruction(), Result.first);
5743 }
5744
5745 /// IsOnlyUsedInZeroEqualityComparison - Return true if it only matters that the
5746 /// value is equal or not-equal to zero.
5747 static bool IsOnlyUsedInZeroEqualityComparison(const Value *V) {
5748   for (const User *U : V->users()) {
5749     if (const ICmpInst *IC = dyn_cast<ICmpInst>(U))
5750       if (IC->isEquality())
5751         if (const Constant *C = dyn_cast<Constant>(IC->getOperand(1)))
5752           if (C->isNullValue())
5753             continue;
5754     // Unknown instruction.
5755     return false;
5756   }
5757   return true;
5758 }
5759
5760 static SDValue getMemCmpLoad(const Value *PtrVal, MVT LoadVT,
5761                              Type *LoadTy,
5762                              SelectionDAGBuilder &Builder) {
5763
5764   // Check to see if this load can be trivially constant folded, e.g. if the
5765   // input is from a string literal.
5766   if (const Constant *LoadInput = dyn_cast<Constant>(PtrVal)) {
5767     // Cast pointer to the type we really want to load.
5768     LoadInput = ConstantExpr::getBitCast(const_cast<Constant *>(LoadInput),
5769                                          PointerType::getUnqual(LoadTy));
5770
5771     if (const Constant *LoadCst =
5772           ConstantFoldLoadFromConstPtr(const_cast<Constant *>(LoadInput),
5773                                        Builder.DL))
5774       return Builder.getValue(LoadCst);
5775   }
5776
5777   // Otherwise, we have to emit the load.  If the pointer is to unfoldable but
5778   // still constant memory, the input chain can be the entry node.
5779   SDValue Root;
5780   bool ConstantMemory = false;
5781
5782   // Do not serialize (non-volatile) loads of constant memory with anything.
5783   if (Builder.AA->pointsToConstantMemory(PtrVal)) {
5784     Root = Builder.DAG.getEntryNode();
5785     ConstantMemory = true;
5786   } else {
5787     // Do not serialize non-volatile loads against each other.
5788     Root = Builder.DAG.getRoot();
5789   }
5790
5791   SDValue Ptr = Builder.getValue(PtrVal);
5792   SDValue LoadVal = Builder.DAG.getLoad(LoadVT, Builder.getCurSDLoc(), Root,
5793                                         Ptr, MachinePointerInfo(PtrVal),
5794                                         false /*volatile*/,
5795                                         false /*nontemporal*/,
5796                                         false /*isinvariant*/, 1 /* align=1 */);
5797
5798   if (!ConstantMemory)
5799     Builder.PendingLoads.push_back(LoadVal.getValue(1));
5800   return LoadVal;
5801 }
5802
5803 /// processIntegerCallValue - Record the value for an instruction that
5804 /// produces an integer result, converting the type where necessary.
5805 void SelectionDAGBuilder::processIntegerCallValue(const Instruction &I,
5806                                                   SDValue Value,
5807                                                   bool IsSigned) {
5808   EVT VT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5809   if (IsSigned)
5810     Value = DAG.getSExtOrTrunc(Value, getCurSDLoc(), VT);
5811   else
5812     Value = DAG.getZExtOrTrunc(Value, getCurSDLoc(), VT);
5813   setValue(&I, Value);
5814 }
5815
5816 /// visitMemCmpCall - See if we can lower a call to memcmp in an optimized form.
5817 /// If so, return true and lower it, otherwise return false and it will be
5818 /// lowered like a normal call.
5819 bool SelectionDAGBuilder::visitMemCmpCall(const CallInst &I) {
5820   // Verify that the prototype makes sense.  int memcmp(void*,void*,size_t)
5821   if (I.getNumArgOperands() != 3)
5822     return false;
5823
5824   const Value *LHS = I.getArgOperand(0), *RHS = I.getArgOperand(1);
5825   if (!LHS->getType()->isPointerTy() || !RHS->getType()->isPointerTy() ||
5826       !I.getArgOperand(2)->getType()->isIntegerTy() ||
5827       !I.getType()->isIntegerTy())
5828     return false;
5829
5830   const Value *Size = I.getArgOperand(2);
5831   const ConstantInt *CSize = dyn_cast<ConstantInt>(Size);
5832   if (CSize && CSize->getZExtValue() == 0) {
5833     EVT CallVT = DAG.getTargetLoweringInfo().getValueType(I.getType(), true);
5834     setValue(&I, DAG.getConstant(0, CallVT));
5835     return true;
5836   }
5837
5838   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5839   std::pair<SDValue, SDValue> Res =
5840     TSI.EmitTargetCodeForMemcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5841                                 getValue(LHS), getValue(RHS), getValue(Size),
5842                                 MachinePointerInfo(LHS),
5843                                 MachinePointerInfo(RHS));
5844   if (Res.first.getNode()) {
5845     processIntegerCallValue(I, Res.first, true);
5846     PendingLoads.push_back(Res.second);
5847     return true;
5848   }
5849
5850   // memcmp(S1,S2,2) != 0 -> (*(short*)LHS != *(short*)RHS)  != 0
5851   // memcmp(S1,S2,4) != 0 -> (*(int*)LHS != *(int*)RHS)  != 0
5852   if (CSize && IsOnlyUsedInZeroEqualityComparison(&I)) {
5853     bool ActuallyDoIt = true;
5854     MVT LoadVT;
5855     Type *LoadTy;
5856     switch (CSize->getZExtValue()) {
5857     default:
5858       LoadVT = MVT::Other;
5859       LoadTy = nullptr;
5860       ActuallyDoIt = false;
5861       break;
5862     case 2:
5863       LoadVT = MVT::i16;
5864       LoadTy = Type::getInt16Ty(CSize->getContext());
5865       break;
5866     case 4:
5867       LoadVT = MVT::i32;
5868       LoadTy = Type::getInt32Ty(CSize->getContext());
5869       break;
5870     case 8:
5871       LoadVT = MVT::i64;
5872       LoadTy = Type::getInt64Ty(CSize->getContext());
5873       break;
5874         /*
5875     case 16:
5876       LoadVT = MVT::v4i32;
5877       LoadTy = Type::getInt32Ty(CSize->getContext());
5878       LoadTy = VectorType::get(LoadTy, 4);
5879       break;
5880          */
5881     }
5882
5883     // This turns into unaligned loads.  We only do this if the target natively
5884     // supports the MVT we'll be loading or if it is small enough (<= 4) that
5885     // we'll only produce a small number of byte loads.
5886
5887     // Require that we can find a legal MVT, and only do this if the target
5888     // supports unaligned loads of that type.  Expanding into byte loads would
5889     // bloat the code.
5890     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
5891     if (ActuallyDoIt && CSize->getZExtValue() > 4) {
5892       unsigned DstAS = LHS->getType()->getPointerAddressSpace();
5893       unsigned SrcAS = RHS->getType()->getPointerAddressSpace();
5894       // TODO: Handle 5 byte compare as 4-byte + 1 byte.
5895       // TODO: Handle 8 byte compare on x86-32 as two 32-bit loads.
5896       // TODO: Check alignment of src and dest ptrs.
5897       if (!TLI.isTypeLegal(LoadVT) ||
5898           !TLI.allowsMisalignedMemoryAccesses(LoadVT, SrcAS) ||
5899           !TLI.allowsMisalignedMemoryAccesses(LoadVT, DstAS))
5900         ActuallyDoIt = false;
5901     }
5902
5903     if (ActuallyDoIt) {
5904       SDValue LHSVal = getMemCmpLoad(LHS, LoadVT, LoadTy, *this);
5905       SDValue RHSVal = getMemCmpLoad(RHS, LoadVT, LoadTy, *this);
5906
5907       SDValue Res = DAG.getSetCC(getCurSDLoc(), MVT::i1, LHSVal, RHSVal,
5908                                  ISD::SETNE);
5909       processIntegerCallValue(I, Res, false);
5910       return true;
5911     }
5912   }
5913
5914
5915   return false;
5916 }
5917
5918 /// visitMemChrCall -- See if we can lower a memchr call into an optimized
5919 /// form.  If so, return true and lower it, otherwise return false and it
5920 /// will be lowered like a normal call.
5921 bool SelectionDAGBuilder::visitMemChrCall(const CallInst &I) {
5922   // Verify that the prototype makes sense.  void *memchr(void *, int, size_t)
5923   if (I.getNumArgOperands() != 3)
5924     return false;
5925
5926   const Value *Src = I.getArgOperand(0);
5927   const Value *Char = I.getArgOperand(1);
5928   const Value *Length = I.getArgOperand(2);
5929   if (!Src->getType()->isPointerTy() ||
5930       !Char->getType()->isIntegerTy() ||
5931       !Length->getType()->isIntegerTy() ||
5932       !I.getType()->isPointerTy())
5933     return false;
5934
5935   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5936   std::pair<SDValue, SDValue> Res =
5937     TSI.EmitTargetCodeForMemchr(DAG, getCurSDLoc(), DAG.getRoot(),
5938                                 getValue(Src), getValue(Char), getValue(Length),
5939                                 MachinePointerInfo(Src));
5940   if (Res.first.getNode()) {
5941     setValue(&I, Res.first);
5942     PendingLoads.push_back(Res.second);
5943     return true;
5944   }
5945
5946   return false;
5947 }
5948
5949 /// visitStrCpyCall -- See if we can lower a strcpy or stpcpy call into an
5950 /// optimized form.  If so, return true and lower it, otherwise return false
5951 /// and it will be lowered like a normal call.
5952 bool SelectionDAGBuilder::visitStrCpyCall(const CallInst &I, bool isStpcpy) {
5953   // Verify that the prototype makes sense.  char *strcpy(char *, char *)
5954   if (I.getNumArgOperands() != 2)
5955     return false;
5956
5957   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5958   if (!Arg0->getType()->isPointerTy() ||
5959       !Arg1->getType()->isPointerTy() ||
5960       !I.getType()->isPointerTy())
5961     return false;
5962
5963   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5964   std::pair<SDValue, SDValue> Res =
5965     TSI.EmitTargetCodeForStrcpy(DAG, getCurSDLoc(), getRoot(),
5966                                 getValue(Arg0), getValue(Arg1),
5967                                 MachinePointerInfo(Arg0),
5968                                 MachinePointerInfo(Arg1), isStpcpy);
5969   if (Res.first.getNode()) {
5970     setValue(&I, Res.first);
5971     DAG.setRoot(Res.second);
5972     return true;
5973   }
5974
5975   return false;
5976 }
5977
5978 /// visitStrCmpCall - See if we can lower a call to strcmp in an optimized form.
5979 /// If so, return true and lower it, otherwise return false and it will be
5980 /// lowered like a normal call.
5981 bool SelectionDAGBuilder::visitStrCmpCall(const CallInst &I) {
5982   // Verify that the prototype makes sense.  int strcmp(void*,void*)
5983   if (I.getNumArgOperands() != 2)
5984     return false;
5985
5986   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
5987   if (!Arg0->getType()->isPointerTy() ||
5988       !Arg1->getType()->isPointerTy() ||
5989       !I.getType()->isIntegerTy())
5990     return false;
5991
5992   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
5993   std::pair<SDValue, SDValue> Res =
5994     TSI.EmitTargetCodeForStrcmp(DAG, getCurSDLoc(), DAG.getRoot(),
5995                                 getValue(Arg0), getValue(Arg1),
5996                                 MachinePointerInfo(Arg0),
5997                                 MachinePointerInfo(Arg1));
5998   if (Res.first.getNode()) {
5999     processIntegerCallValue(I, Res.first, true);
6000     PendingLoads.push_back(Res.second);
6001     return true;
6002   }
6003
6004   return false;
6005 }
6006
6007 /// visitStrLenCall -- See if we can lower a strlen call into an optimized
6008 /// form.  If so, return true and lower it, otherwise return false and it
6009 /// will be lowered like a normal call.
6010 bool SelectionDAGBuilder::visitStrLenCall(const CallInst &I) {
6011   // Verify that the prototype makes sense.  size_t strlen(char *)
6012   if (I.getNumArgOperands() != 1)
6013     return false;
6014
6015   const Value *Arg0 = I.getArgOperand(0);
6016   if (!Arg0->getType()->isPointerTy() || !I.getType()->isIntegerTy())
6017     return false;
6018
6019   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
6020   std::pair<SDValue, SDValue> Res =
6021     TSI.EmitTargetCodeForStrlen(DAG, getCurSDLoc(), DAG.getRoot(),
6022                                 getValue(Arg0), MachinePointerInfo(Arg0));
6023   if (Res.first.getNode()) {
6024     processIntegerCallValue(I, Res.first, false);
6025     PendingLoads.push_back(Res.second);
6026     return true;
6027   }
6028
6029   return false;
6030 }
6031
6032 /// visitStrNLenCall -- See if we can lower a strnlen call into an optimized
6033 /// form.  If so, return true and lower it, otherwise return false and it
6034 /// will be lowered like a normal call.
6035 bool SelectionDAGBuilder::visitStrNLenCall(const CallInst &I) {
6036   // Verify that the prototype makes sense.  size_t strnlen(char *, size_t)
6037   if (I.getNumArgOperands() != 2)
6038     return false;
6039
6040   const Value *Arg0 = I.getArgOperand(0), *Arg1 = I.getArgOperand(1);
6041   if (!Arg0->getType()->isPointerTy() ||
6042       !Arg1->getType()->isIntegerTy() ||
6043       !I.getType()->isIntegerTy())
6044     return false;
6045
6046   const TargetSelectionDAGInfo &TSI = DAG.getSelectionDAGInfo();
6047   std::pair<SDValue, SDValue> Res =
6048     TSI.EmitTargetCodeForStrnlen(DAG, getCurSDLoc(), DAG.getRoot(),
6049                                  getValue(Arg0), getValue(Arg1),
6050                                  MachinePointerInfo(Arg0));
6051   if (Res.first.getNode()) {
6052     processIntegerCallValue(I, Res.first, false);
6053     PendingLoads.push_back(Res.second);
6054     return true;
6055   }
6056
6057   return false;
6058 }
6059
6060 /// visitUnaryFloatCall - If a call instruction is a unary floating-point
6061 /// operation (as expected), translate it to an SDNode with the specified opcode
6062 /// and return true.
6063 bool SelectionDAGBuilder::visitUnaryFloatCall(const CallInst &I,
6064                                               unsigned Opcode) {
6065   // Sanity check that it really is a unary floating-point call.
6066   if (I.getNumArgOperands() != 1 ||
6067       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6068       I.getType() != I.getArgOperand(0)->getType() ||
6069       !I.onlyReadsMemory())
6070     return false;
6071
6072   SDValue Tmp = getValue(I.getArgOperand(0));
6073   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), Tmp.getValueType(), Tmp));
6074   return true;
6075 }
6076
6077 /// visitBinaryFloatCall - If a call instruction is a binary floating-point
6078 /// operation (as expected), translate it to an SDNode with the specified opcode
6079 /// and return true.
6080 bool SelectionDAGBuilder::visitBinaryFloatCall(const CallInst &I,
6081                                                unsigned Opcode) {
6082   // Sanity check that it really is a binary floating-point call.
6083   if (I.getNumArgOperands() != 2 ||
6084       !I.getArgOperand(0)->getType()->isFloatingPointTy() ||
6085       I.getType() != I.getArgOperand(0)->getType() ||
6086       I.getType() != I.getArgOperand(1)->getType() ||
6087       !I.onlyReadsMemory())
6088     return false;
6089
6090   SDValue Tmp0 = getValue(I.getArgOperand(0));
6091   SDValue Tmp1 = getValue(I.getArgOperand(1));
6092   EVT VT = Tmp0.getValueType();
6093   setValue(&I, DAG.getNode(Opcode, getCurSDLoc(), VT, Tmp0, Tmp1));
6094   return true;
6095 }
6096
6097 void SelectionDAGBuilder::visitCall(const CallInst &I) {
6098   // Handle inline assembly differently.
6099   if (isa<InlineAsm>(I.getCalledValue())) {
6100     visitInlineAsm(&I);
6101     return;
6102   }
6103
6104   MachineModuleInfo &MMI = DAG.getMachineFunction().getMMI();
6105   ComputeUsesVAFloatArgument(I, &MMI);
6106
6107   const char *RenameFn = nullptr;
6108   if (Function *F = I.getCalledFunction()) {
6109     if (F->isDeclaration()) {
6110       if (const TargetIntrinsicInfo *II = TM.getIntrinsicInfo()) {
6111         if (unsigned IID = II->getIntrinsicID(F)) {
6112           RenameFn = visitIntrinsicCall(I, IID);
6113           if (!RenameFn)
6114             return;
6115         }
6116       }
6117       if (unsigned IID = F->getIntrinsicID()) {
6118         RenameFn = visitIntrinsicCall(I, IID);
6119         if (!RenameFn)
6120           return;
6121       }
6122     }
6123
6124     // Check for well-known libc/libm calls.  If the function is internal, it
6125     // can't be a library call.
6126     LibFunc::Func Func;
6127     if (!F->hasLocalLinkage() && F->hasName() &&
6128         LibInfo->getLibFunc(F->getName(), Func) &&
6129         LibInfo->hasOptimizedCodeGen(Func)) {
6130       switch (Func) {
6131       default: break;
6132       case LibFunc::copysign:
6133       case LibFunc::copysignf:
6134       case LibFunc::copysignl:
6135         if (I.getNumArgOperands() == 2 &&   // Basic sanity checks.
6136             I.getArgOperand(0)->getType()->isFloatingPointTy() &&
6137             I.getType() == I.getArgOperand(0)->getType() &&
6138             I.getType() == I.getArgOperand(1)->getType() &&
6139             I.onlyReadsMemory()) {
6140           SDValue LHS = getValue(I.getArgOperand(0));
6141           SDValue RHS = getValue(I.getArgOperand(1));
6142           setValue(&I, DAG.getNode(ISD::FCOPYSIGN, getCurSDLoc(),
6143                                    LHS.getValueType(), LHS, RHS));
6144           return;
6145         }
6146         break;
6147       case LibFunc::fabs:
6148       case LibFunc::fabsf:
6149       case LibFunc::fabsl:
6150         if (visitUnaryFloatCall(I, ISD::FABS))
6151           return;
6152         break;
6153       case LibFunc::fmin:
6154       case LibFunc::fminf:
6155       case LibFunc::fminl:
6156         if (visitBinaryFloatCall(I, ISD::FMINNUM))
6157           return;
6158         break;
6159       case LibFunc::fmax:
6160       case LibFunc::fmaxf:
6161       case LibFunc::fmaxl:
6162         if (visitBinaryFloatCall(I, ISD::FMAXNUM))
6163           return;
6164         break;
6165       case LibFunc::sin:
6166       case LibFunc::sinf:
6167       case LibFunc::sinl:
6168         if (visitUnaryFloatCall(I, ISD::FSIN))
6169           return;
6170         break;
6171       case LibFunc::cos:
6172       case LibFunc::cosf:
6173       case LibFunc::cosl:
6174         if (visitUnaryFloatCall(I, ISD::FCOS))
6175           return;
6176         break;
6177       case LibFunc::sqrt:
6178       case LibFunc::sqrtf:
6179       case LibFunc::sqrtl:
6180       case LibFunc::sqrt_finite:
6181       case LibFunc::sqrtf_finite:
6182       case LibFunc::sqrtl_finite:
6183         if (visitUnaryFloatCall(I, ISD::FSQRT))
6184           return;
6185         break;
6186       case LibFunc::floor:
6187       case LibFunc::floorf:
6188       case LibFunc::floorl:
6189         if (visitUnaryFloatCall(I, ISD::FFLOOR))
6190           return;
6191         break;
6192       case LibFunc::nearbyint:
6193       case LibFunc::nearbyintf:
6194       case LibFunc::nearbyintl:
6195         if (visitUnaryFloatCall(I, ISD::FNEARBYINT))
6196           return;
6197         break;
6198       case LibFunc::ceil:
6199       case LibFunc::ceilf:
6200       case LibFunc::ceill:
6201         if (visitUnaryFloatCall(I, ISD::FCEIL))
6202           return;
6203         break;
6204       case LibFunc::rint:
6205       case LibFunc::rintf:
6206       case LibFunc::rintl:
6207         if (visitUnaryFloatCall(I, ISD::FRINT))
6208           return;
6209         break;
6210       case LibFunc::round:
6211       case LibFunc::roundf:
6212       case LibFunc::roundl:
6213         if (visitUnaryFloatCall(I, ISD::FROUND))
6214           return;
6215         break;
6216       case LibFunc::trunc:
6217       case LibFunc::truncf:
6218       case LibFunc::truncl:
6219         if (visitUnaryFloatCall(I, ISD::FTRUNC))
6220           return;
6221         break;
6222       case LibFunc::log2:
6223       case LibFunc::log2f:
6224       case LibFunc::log2l:
6225         if (visitUnaryFloatCall(I, ISD::FLOG2))
6226           return;
6227         break;
6228       case LibFunc::exp2:
6229       case LibFunc::exp2f:
6230       case LibFunc::exp2l:
6231         if (visitUnaryFloatCall(I, ISD::FEXP2))
6232           return;
6233         break;
6234       case LibFunc::memcmp:
6235         if (visitMemCmpCall(I))
6236           return;
6237         break;
6238       case LibFunc::memchr:
6239         if (visitMemChrCall(I))
6240           return;
6241         break;
6242       case LibFunc::strcpy:
6243         if (visitStrCpyCall(I, false))
6244           return;
6245         break;
6246       case LibFunc::stpcpy:
6247         if (visitStrCpyCall(I, true))
6248           return;
6249         break;
6250       case LibFunc::strcmp:
6251         if (visitStrCmpCall(I))
6252           return;
6253         break;
6254       case LibFunc::strlen:
6255         if (visitStrLenCall(I))
6256           return;
6257         break;
6258       case LibFunc::strnlen:
6259         if (visitStrNLenCall(I))
6260           return;
6261         break;
6262       }
6263     }
6264   }
6265
6266   SDValue Callee;
6267   if (!RenameFn)
6268     Callee = getValue(I.getCalledValue());
6269   else
6270     Callee = DAG.getExternalSymbol(RenameFn,
6271                                    DAG.getTargetLoweringInfo().getPointerTy());
6272
6273   // Check if we can potentially perform a tail call. More detailed checking is
6274   // be done within LowerCallTo, after more information about the call is known.
6275   LowerCallTo(&I, Callee, I.isTailCall());
6276 }
6277
6278 namespace {
6279
6280 /// AsmOperandInfo - This contains information for each constraint that we are
6281 /// lowering.
6282 class SDISelAsmOperandInfo : public TargetLowering::AsmOperandInfo {
6283 public:
6284   /// CallOperand - If this is the result output operand or a clobber
6285   /// this is null, otherwise it is the incoming operand to the CallInst.
6286   /// This gets modified as the asm is processed.
6287   SDValue CallOperand;
6288
6289   /// AssignedRegs - If this is a register or register class operand, this
6290   /// contains the set of register corresponding to the operand.
6291   RegsForValue AssignedRegs;
6292
6293   explicit SDISelAsmOperandInfo(const TargetLowering::AsmOperandInfo &info)
6294     : TargetLowering::AsmOperandInfo(info), CallOperand(nullptr,0) {
6295   }
6296
6297   /// getCallOperandValEVT - Return the EVT of the Value* that this operand
6298   /// corresponds to.  If there is no Value* for this operand, it returns
6299   /// MVT::Other.
6300   EVT getCallOperandValEVT(LLVMContext &Context,
6301                            const TargetLowering &TLI,
6302                            const DataLayout *DL) const {
6303     if (!CallOperandVal) return MVT::Other;
6304
6305     if (isa<BasicBlock>(CallOperandVal))
6306       return TLI.getPointerTy();
6307
6308     llvm::Type *OpTy = CallOperandVal->getType();
6309
6310     // FIXME: code duplicated from TargetLowering::ParseConstraints().
6311     // If this is an indirect operand, the operand is a pointer to the
6312     // accessed type.
6313     if (isIndirect) {
6314       llvm::PointerType *PtrTy = dyn_cast<PointerType>(OpTy);
6315       if (!PtrTy)
6316         report_fatal_error("Indirect operand for inline asm not a pointer!");
6317       OpTy = PtrTy->getElementType();
6318     }
6319
6320     // Look for vector wrapped in a struct. e.g. { <16 x i8> }.
6321     if (StructType *STy = dyn_cast<StructType>(OpTy))
6322       if (STy->getNumElements() == 1)
6323         OpTy = STy->getElementType(0);
6324
6325     // If OpTy is not a single value, it may be a struct/union that we
6326     // can tile with integers.
6327     if (!OpTy->isSingleValueType() && OpTy->isSized()) {
6328       unsigned BitSize = DL->getTypeSizeInBits(OpTy);
6329       switch (BitSize) {
6330       default: break;
6331       case 1:
6332       case 8:
6333       case 16:
6334       case 32:
6335       case 64:
6336       case 128:
6337         OpTy = IntegerType::get(Context, BitSize);
6338         break;
6339       }
6340     }
6341
6342     return TLI.getValueType(OpTy, true);
6343   }
6344 };
6345
6346 typedef SmallVector<SDISelAsmOperandInfo,16> SDISelAsmOperandInfoVector;
6347
6348 } // end anonymous namespace
6349
6350 /// GetRegistersForValue - Assign registers (virtual or physical) for the
6351 /// specified operand.  We prefer to assign virtual registers, to allow the
6352 /// register allocator to handle the assignment process.  However, if the asm
6353 /// uses features that we can't model on machineinstrs, we have SDISel do the
6354 /// allocation.  This produces generally horrible, but correct, code.
6355 ///
6356 ///   OpInfo describes the operand.
6357 ///
6358 static void GetRegistersForValue(SelectionDAG &DAG,
6359                                  const TargetLowering &TLI,
6360                                  SDLoc DL,
6361                                  SDISelAsmOperandInfo &OpInfo) {
6362   LLVMContext &Context = *DAG.getContext();
6363
6364   MachineFunction &MF = DAG.getMachineFunction();
6365   SmallVector<unsigned, 4> Regs;
6366
6367   // If this is a constraint for a single physreg, or a constraint for a
6368   // register class, find it.
6369   std::pair<unsigned, const TargetRegisterClass*> PhysReg =
6370     TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6371                                      OpInfo.ConstraintVT);
6372
6373   unsigned NumRegs = 1;
6374   if (OpInfo.ConstraintVT != MVT::Other) {
6375     // If this is a FP input in an integer register (or visa versa) insert a bit
6376     // cast of the input value.  More generally, handle any case where the input
6377     // value disagrees with the register class we plan to stick this in.
6378     if (OpInfo.Type == InlineAsm::isInput &&
6379         PhysReg.second && !PhysReg.second->hasType(OpInfo.ConstraintVT)) {
6380       // Try to convert to the first EVT that the reg class contains.  If the
6381       // types are identical size, use a bitcast to convert (e.g. two differing
6382       // vector types).
6383       MVT RegVT = *PhysReg.second->vt_begin();
6384       if (RegVT.getSizeInBits() == OpInfo.CallOperand.getValueSizeInBits()) {
6385         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6386                                          RegVT, OpInfo.CallOperand);
6387         OpInfo.ConstraintVT = RegVT;
6388       } else if (RegVT.isInteger() && OpInfo.ConstraintVT.isFloatingPoint()) {
6389         // If the input is a FP value and we want it in FP registers, do a
6390         // bitcast to the corresponding integer type.  This turns an f64 value
6391         // into i64, which can be passed with two i32 values on a 32-bit
6392         // machine.
6393         RegVT = MVT::getIntegerVT(OpInfo.ConstraintVT.getSizeInBits());
6394         OpInfo.CallOperand = DAG.getNode(ISD::BITCAST, DL,
6395                                          RegVT, OpInfo.CallOperand);
6396         OpInfo.ConstraintVT = RegVT;
6397       }
6398     }
6399
6400     NumRegs = TLI.getNumRegisters(Context, OpInfo.ConstraintVT);
6401   }
6402
6403   MVT RegVT;
6404   EVT ValueVT = OpInfo.ConstraintVT;
6405
6406   // If this is a constraint for a specific physical register, like {r17},
6407   // assign it now.
6408   if (unsigned AssignedReg = PhysReg.first) {
6409     const TargetRegisterClass *RC = PhysReg.second;
6410     if (OpInfo.ConstraintVT == MVT::Other)
6411       ValueVT = *RC->vt_begin();
6412
6413     // Get the actual register value type.  This is important, because the user
6414     // may have asked for (e.g.) the AX register in i32 type.  We need to
6415     // remember that AX is actually i16 to get the right extension.
6416     RegVT = *RC->vt_begin();
6417
6418     // This is a explicit reference to a physical register.
6419     Regs.push_back(AssignedReg);
6420
6421     // If this is an expanded reference, add the rest of the regs to Regs.
6422     if (NumRegs != 1) {
6423       TargetRegisterClass::iterator I = RC->begin();
6424       for (; *I != AssignedReg; ++I)
6425         assert(I != RC->end() && "Didn't find reg!");
6426
6427       // Already added the first reg.
6428       --NumRegs; ++I;
6429       for (; NumRegs; --NumRegs, ++I) {
6430         assert(I != RC->end() && "Ran out of registers to allocate!");
6431         Regs.push_back(*I);
6432       }
6433     }
6434
6435     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6436     return;
6437   }
6438
6439   // Otherwise, if this was a reference to an LLVM register class, create vregs
6440   // for this reference.
6441   if (const TargetRegisterClass *RC = PhysReg.second) {
6442     RegVT = *RC->vt_begin();
6443     if (OpInfo.ConstraintVT == MVT::Other)
6444       ValueVT = RegVT;
6445
6446     // Create the appropriate number of virtual registers.
6447     MachineRegisterInfo &RegInfo = MF.getRegInfo();
6448     for (; NumRegs; --NumRegs)
6449       Regs.push_back(RegInfo.createVirtualRegister(RC));
6450
6451     OpInfo.AssignedRegs = RegsForValue(Regs, RegVT, ValueVT);
6452     return;
6453   }
6454
6455   // Otherwise, we couldn't allocate enough registers for this.
6456 }
6457
6458 /// visitInlineAsm - Handle a call to an InlineAsm object.
6459 ///
6460 void SelectionDAGBuilder::visitInlineAsm(ImmutableCallSite CS) {
6461   const InlineAsm *IA = cast<InlineAsm>(CS.getCalledValue());
6462
6463   /// ConstraintOperands - Information about all of the constraints.
6464   SDISelAsmOperandInfoVector ConstraintOperands;
6465
6466   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6467   TargetLowering::AsmOperandInfoVector
6468     TargetConstraints = TLI.ParseConstraints(CS);
6469
6470   bool hasMemory = false;
6471
6472   unsigned ArgNo = 0;   // ArgNo - The argument of the CallInst.
6473   unsigned ResNo = 0;   // ResNo - The result number of the next output.
6474   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6475     ConstraintOperands.push_back(SDISelAsmOperandInfo(TargetConstraints[i]));
6476     SDISelAsmOperandInfo &OpInfo = ConstraintOperands.back();
6477
6478     MVT OpVT = MVT::Other;
6479
6480     // Compute the value type for each operand.
6481     switch (OpInfo.Type) {
6482     case InlineAsm::isOutput:
6483       // Indirect outputs just consume an argument.
6484       if (OpInfo.isIndirect) {
6485         OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6486         break;
6487       }
6488
6489       // The return value of the call is this value.  As such, there is no
6490       // corresponding argument.
6491       assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6492       if (StructType *STy = dyn_cast<StructType>(CS.getType())) {
6493         OpVT = TLI.getSimpleValueType(STy->getElementType(ResNo));
6494       } else {
6495         assert(ResNo == 0 && "Asm only has one result!");
6496         OpVT = TLI.getSimpleValueType(CS.getType());
6497       }
6498       ++ResNo;
6499       break;
6500     case InlineAsm::isInput:
6501       OpInfo.CallOperandVal = const_cast<Value *>(CS.getArgument(ArgNo++));
6502       break;
6503     case InlineAsm::isClobber:
6504       // Nothing to do.
6505       break;
6506     }
6507
6508     // If this is an input or an indirect output, process the call argument.
6509     // BasicBlocks are labels, currently appearing only in asm's.
6510     if (OpInfo.CallOperandVal) {
6511       if (const BasicBlock *BB = dyn_cast<BasicBlock>(OpInfo.CallOperandVal)) {
6512         OpInfo.CallOperand = DAG.getBasicBlock(FuncInfo.MBBMap[BB]);
6513       } else {
6514         OpInfo.CallOperand = getValue(OpInfo.CallOperandVal);
6515       }
6516
6517       OpVT =
6518           OpInfo.getCallOperandValEVT(*DAG.getContext(), TLI, DL).getSimpleVT();
6519     }
6520
6521     OpInfo.ConstraintVT = OpVT;
6522
6523     // Indirect operand accesses access memory.
6524     if (OpInfo.isIndirect)
6525       hasMemory = true;
6526     else {
6527       for (unsigned j = 0, ee = OpInfo.Codes.size(); j != ee; ++j) {
6528         TargetLowering::ConstraintType
6529           CType = TLI.getConstraintType(OpInfo.Codes[j]);
6530         if (CType == TargetLowering::C_Memory) {
6531           hasMemory = true;
6532           break;
6533         }
6534       }
6535     }
6536   }
6537
6538   SDValue Chain, Flag;
6539
6540   // We won't need to flush pending loads if this asm doesn't touch
6541   // memory and is nonvolatile.
6542   if (hasMemory || IA->hasSideEffects())
6543     Chain = getRoot();
6544   else
6545     Chain = DAG.getRoot();
6546
6547   // Second pass over the constraints: compute which constraint option to use
6548   // and assign registers to constraints that want a specific physreg.
6549   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6550     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6551
6552     // If this is an output operand with a matching input operand, look up the
6553     // matching input. If their types mismatch, e.g. one is an integer, the
6554     // other is floating point, or their sizes are different, flag it as an
6555     // error.
6556     if (OpInfo.hasMatchingInput()) {
6557       SDISelAsmOperandInfo &Input = ConstraintOperands[OpInfo.MatchingInput];
6558
6559       if (OpInfo.ConstraintVT != Input.ConstraintVT) {
6560         std::pair<unsigned, const TargetRegisterClass*> MatchRC =
6561           TLI.getRegForInlineAsmConstraint(OpInfo.ConstraintCode,
6562                                             OpInfo.ConstraintVT);
6563         std::pair<unsigned, const TargetRegisterClass*> InputRC =
6564           TLI.getRegForInlineAsmConstraint(Input.ConstraintCode,
6565                                             Input.ConstraintVT);
6566         if ((OpInfo.ConstraintVT.isInteger() !=
6567              Input.ConstraintVT.isInteger()) ||
6568             (MatchRC.second != InputRC.second)) {
6569           report_fatal_error("Unsupported asm: input constraint"
6570                              " with a matching output constraint of"
6571                              " incompatible type!");
6572         }
6573         Input.ConstraintVT = OpInfo.ConstraintVT;
6574       }
6575     }
6576
6577     // Compute the constraint code and ConstraintType to use.
6578     TLI.ComputeConstraintToUse(OpInfo, OpInfo.CallOperand, &DAG);
6579
6580     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6581         OpInfo.Type == InlineAsm::isClobber)
6582       continue;
6583
6584     // If this is a memory input, and if the operand is not indirect, do what we
6585     // need to to provide an address for the memory input.
6586     if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
6587         !OpInfo.isIndirect) {
6588       assert((OpInfo.isMultipleAlternative ||
6589               (OpInfo.Type == InlineAsm::isInput)) &&
6590              "Can only indirectify direct input operands!");
6591
6592       // Memory operands really want the address of the value.  If we don't have
6593       // an indirect input, put it in the constpool if we can, otherwise spill
6594       // it to a stack slot.
6595       // TODO: This isn't quite right. We need to handle these according to
6596       // the addressing mode that the constraint wants. Also, this may take
6597       // an additional register for the computation and we don't want that
6598       // either.
6599
6600       // If the operand is a float, integer, or vector constant, spill to a
6601       // constant pool entry to get its address.
6602       const Value *OpVal = OpInfo.CallOperandVal;
6603       if (isa<ConstantFP>(OpVal) || isa<ConstantInt>(OpVal) ||
6604           isa<ConstantVector>(OpVal) || isa<ConstantDataVector>(OpVal)) {
6605         OpInfo.CallOperand = DAG.getConstantPool(cast<Constant>(OpVal),
6606                                                  TLI.getPointerTy());
6607       } else {
6608         // Otherwise, create a stack slot and emit a store to it before the
6609         // asm.
6610         Type *Ty = OpVal->getType();
6611         uint64_t TySize = TLI.getDataLayout()->getTypeAllocSize(Ty);
6612         unsigned Align  = TLI.getDataLayout()->getPrefTypeAlignment(Ty);
6613         MachineFunction &MF = DAG.getMachineFunction();
6614         int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
6615         SDValue StackSlot = DAG.getFrameIndex(SSFI, TLI.getPointerTy());
6616         Chain = DAG.getStore(Chain, getCurSDLoc(),
6617                              OpInfo.CallOperand, StackSlot,
6618                              MachinePointerInfo::getFixedStack(SSFI),
6619                              false, false, 0);
6620         OpInfo.CallOperand = StackSlot;
6621       }
6622
6623       // There is no longer a Value* corresponding to this operand.
6624       OpInfo.CallOperandVal = nullptr;
6625
6626       // It is now an indirect operand.
6627       OpInfo.isIndirect = true;
6628     }
6629
6630     // If this constraint is for a specific register, allocate it before
6631     // anything else.
6632     if (OpInfo.ConstraintType == TargetLowering::C_Register)
6633       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6634   }
6635
6636   // Second pass - Loop over all of the operands, assigning virtual or physregs
6637   // to register class operands.
6638   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6639     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6640
6641     // C_Register operands have already been allocated, Other/Memory don't need
6642     // to be.
6643     if (OpInfo.ConstraintType == TargetLowering::C_RegisterClass)
6644       GetRegistersForValue(DAG, TLI, getCurSDLoc(), OpInfo);
6645   }
6646
6647   // AsmNodeOperands - The operands for the ISD::INLINEASM node.
6648   std::vector<SDValue> AsmNodeOperands;
6649   AsmNodeOperands.push_back(SDValue());  // reserve space for input chain
6650   AsmNodeOperands.push_back(
6651           DAG.getTargetExternalSymbol(IA->getAsmString().c_str(),
6652                                       TLI.getPointerTy()));
6653
6654   // If we have a !srcloc metadata node associated with it, we want to attach
6655   // this to the ultimately generated inline asm machineinstr.  To do this, we
6656   // pass in the third operand as this (potentially null) inline asm MDNode.
6657   const MDNode *SrcLoc = CS.getInstruction()->getMetadata("srcloc");
6658   AsmNodeOperands.push_back(DAG.getMDNode(SrcLoc));
6659
6660   // Remember the HasSideEffect, AlignStack, AsmDialect, MayLoad and MayStore
6661   // bits as operand 3.
6662   unsigned ExtraInfo = 0;
6663   if (IA->hasSideEffects())
6664     ExtraInfo |= InlineAsm::Extra_HasSideEffects;
6665   if (IA->isAlignStack())
6666     ExtraInfo |= InlineAsm::Extra_IsAlignStack;
6667   // Set the asm dialect.
6668   ExtraInfo |= IA->getDialect() * InlineAsm::Extra_AsmDialect;
6669
6670   // Determine if this InlineAsm MayLoad or MayStore based on the constraints.
6671   for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
6672     TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
6673
6674     // Compute the constraint code and ConstraintType to use.
6675     TLI.ComputeConstraintToUse(OpInfo, SDValue());
6676
6677     // Ideally, we would only check against memory constraints.  However, the
6678     // meaning of an other constraint can be target-specific and we can't easily
6679     // reason about it.  Therefore, be conservative and set MayLoad/MayStore
6680     // for other constriants as well.
6681     if (OpInfo.ConstraintType == TargetLowering::C_Memory ||
6682         OpInfo.ConstraintType == TargetLowering::C_Other) {
6683       if (OpInfo.Type == InlineAsm::isInput)
6684         ExtraInfo |= InlineAsm::Extra_MayLoad;
6685       else if (OpInfo.Type == InlineAsm::isOutput)
6686         ExtraInfo |= InlineAsm::Extra_MayStore;
6687       else if (OpInfo.Type == InlineAsm::isClobber)
6688         ExtraInfo |= (InlineAsm::Extra_MayLoad | InlineAsm::Extra_MayStore);
6689     }
6690   }
6691
6692   AsmNodeOperands.push_back(DAG.getTargetConstant(ExtraInfo,
6693                                                   TLI.getPointerTy()));
6694
6695   // Loop over all of the inputs, copying the operand values into the
6696   // appropriate registers and processing the output regs.
6697   RegsForValue RetValRegs;
6698
6699   // IndirectStoresToEmit - The set of stores to emit after the inline asm node.
6700   std::vector<std::pair<RegsForValue, Value*> > IndirectStoresToEmit;
6701
6702   for (unsigned i = 0, e = ConstraintOperands.size(); i != e; ++i) {
6703     SDISelAsmOperandInfo &OpInfo = ConstraintOperands[i];
6704
6705     switch (OpInfo.Type) {
6706     case InlineAsm::isOutput: {
6707       if (OpInfo.ConstraintType != TargetLowering::C_RegisterClass &&
6708           OpInfo.ConstraintType != TargetLowering::C_Register) {
6709         // Memory output, or 'other' output (e.g. 'X' constraint).
6710         assert(OpInfo.isIndirect && "Memory output must be indirect operand");
6711
6712         // Add information to the INLINEASM node to know about this output.
6713         unsigned OpFlags = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6714         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlags,
6715                                                         TLI.getPointerTy()));
6716         AsmNodeOperands.push_back(OpInfo.CallOperand);
6717         break;
6718       }
6719
6720       // Otherwise, this is a register or register class output.
6721
6722       // Copy the output from the appropriate register.  Find a register that
6723       // we can use.
6724       if (OpInfo.AssignedRegs.Regs.empty()) {
6725         LLVMContext &Ctx = *DAG.getContext();
6726         Ctx.emitError(CS.getInstruction(),
6727                       "couldn't allocate output register for constraint '" +
6728                           Twine(OpInfo.ConstraintCode) + "'");
6729         return;
6730       }
6731
6732       // If this is an indirect operand, store through the pointer after the
6733       // asm.
6734       if (OpInfo.isIndirect) {
6735         IndirectStoresToEmit.push_back(std::make_pair(OpInfo.AssignedRegs,
6736                                                       OpInfo.CallOperandVal));
6737       } else {
6738         // This is the result value of the call.
6739         assert(!CS.getType()->isVoidTy() && "Bad inline asm!");
6740         // Concatenate this output onto the outputs list.
6741         RetValRegs.append(OpInfo.AssignedRegs);
6742       }
6743
6744       // Add information to the INLINEASM node to know that this register is
6745       // set.
6746       OpInfo.AssignedRegs
6747           .AddInlineAsmOperands(OpInfo.isEarlyClobber
6748                                     ? InlineAsm::Kind_RegDefEarlyClobber
6749                                     : InlineAsm::Kind_RegDef,
6750                                 false, 0, DAG, AsmNodeOperands);
6751       break;
6752     }
6753     case InlineAsm::isInput: {
6754       SDValue InOperandVal = OpInfo.CallOperand;
6755
6756       if (OpInfo.isMatchingInputConstraint()) {   // Matching constraint?
6757         // If this is required to match an output register we have already set,
6758         // just use its register.
6759         unsigned OperandNo = OpInfo.getMatchedOperand();
6760
6761         // Scan until we find the definition we already emitted of this operand.
6762         // When we find it, create a RegsForValue operand.
6763         unsigned CurOp = InlineAsm::Op_FirstOperand;
6764         for (; OperandNo; --OperandNo) {
6765           // Advance to the next operand.
6766           unsigned OpFlag =
6767             cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6768           assert((InlineAsm::isRegDefKind(OpFlag) ||
6769                   InlineAsm::isRegDefEarlyClobberKind(OpFlag) ||
6770                   InlineAsm::isMemKind(OpFlag)) && "Skipped past definitions?");
6771           CurOp += InlineAsm::getNumOperandRegisters(OpFlag)+1;
6772         }
6773
6774         unsigned OpFlag =
6775           cast<ConstantSDNode>(AsmNodeOperands[CurOp])->getZExtValue();
6776         if (InlineAsm::isRegDefKind(OpFlag) ||
6777             InlineAsm::isRegDefEarlyClobberKind(OpFlag)) {
6778           // Add (OpFlag&0xffff)>>3 registers to MatchedRegs.
6779           if (OpInfo.isIndirect) {
6780             // This happens on gcc/testsuite/gcc.dg/pr8788-1.c
6781             LLVMContext &Ctx = *DAG.getContext();
6782             Ctx.emitError(CS.getInstruction(), "inline asm not supported yet:"
6783                                                " don't know how to handle tied "
6784                                                "indirect register inputs");
6785             return;
6786           }
6787
6788           RegsForValue MatchedRegs;
6789           MatchedRegs.ValueVTs.push_back(InOperandVal.getValueType());
6790           MVT RegVT = AsmNodeOperands[CurOp+1].getSimpleValueType();
6791           MatchedRegs.RegVTs.push_back(RegVT);
6792           MachineRegisterInfo &RegInfo = DAG.getMachineFunction().getRegInfo();
6793           for (unsigned i = 0, e = InlineAsm::getNumOperandRegisters(OpFlag);
6794                i != e; ++i) {
6795             if (const TargetRegisterClass *RC = TLI.getRegClassFor(RegVT))
6796               MatchedRegs.Regs.push_back(RegInfo.createVirtualRegister(RC));
6797             else {
6798               LLVMContext &Ctx = *DAG.getContext();
6799               Ctx.emitError(CS.getInstruction(),
6800                             "inline asm error: This value"
6801                             " type register class is not natively supported!");
6802               return;
6803             }
6804           }
6805           // Use the produced MatchedRegs object to
6806           MatchedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6807                                     Chain, &Flag, CS.getInstruction());
6808           MatchedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse,
6809                                            true, OpInfo.getMatchedOperand(),
6810                                            DAG, AsmNodeOperands);
6811           break;
6812         }
6813
6814         assert(InlineAsm::isMemKind(OpFlag) && "Unknown matching constraint!");
6815         assert(InlineAsm::getNumOperandRegisters(OpFlag) == 1 &&
6816                "Unexpected number of operands");
6817         // Add information to the INLINEASM node to know about this input.
6818         // See InlineAsm.h isUseOperandTiedToDef.
6819         OpFlag = InlineAsm::getFlagWordForMatchingOp(OpFlag,
6820                                                     OpInfo.getMatchedOperand());
6821         AsmNodeOperands.push_back(DAG.getTargetConstant(OpFlag,
6822                                                         TLI.getPointerTy()));
6823         AsmNodeOperands.push_back(AsmNodeOperands[CurOp+1]);
6824         break;
6825       }
6826
6827       // Treat indirect 'X' constraint as memory.
6828       if (OpInfo.ConstraintType == TargetLowering::C_Other &&
6829           OpInfo.isIndirect)
6830         OpInfo.ConstraintType = TargetLowering::C_Memory;
6831
6832       if (OpInfo.ConstraintType == TargetLowering::C_Other) {
6833         std::vector<SDValue> Ops;
6834         TLI.LowerAsmOperandForConstraint(InOperandVal, OpInfo.ConstraintCode,
6835                                           Ops, DAG);
6836         if (Ops.empty()) {
6837           LLVMContext &Ctx = *DAG.getContext();
6838           Ctx.emitError(CS.getInstruction(),
6839                         "invalid operand for inline asm constraint '" +
6840                             Twine(OpInfo.ConstraintCode) + "'");
6841           return;
6842         }
6843
6844         // Add information to the INLINEASM node to know about this input.
6845         unsigned ResOpType =
6846           InlineAsm::getFlagWord(InlineAsm::Kind_Imm, Ops.size());
6847         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6848                                                         TLI.getPointerTy()));
6849         AsmNodeOperands.insert(AsmNodeOperands.end(), Ops.begin(), Ops.end());
6850         break;
6851       }
6852
6853       if (OpInfo.ConstraintType == TargetLowering::C_Memory) {
6854         assert(OpInfo.isIndirect && "Operand must be indirect to be a mem!");
6855         assert(InOperandVal.getValueType() == TLI.getPointerTy() &&
6856                "Memory operands expect pointer values");
6857
6858         // Add information to the INLINEASM node to know about this input.
6859         unsigned ResOpType = InlineAsm::getFlagWord(InlineAsm::Kind_Mem, 1);
6860         AsmNodeOperands.push_back(DAG.getTargetConstant(ResOpType,
6861                                                         TLI.getPointerTy()));
6862         AsmNodeOperands.push_back(InOperandVal);
6863         break;
6864       }
6865
6866       assert((OpInfo.ConstraintType == TargetLowering::C_RegisterClass ||
6867               OpInfo.ConstraintType == TargetLowering::C_Register) &&
6868              "Unknown constraint type!");
6869
6870       // TODO: Support this.
6871       if (OpInfo.isIndirect) {
6872         LLVMContext &Ctx = *DAG.getContext();
6873         Ctx.emitError(CS.getInstruction(),
6874                       "Don't know how to handle indirect register inputs yet "
6875                       "for constraint '" +
6876                           Twine(OpInfo.ConstraintCode) + "'");
6877         return;
6878       }
6879
6880       // Copy the input into the appropriate registers.
6881       if (OpInfo.AssignedRegs.Regs.empty()) {
6882         LLVMContext &Ctx = *DAG.getContext();
6883         Ctx.emitError(CS.getInstruction(),
6884                       "couldn't allocate input reg for constraint '" +
6885                           Twine(OpInfo.ConstraintCode) + "'");
6886         return;
6887       }
6888
6889       OpInfo.AssignedRegs.getCopyToRegs(InOperandVal, DAG, getCurSDLoc(),
6890                                         Chain, &Flag, CS.getInstruction());
6891
6892       OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_RegUse, false, 0,
6893                                                DAG, AsmNodeOperands);
6894       break;
6895     }
6896     case InlineAsm::isClobber: {
6897       // Add the clobbered value to the operand list, so that the register
6898       // allocator is aware that the physreg got clobbered.
6899       if (!OpInfo.AssignedRegs.Regs.empty())
6900         OpInfo.AssignedRegs.AddInlineAsmOperands(InlineAsm::Kind_Clobber,
6901                                                  false, 0, DAG,
6902                                                  AsmNodeOperands);
6903       break;
6904     }
6905     }
6906   }
6907
6908   // Finish up input operands.  Set the input chain and add the flag last.
6909   AsmNodeOperands[InlineAsm::Op_InputChain] = Chain;
6910   if (Flag.getNode()) AsmNodeOperands.push_back(Flag);
6911
6912   Chain = DAG.getNode(ISD::INLINEASM, getCurSDLoc(),
6913                       DAG.getVTList(MVT::Other, MVT::Glue), AsmNodeOperands);
6914   Flag = Chain.getValue(1);
6915
6916   // If this asm returns a register value, copy the result from that register
6917   // and set it as the value of the call.
6918   if (!RetValRegs.Regs.empty()) {
6919     SDValue Val = RetValRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6920                                              Chain, &Flag, CS.getInstruction());
6921
6922     // FIXME: Why don't we do this for inline asms with MRVs?
6923     if (CS.getType()->isSingleValueType() && CS.getType()->isSized()) {
6924       EVT ResultType = TLI.getValueType(CS.getType());
6925
6926       // If any of the results of the inline asm is a vector, it may have the
6927       // wrong width/num elts.  This can happen for register classes that can
6928       // contain multiple different value types.  The preg or vreg allocated may
6929       // not have the same VT as was expected.  Convert it to the right type
6930       // with bit_convert.
6931       if (ResultType != Val.getValueType() && Val.getValueType().isVector()) {
6932         Val = DAG.getNode(ISD::BITCAST, getCurSDLoc(),
6933                           ResultType, Val);
6934
6935       } else if (ResultType != Val.getValueType() &&
6936                  ResultType.isInteger() && Val.getValueType().isInteger()) {
6937         // If a result value was tied to an input value, the computed result may
6938         // have a wider width than the expected result.  Extract the relevant
6939         // portion.
6940         Val = DAG.getNode(ISD::TRUNCATE, getCurSDLoc(), ResultType, Val);
6941       }
6942
6943       assert(ResultType == Val.getValueType() && "Asm result value mismatch!");
6944     }
6945
6946     setValue(CS.getInstruction(), Val);
6947     // Don't need to use this as a chain in this case.
6948     if (!IA->hasSideEffects() && !hasMemory && IndirectStoresToEmit.empty())
6949       return;
6950   }
6951
6952   std::vector<std::pair<SDValue, const Value *> > StoresToEmit;
6953
6954   // Process indirect outputs, first output all of the flagged copies out of
6955   // physregs.
6956   for (unsigned i = 0, e = IndirectStoresToEmit.size(); i != e; ++i) {
6957     RegsForValue &OutRegs = IndirectStoresToEmit[i].first;
6958     const Value *Ptr = IndirectStoresToEmit[i].second;
6959     SDValue OutVal = OutRegs.getCopyFromRegs(DAG, FuncInfo, getCurSDLoc(),
6960                                              Chain, &Flag, IA);
6961     StoresToEmit.push_back(std::make_pair(OutVal, Ptr));
6962   }
6963
6964   // Emit the non-flagged stores from the physregs.
6965   SmallVector<SDValue, 8> OutChains;
6966   for (unsigned i = 0, e = StoresToEmit.size(); i != e; ++i) {
6967     SDValue Val = DAG.getStore(Chain, getCurSDLoc(),
6968                                StoresToEmit[i].first,
6969                                getValue(StoresToEmit[i].second),
6970                                MachinePointerInfo(StoresToEmit[i].second),
6971                                false, false, 0);
6972     OutChains.push_back(Val);
6973   }
6974
6975   if (!OutChains.empty())
6976     Chain = DAG.getNode(ISD::TokenFactor, getCurSDLoc(), MVT::Other, OutChains);
6977
6978   DAG.setRoot(Chain);
6979 }
6980
6981 void SelectionDAGBuilder::visitVAStart(const CallInst &I) {
6982   DAG.setRoot(DAG.getNode(ISD::VASTART, getCurSDLoc(),
6983                           MVT::Other, getRoot(),
6984                           getValue(I.getArgOperand(0)),
6985                           DAG.getSrcValue(I.getArgOperand(0))));
6986 }
6987
6988 void SelectionDAGBuilder::visitVAArg(const VAArgInst &I) {
6989   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
6990   const DataLayout &DL = *TLI.getDataLayout();
6991   SDValue V = DAG.getVAArg(TLI.getValueType(I.getType()), getCurSDLoc(),
6992                            getRoot(), getValue(I.getOperand(0)),
6993                            DAG.getSrcValue(I.getOperand(0)),
6994                            DL.getABITypeAlignment(I.getType()));
6995   setValue(&I, V);
6996   DAG.setRoot(V.getValue(1));
6997 }
6998
6999 void SelectionDAGBuilder::visitVAEnd(const CallInst &I) {
7000   DAG.setRoot(DAG.getNode(ISD::VAEND, getCurSDLoc(),
7001                           MVT::Other, getRoot(),
7002                           getValue(I.getArgOperand(0)),
7003                           DAG.getSrcValue(I.getArgOperand(0))));
7004 }
7005
7006 void SelectionDAGBuilder::visitVACopy(const CallInst &I) {
7007   DAG.setRoot(DAG.getNode(ISD::VACOPY, getCurSDLoc(),
7008                           MVT::Other, getRoot(),
7009                           getValue(I.getArgOperand(0)),
7010                           getValue(I.getArgOperand(1)),
7011                           DAG.getSrcValue(I.getArgOperand(0)),
7012                           DAG.getSrcValue(I.getArgOperand(1))));
7013 }
7014
7015 /// \brief Lower an argument list according to the target calling convention.
7016 ///
7017 /// \return A tuple of <return-value, token-chain>
7018 ///
7019 /// This is a helper for lowering intrinsics that follow a target calling
7020 /// convention or require stack pointer adjustment. Only a subset of the
7021 /// intrinsic's operands need to participate in the calling convention.
7022 std::pair<SDValue, SDValue>
7023 SelectionDAGBuilder::lowerCallOperands(ImmutableCallSite CS, unsigned ArgIdx,
7024                                        unsigned NumArgs, SDValue Callee,
7025                                        bool UseVoidTy,
7026                                        MachineBasicBlock *LandingPad,
7027                                        bool IsPatchPoint) {
7028   TargetLowering::ArgListTy Args;
7029   Args.reserve(NumArgs);
7030
7031   // Populate the argument list.
7032   // Attributes for args start at offset 1, after the return attribute.
7033   for (unsigned ArgI = ArgIdx, ArgE = ArgIdx + NumArgs, AttrI = ArgIdx + 1;
7034        ArgI != ArgE; ++ArgI) {
7035     const Value *V = CS->getOperand(ArgI);
7036
7037     assert(!V->getType()->isEmptyTy() && "Empty type passed to intrinsic.");
7038
7039     TargetLowering::ArgListEntry Entry;
7040     Entry.Node = getValue(V);
7041     Entry.Ty = V->getType();
7042     Entry.setAttributes(&CS, AttrI);
7043     Args.push_back(Entry);
7044   }
7045
7046   Type *retTy = UseVoidTy ? Type::getVoidTy(*DAG.getContext()) : CS->getType();
7047   TargetLowering::CallLoweringInfo CLI(DAG);
7048   CLI.setDebugLoc(getCurSDLoc()).setChain(getRoot())
7049     .setCallee(CS.getCallingConv(), retTy, Callee, std::move(Args), NumArgs)
7050     .setDiscardResult(CS->use_empty()).setIsPatchPoint(IsPatchPoint);
7051
7052   return lowerInvokable(CLI, LandingPad);
7053 }
7054
7055 /// \brief Add a stack map intrinsic call's live variable operands to a stackmap
7056 /// or patchpoint target node's operand list.
7057 ///
7058 /// Constants are converted to TargetConstants purely as an optimization to
7059 /// avoid constant materialization and register allocation.
7060 ///
7061 /// FrameIndex operands are converted to TargetFrameIndex so that ISEL does not
7062 /// generate addess computation nodes, and so ExpandISelPseudo can convert the
7063 /// TargetFrameIndex into a DirectMemRefOp StackMap location. This avoids
7064 /// address materialization and register allocation, but may also be required
7065 /// for correctness. If a StackMap (or PatchPoint) intrinsic directly uses an
7066 /// alloca in the entry block, then the runtime may assume that the alloca's
7067 /// StackMap location can be read immediately after compilation and that the
7068 /// location is valid at any point during execution (this is similar to the
7069 /// assumption made by the llvm.gcroot intrinsic). If the alloca's location were
7070 /// only available in a register, then the runtime would need to trap when
7071 /// execution reaches the StackMap in order to read the alloca's location.
7072 static void addStackMapLiveVars(ImmutableCallSite CS, unsigned StartIdx,
7073                                 SmallVectorImpl<SDValue> &Ops,
7074                                 SelectionDAGBuilder &Builder) {
7075   for (unsigned i = StartIdx, e = CS.arg_size(); i != e; ++i) {
7076     SDValue OpVal = Builder.getValue(CS.getArgument(i));
7077     if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(OpVal)) {
7078       Ops.push_back(
7079         Builder.DAG.getTargetConstant(StackMaps::ConstantOp, MVT::i64));
7080       Ops.push_back(
7081         Builder.DAG.getTargetConstant(C->getSExtValue(), MVT::i64));
7082     } else if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(OpVal)) {
7083       const TargetLowering &TLI = Builder.DAG.getTargetLoweringInfo();
7084       Ops.push_back(
7085         Builder.DAG.getTargetFrameIndex(FI->getIndex(), TLI.getPointerTy()));
7086     } else
7087       Ops.push_back(OpVal);
7088   }
7089 }
7090
7091 /// \brief Lower llvm.experimental.stackmap directly to its target opcode.
7092 void SelectionDAGBuilder::visitStackmap(const CallInst &CI) {
7093   // void @llvm.experimental.stackmap(i32 <id>, i32 <numShadowBytes>,
7094   //                                  [live variables...])
7095
7096   assert(CI.getType()->isVoidTy() && "Stackmap cannot return a value.");
7097
7098   SDValue Chain, InFlag, Callee, NullPtr;
7099   SmallVector<SDValue, 32> Ops;
7100
7101   SDLoc DL = getCurSDLoc();
7102   Callee = getValue(CI.getCalledValue());
7103   NullPtr = DAG.getIntPtrConstant(0, true);
7104
7105   // The stackmap intrinsic only records the live variables (the arguemnts
7106   // passed to it) and emits NOPS (if requested). Unlike the patchpoint
7107   // intrinsic, this won't be lowered to a function call. This means we don't
7108   // have to worry about calling conventions and target specific lowering code.
7109   // Instead we perform the call lowering right here.
7110   //
7111   // chain, flag = CALLSEQ_START(chain, 0)
7112   // chain, flag = STACKMAP(id, nbytes, ..., chain, flag)
7113   // chain, flag = CALLSEQ_END(chain, 0, 0, flag)
7114   //
7115   Chain = DAG.getCALLSEQ_START(getRoot(), NullPtr, DL);
7116   InFlag = Chain.getValue(1);
7117
7118   // Add the <id> and <numBytes> constants.
7119   SDValue IDVal = getValue(CI.getOperand(PatchPointOpers::IDPos));
7120   Ops.push_back(DAG.getTargetConstant(
7121                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7122   SDValue NBytesVal = getValue(CI.getOperand(PatchPointOpers::NBytesPos));
7123   Ops.push_back(DAG.getTargetConstant(
7124                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7125
7126   // Push live variables for the stack map.
7127   addStackMapLiveVars(&CI, 2, Ops, *this);
7128
7129   // We are not pushing any register mask info here on the operands list,
7130   // because the stackmap doesn't clobber anything.
7131
7132   // Push the chain and the glue flag.
7133   Ops.push_back(Chain);
7134   Ops.push_back(InFlag);
7135
7136   // Create the STACKMAP node.
7137   SDVTList NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7138   SDNode *SM = DAG.getMachineNode(TargetOpcode::STACKMAP, DL, NodeTys, Ops);
7139   Chain = SDValue(SM, 0);
7140   InFlag = Chain.getValue(1);
7141
7142   Chain = DAG.getCALLSEQ_END(Chain, NullPtr, NullPtr, InFlag, DL);
7143
7144   // Stackmaps don't generate values, so nothing goes into the NodeMap.
7145
7146   // Set the root to the target-lowered call chain.
7147   DAG.setRoot(Chain);
7148
7149   // Inform the Frame Information that we have a stackmap in this function.
7150   FuncInfo.MF->getFrameInfo()->setHasStackMap();
7151 }
7152
7153 /// \brief Lower llvm.experimental.patchpoint directly to its target opcode.
7154 void SelectionDAGBuilder::visitPatchpoint(ImmutableCallSite CS,
7155                                           MachineBasicBlock *LandingPad) {
7156   // void|i64 @llvm.experimental.patchpoint.void|i64(i64 <id>,
7157   //                                                 i32 <numBytes>,
7158   //                                                 i8* <target>,
7159   //                                                 i32 <numArgs>,
7160   //                                                 [Args...],
7161   //                                                 [live variables...])
7162
7163   CallingConv::ID CC = CS.getCallingConv();
7164   bool IsAnyRegCC = CC == CallingConv::AnyReg;
7165   bool HasDef = !CS->getType()->isVoidTy();
7166   SDValue Callee = getValue(CS->getOperand(2)); // <target>
7167
7168   // Get the real number of arguments participating in the call <numArgs>
7169   SDValue NArgVal = getValue(CS.getArgument(PatchPointOpers::NArgPos));
7170   unsigned NumArgs = cast<ConstantSDNode>(NArgVal)->getZExtValue();
7171
7172   // Skip the four meta args: <id>, <numNopBytes>, <target>, <numArgs>
7173   // Intrinsics include all meta-operands up to but not including CC.
7174   unsigned NumMetaOpers = PatchPointOpers::CCPos;
7175   assert(CS.arg_size() >= NumMetaOpers + NumArgs &&
7176          "Not enough arguments provided to the patchpoint intrinsic");
7177
7178   // For AnyRegCC the arguments are lowered later on manually.
7179   unsigned NumCallArgs = IsAnyRegCC ? 0 : NumArgs;
7180   std::pair<SDValue, SDValue> Result =
7181     lowerCallOperands(CS, NumMetaOpers, NumCallArgs, Callee, IsAnyRegCC,
7182                       LandingPad, true);
7183
7184   SDNode *CallEnd = Result.second.getNode();
7185   if (HasDef && (CallEnd->getOpcode() == ISD::CopyFromReg))
7186     CallEnd = CallEnd->getOperand(0).getNode();
7187
7188   /// Get a call instruction from the call sequence chain.
7189   /// Tail calls are not allowed.
7190   assert(CallEnd->getOpcode() == ISD::CALLSEQ_END &&
7191          "Expected a callseq node.");
7192   SDNode *Call = CallEnd->getOperand(0).getNode();
7193   bool HasGlue = Call->getGluedNode();
7194
7195   // Replace the target specific call node with the patchable intrinsic.
7196   SmallVector<SDValue, 8> Ops;
7197
7198   // Add the <id> and <numBytes> constants.
7199   SDValue IDVal = getValue(CS->getOperand(PatchPointOpers::IDPos));
7200   Ops.push_back(DAG.getTargetConstant(
7201                   cast<ConstantSDNode>(IDVal)->getZExtValue(), MVT::i64));
7202   SDValue NBytesVal = getValue(CS->getOperand(PatchPointOpers::NBytesPos));
7203   Ops.push_back(DAG.getTargetConstant(
7204                   cast<ConstantSDNode>(NBytesVal)->getZExtValue(), MVT::i32));
7205
7206   // Assume that the Callee is a constant address.
7207   // FIXME: handle function symbols in the future.
7208   Ops.push_back(
7209     DAG.getIntPtrConstant(cast<ConstantSDNode>(Callee)->getZExtValue(),
7210                           /*isTarget=*/true));
7211
7212   // Adjust <numArgs> to account for any arguments that have been passed on the
7213   // stack instead.
7214   // Call Node: Chain, Target, {Args}, RegMask, [Glue]
7215   unsigned NumCallRegArgs = Call->getNumOperands() - (HasGlue ? 4 : 3);
7216   NumCallRegArgs = IsAnyRegCC ? NumArgs : NumCallRegArgs;
7217   Ops.push_back(DAG.getTargetConstant(NumCallRegArgs, MVT::i32));
7218
7219   // Add the calling convention
7220   Ops.push_back(DAG.getTargetConstant((unsigned)CC, MVT::i32));
7221
7222   // Add the arguments we omitted previously. The register allocator should
7223   // place these in any free register.
7224   if (IsAnyRegCC)
7225     for (unsigned i = NumMetaOpers, e = NumMetaOpers + NumArgs; i != e; ++i)
7226       Ops.push_back(getValue(CS.getArgument(i)));
7227
7228   // Push the arguments from the call instruction up to the register mask.
7229   SDNode::op_iterator e = HasGlue ? Call->op_end()-2 : Call->op_end()-1;
7230   for (SDNode::op_iterator i = Call->op_begin()+2; i != e; ++i)
7231     Ops.push_back(*i);
7232
7233   // Push live variables for the stack map.
7234   addStackMapLiveVars(CS, NumMetaOpers + NumArgs, Ops, *this);
7235
7236   // Push the register mask info.
7237   if (HasGlue)
7238     Ops.push_back(*(Call->op_end()-2));
7239   else
7240     Ops.push_back(*(Call->op_end()-1));
7241
7242   // Push the chain (this is originally the first operand of the call, but
7243   // becomes now the last or second to last operand).
7244   Ops.push_back(*(Call->op_begin()));
7245
7246   // Push the glue flag (last operand).
7247   if (HasGlue)
7248     Ops.push_back(*(Call->op_end()-1));
7249
7250   SDVTList NodeTys;
7251   if (IsAnyRegCC && HasDef) {
7252     // Create the return types based on the intrinsic definition
7253     const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7254     SmallVector<EVT, 3> ValueVTs;
7255     ComputeValueVTs(TLI, CS->getType(), ValueVTs);
7256     assert(ValueVTs.size() == 1 && "Expected only one return value type.");
7257
7258     // There is always a chain and a glue type at the end
7259     ValueVTs.push_back(MVT::Other);
7260     ValueVTs.push_back(MVT::Glue);
7261     NodeTys = DAG.getVTList(ValueVTs);
7262   } else
7263     NodeTys = DAG.getVTList(MVT::Other, MVT::Glue);
7264
7265   // Replace the target specific call node with a PATCHPOINT node.
7266   MachineSDNode *MN = DAG.getMachineNode(TargetOpcode::PATCHPOINT,
7267                                          getCurSDLoc(), NodeTys, Ops);
7268
7269   // Update the NodeMap.
7270   if (HasDef) {
7271     if (IsAnyRegCC)
7272       setValue(CS.getInstruction(), SDValue(MN, 0));
7273     else
7274       setValue(CS.getInstruction(), Result.first);
7275   }
7276
7277   // Fixup the consumers of the intrinsic. The chain and glue may be used in the
7278   // call sequence. Furthermore the location of the chain and glue can change
7279   // when the AnyReg calling convention is used and the intrinsic returns a
7280   // value.
7281   if (IsAnyRegCC && HasDef) {
7282     SDValue From[] = {SDValue(Call, 0), SDValue(Call, 1)};
7283     SDValue To[] = {SDValue(MN, 1), SDValue(MN, 2)};
7284     DAG.ReplaceAllUsesOfValuesWith(From, To, 2);
7285   } else
7286     DAG.ReplaceAllUsesWith(Call, MN);
7287   DAG.DeleteNode(Call);
7288
7289   // Inform the Frame Information that we have a patchpoint in this function.
7290   FuncInfo.MF->getFrameInfo()->setHasPatchPoint();
7291 }
7292
7293 /// Returns an AttributeSet representing the attributes applied to the return
7294 /// value of the given call.
7295 static AttributeSet getReturnAttrs(TargetLowering::CallLoweringInfo &CLI) {
7296   SmallVector<Attribute::AttrKind, 2> Attrs;
7297   if (CLI.RetSExt)
7298     Attrs.push_back(Attribute::SExt);
7299   if (CLI.RetZExt)
7300     Attrs.push_back(Attribute::ZExt);
7301   if (CLI.IsInReg)
7302     Attrs.push_back(Attribute::InReg);
7303
7304   return AttributeSet::get(CLI.RetTy->getContext(), AttributeSet::ReturnIndex,
7305                            Attrs);
7306 }
7307
7308 /// TargetLowering::LowerCallTo - This is the default LowerCallTo
7309 /// implementation, which just calls LowerCall.
7310 /// FIXME: When all targets are
7311 /// migrated to using LowerCall, this hook should be integrated into SDISel.
7312 std::pair<SDValue, SDValue>
7313 TargetLowering::LowerCallTo(TargetLowering::CallLoweringInfo &CLI) const {
7314   // Handle the incoming return values from the call.
7315   CLI.Ins.clear();
7316   Type *OrigRetTy = CLI.RetTy;
7317   SmallVector<EVT, 4> RetTys;
7318   SmallVector<uint64_t, 4> Offsets;
7319   ComputeValueVTs(*this, CLI.RetTy, RetTys, &Offsets);
7320
7321   SmallVector<ISD::OutputArg, 4> Outs;
7322   GetReturnInfo(CLI.RetTy, getReturnAttrs(CLI), Outs, *this);
7323
7324   bool CanLowerReturn =
7325       this->CanLowerReturn(CLI.CallConv, CLI.DAG.getMachineFunction(),
7326                            CLI.IsVarArg, Outs, CLI.RetTy->getContext());
7327
7328   SDValue DemoteStackSlot;
7329   int DemoteStackIdx = -100;
7330   if (!CanLowerReturn) {
7331     // FIXME: equivalent assert?
7332     // assert(!CS.hasInAllocaArgument() &&
7333     //        "sret demotion is incompatible with inalloca");
7334     uint64_t TySize = getDataLayout()->getTypeAllocSize(CLI.RetTy);
7335     unsigned Align  = getDataLayout()->getPrefTypeAlignment(CLI.RetTy);
7336     MachineFunction &MF = CLI.DAG.getMachineFunction();
7337     DemoteStackIdx = MF.getFrameInfo()->CreateStackObject(TySize, Align, false);
7338     Type *StackSlotPtrType = PointerType::getUnqual(CLI.RetTy);
7339
7340     DemoteStackSlot = CLI.DAG.getFrameIndex(DemoteStackIdx, getPointerTy());
7341     ArgListEntry Entry;
7342     Entry.Node = DemoteStackSlot;
7343     Entry.Ty = StackSlotPtrType;
7344     Entry.isSExt = false;
7345     Entry.isZExt = false;
7346     Entry.isInReg = false;
7347     Entry.isSRet = true;
7348     Entry.isNest = false;
7349     Entry.isByVal = false;
7350     Entry.isReturned = false;
7351     Entry.Alignment = Align;
7352     CLI.getArgs().insert(CLI.getArgs().begin(), Entry);
7353     CLI.RetTy = Type::getVoidTy(CLI.RetTy->getContext());
7354   } else {
7355     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7356       EVT VT = RetTys[I];
7357       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7358       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7359       for (unsigned i = 0; i != NumRegs; ++i) {
7360         ISD::InputArg MyFlags;
7361         MyFlags.VT = RegisterVT;
7362         MyFlags.ArgVT = VT;
7363         MyFlags.Used = CLI.IsReturnValueUsed;
7364         if (CLI.RetSExt)
7365           MyFlags.Flags.setSExt();
7366         if (CLI.RetZExt)
7367           MyFlags.Flags.setZExt();
7368         if (CLI.IsInReg)
7369           MyFlags.Flags.setInReg();
7370         CLI.Ins.push_back(MyFlags);
7371       }
7372     }
7373   }
7374
7375   // Handle all of the outgoing arguments.
7376   CLI.Outs.clear();
7377   CLI.OutVals.clear();
7378   ArgListTy &Args = CLI.getArgs();
7379   for (unsigned i = 0, e = Args.size(); i != e; ++i) {
7380     SmallVector<EVT, 4> ValueVTs;
7381     ComputeValueVTs(*this, Args[i].Ty, ValueVTs);
7382     Type *FinalType = Args[i].Ty;
7383     if (Args[i].isByVal)
7384       FinalType = cast<PointerType>(Args[i].Ty)->getElementType();
7385     bool NeedsRegBlock = functionArgumentNeedsConsecutiveRegisters(
7386         FinalType, CLI.CallConv, CLI.IsVarArg);
7387     for (unsigned Value = 0, NumValues = ValueVTs.size(); Value != NumValues;
7388          ++Value) {
7389       EVT VT = ValueVTs[Value];
7390       Type *ArgTy = VT.getTypeForEVT(CLI.RetTy->getContext());
7391       SDValue Op = SDValue(Args[i].Node.getNode(),
7392                            Args[i].Node.getResNo() + Value);
7393       ISD::ArgFlagsTy Flags;
7394       unsigned OriginalAlignment = getDataLayout()->getABITypeAlignment(ArgTy);
7395
7396       if (Args[i].isZExt)
7397         Flags.setZExt();
7398       if (Args[i].isSExt)
7399         Flags.setSExt();
7400       if (Args[i].isInReg)
7401         Flags.setInReg();
7402       if (Args[i].isSRet)
7403         Flags.setSRet();
7404       if (Args[i].isByVal)
7405         Flags.setByVal();
7406       if (Args[i].isInAlloca) {
7407         Flags.setInAlloca();
7408         // Set the byval flag for CCAssignFn callbacks that don't know about
7409         // inalloca.  This way we can know how many bytes we should've allocated
7410         // and how many bytes a callee cleanup function will pop.  If we port
7411         // inalloca to more targets, we'll have to add custom inalloca handling
7412         // in the various CC lowering callbacks.
7413         Flags.setByVal();
7414       }
7415       if (Args[i].isByVal || Args[i].isInAlloca) {
7416         PointerType *Ty = cast<PointerType>(Args[i].Ty);
7417         Type *ElementTy = Ty->getElementType();
7418         Flags.setByValSize(getDataLayout()->getTypeAllocSize(ElementTy));
7419         // For ByVal, alignment should come from FE.  BE will guess if this
7420         // info is not there but there are cases it cannot get right.
7421         unsigned FrameAlign;
7422         if (Args[i].Alignment)
7423           FrameAlign = Args[i].Alignment;
7424         else
7425           FrameAlign = getByValTypeAlignment(ElementTy);
7426         Flags.setByValAlign(FrameAlign);
7427       }
7428       if (Args[i].isNest)
7429         Flags.setNest();
7430       if (NeedsRegBlock) {
7431         Flags.setInConsecutiveRegs();
7432         if (Value == NumValues - 1)
7433           Flags.setInConsecutiveRegsLast();
7434       }
7435       Flags.setOrigAlign(OriginalAlignment);
7436
7437       MVT PartVT = getRegisterType(CLI.RetTy->getContext(), VT);
7438       unsigned NumParts = getNumRegisters(CLI.RetTy->getContext(), VT);
7439       SmallVector<SDValue, 4> Parts(NumParts);
7440       ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
7441
7442       if (Args[i].isSExt)
7443         ExtendKind = ISD::SIGN_EXTEND;
7444       else if (Args[i].isZExt)
7445         ExtendKind = ISD::ZERO_EXTEND;
7446
7447       // Conservatively only handle 'returned' on non-vectors for now
7448       if (Args[i].isReturned && !Op.getValueType().isVector()) {
7449         assert(CLI.RetTy == Args[i].Ty && RetTys.size() == NumValues &&
7450                "unexpected use of 'returned'");
7451         // Before passing 'returned' to the target lowering code, ensure that
7452         // either the register MVT and the actual EVT are the same size or that
7453         // the return value and argument are extended in the same way; in these
7454         // cases it's safe to pass the argument register value unchanged as the
7455         // return register value (although it's at the target's option whether
7456         // to do so)
7457         // TODO: allow code generation to take advantage of partially preserved
7458         // registers rather than clobbering the entire register when the
7459         // parameter extension method is not compatible with the return
7460         // extension method
7461         if ((NumParts * PartVT.getSizeInBits() == VT.getSizeInBits()) ||
7462             (ExtendKind != ISD::ANY_EXTEND &&
7463              CLI.RetSExt == Args[i].isSExt && CLI.RetZExt == Args[i].isZExt))
7464         Flags.setReturned();
7465       }
7466
7467       getCopyToParts(CLI.DAG, CLI.DL, Op, &Parts[0], NumParts, PartVT,
7468                      CLI.CS ? CLI.CS->getInstruction() : nullptr, ExtendKind);
7469
7470       for (unsigned j = 0; j != NumParts; ++j) {
7471         // if it isn't first piece, alignment must be 1
7472         ISD::OutputArg MyFlags(Flags, Parts[j].getValueType(), VT,
7473                                i < CLI.NumFixedArgs,
7474                                i, j*Parts[j].getValueType().getStoreSize());
7475         if (NumParts > 1 && j == 0)
7476           MyFlags.Flags.setSplit();
7477         else if (j != 0)
7478           MyFlags.Flags.setOrigAlign(1);
7479
7480         CLI.Outs.push_back(MyFlags);
7481         CLI.OutVals.push_back(Parts[j]);
7482       }
7483     }
7484   }
7485
7486   SmallVector<SDValue, 4> InVals;
7487   CLI.Chain = LowerCall(CLI, InVals);
7488
7489   // Verify that the target's LowerCall behaved as expected.
7490   assert(CLI.Chain.getNode() && CLI.Chain.getValueType() == MVT::Other &&
7491          "LowerCall didn't return a valid chain!");
7492   assert((!CLI.IsTailCall || InVals.empty()) &&
7493          "LowerCall emitted a return value for a tail call!");
7494   assert((CLI.IsTailCall || InVals.size() == CLI.Ins.size()) &&
7495          "LowerCall didn't emit the correct number of values!");
7496
7497   // For a tail call, the return value is merely live-out and there aren't
7498   // any nodes in the DAG representing it. Return a special value to
7499   // indicate that a tail call has been emitted and no more Instructions
7500   // should be processed in the current block.
7501   if (CLI.IsTailCall) {
7502     CLI.DAG.setRoot(CLI.Chain);
7503     return std::make_pair(SDValue(), SDValue());
7504   }
7505
7506   DEBUG(for (unsigned i = 0, e = CLI.Ins.size(); i != e; ++i) {
7507           assert(InVals[i].getNode() &&
7508                  "LowerCall emitted a null value!");
7509           assert(EVT(CLI.Ins[i].VT) == InVals[i].getValueType() &&
7510                  "LowerCall emitted a value with the wrong type!");
7511         });
7512
7513   SmallVector<SDValue, 4> ReturnValues;
7514   if (!CanLowerReturn) {
7515     // The instruction result is the result of loading from the
7516     // hidden sret parameter.
7517     SmallVector<EVT, 1> PVTs;
7518     Type *PtrRetTy = PointerType::getUnqual(OrigRetTy);
7519
7520     ComputeValueVTs(*this, PtrRetTy, PVTs);
7521     assert(PVTs.size() == 1 && "Pointers should fit in one register");
7522     EVT PtrVT = PVTs[0];
7523
7524     unsigned NumValues = RetTys.size();
7525     ReturnValues.resize(NumValues);
7526     SmallVector<SDValue, 4> Chains(NumValues);
7527
7528     for (unsigned i = 0; i < NumValues; ++i) {
7529       SDValue Add = CLI.DAG.getNode(ISD::ADD, CLI.DL, PtrVT, DemoteStackSlot,
7530                                     CLI.DAG.getConstant(Offsets[i], PtrVT));
7531       SDValue L = CLI.DAG.getLoad(
7532           RetTys[i], CLI.DL, CLI.Chain, Add,
7533           MachinePointerInfo::getFixedStack(DemoteStackIdx, Offsets[i]), false,
7534           false, false, 1);
7535       ReturnValues[i] = L;
7536       Chains[i] = L.getValue(1);
7537     }
7538
7539     CLI.Chain = CLI.DAG.getNode(ISD::TokenFactor, CLI.DL, MVT::Other, Chains);
7540   } else {
7541     // Collect the legal value parts into potentially illegal values
7542     // that correspond to the original function's return values.
7543     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7544     if (CLI.RetSExt)
7545       AssertOp = ISD::AssertSext;
7546     else if (CLI.RetZExt)
7547       AssertOp = ISD::AssertZext;
7548     unsigned CurReg = 0;
7549     for (unsigned I = 0, E = RetTys.size(); I != E; ++I) {
7550       EVT VT = RetTys[I];
7551       MVT RegisterVT = getRegisterType(CLI.RetTy->getContext(), VT);
7552       unsigned NumRegs = getNumRegisters(CLI.RetTy->getContext(), VT);
7553
7554       ReturnValues.push_back(getCopyFromParts(CLI.DAG, CLI.DL, &InVals[CurReg],
7555                                               NumRegs, RegisterVT, VT, nullptr,
7556                                               AssertOp));
7557       CurReg += NumRegs;
7558     }
7559
7560     // For a function returning void, there is no return value. We can't create
7561     // such a node, so we just return a null return value in that case. In
7562     // that case, nothing will actually look at the value.
7563     if (ReturnValues.empty())
7564       return std::make_pair(SDValue(), CLI.Chain);
7565   }
7566
7567   SDValue Res = CLI.DAG.getNode(ISD::MERGE_VALUES, CLI.DL,
7568                                 CLI.DAG.getVTList(RetTys), ReturnValues);
7569   return std::make_pair(Res, CLI.Chain);
7570 }
7571
7572 void TargetLowering::LowerOperationWrapper(SDNode *N,
7573                                            SmallVectorImpl<SDValue> &Results,
7574                                            SelectionDAG &DAG) const {
7575   SDValue Res = LowerOperation(SDValue(N, 0), DAG);
7576   if (Res.getNode())
7577     Results.push_back(Res);
7578 }
7579
7580 SDValue TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
7581   llvm_unreachable("LowerOperation not implemented for this target!");
7582 }
7583
7584 void
7585 SelectionDAGBuilder::CopyValueToVirtualRegister(const Value *V, unsigned Reg) {
7586   SDValue Op = getNonRegisterValue(V);
7587   assert((Op.getOpcode() != ISD::CopyFromReg ||
7588           cast<RegisterSDNode>(Op.getOperand(1))->getReg() != Reg) &&
7589          "Copy from a reg to the same reg!");
7590   assert(!TargetRegisterInfo::isPhysicalRegister(Reg) && "Is a physreg");
7591
7592   const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7593   RegsForValue RFV(V->getContext(), TLI, Reg, V->getType());
7594   SDValue Chain = DAG.getEntryNode();
7595
7596   ISD::NodeType ExtendType = (FuncInfo.PreferredExtendType.find(V) ==
7597                               FuncInfo.PreferredExtendType.end())
7598                                  ? ISD::ANY_EXTEND
7599                                  : FuncInfo.PreferredExtendType[V];
7600   RFV.getCopyToRegs(Op, DAG, getCurSDLoc(), Chain, nullptr, V, ExtendType);
7601   PendingExports.push_back(Chain);
7602 }
7603
7604 #include "llvm/CodeGen/SelectionDAGISel.h"
7605
7606 /// isOnlyUsedInEntryBlock - If the specified argument is only used in the
7607 /// entry block, return true.  This includes arguments used by switches, since
7608 /// the switch may expand into multiple basic blocks.
7609 static bool isOnlyUsedInEntryBlock(const Argument *A, bool FastISel) {
7610   // With FastISel active, we may be splitting blocks, so force creation
7611   // of virtual registers for all non-dead arguments.
7612   if (FastISel)
7613     return A->use_empty();
7614
7615   const BasicBlock *Entry = A->getParent()->begin();
7616   for (const User *U : A->users())
7617     if (cast<Instruction>(U)->getParent() != Entry || isa<SwitchInst>(U))
7618       return false;  // Use not in entry block.
7619
7620   return true;
7621 }
7622
7623 void SelectionDAGISel::LowerArguments(const Function &F) {
7624   SelectionDAG &DAG = SDB->DAG;
7625   SDLoc dl = SDB->getCurSDLoc();
7626   const DataLayout *DL = TLI->getDataLayout();
7627   SmallVector<ISD::InputArg, 16> Ins;
7628
7629   if (!FuncInfo->CanLowerReturn) {
7630     // Put in an sret pointer parameter before all the other parameters.
7631     SmallVector<EVT, 1> ValueVTs;
7632     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7633
7634     // NOTE: Assuming that a pointer will never break down to more than one VT
7635     // or one register.
7636     ISD::ArgFlagsTy Flags;
7637     Flags.setSRet();
7638     MVT RegisterVT = TLI->getRegisterType(*DAG.getContext(), ValueVTs[0]);
7639     ISD::InputArg RetArg(Flags, RegisterVT, ValueVTs[0], true, 0, 0);
7640     Ins.push_back(RetArg);
7641   }
7642
7643   // Set up the incoming argument description vector.
7644   unsigned Idx = 1;
7645   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end();
7646        I != E; ++I, ++Idx) {
7647     SmallVector<EVT, 4> ValueVTs;
7648     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7649     bool isArgValueUsed = !I->use_empty();
7650     unsigned PartBase = 0;
7651     Type *FinalType = I->getType();
7652     if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7653       FinalType = cast<PointerType>(FinalType)->getElementType();
7654     bool NeedsRegBlock = TLI->functionArgumentNeedsConsecutiveRegisters(
7655         FinalType, F.getCallingConv(), F.isVarArg());
7656     for (unsigned Value = 0, NumValues = ValueVTs.size();
7657          Value != NumValues; ++Value) {
7658       EVT VT = ValueVTs[Value];
7659       Type *ArgTy = VT.getTypeForEVT(*DAG.getContext());
7660       ISD::ArgFlagsTy Flags;
7661       unsigned OriginalAlignment = DL->getABITypeAlignment(ArgTy);
7662
7663       if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7664         Flags.setZExt();
7665       if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7666         Flags.setSExt();
7667       if (F.getAttributes().hasAttribute(Idx, Attribute::InReg))
7668         Flags.setInReg();
7669       if (F.getAttributes().hasAttribute(Idx, Attribute::StructRet))
7670         Flags.setSRet();
7671       if (F.getAttributes().hasAttribute(Idx, Attribute::ByVal))
7672         Flags.setByVal();
7673       if (F.getAttributes().hasAttribute(Idx, Attribute::InAlloca)) {
7674         Flags.setInAlloca();
7675         // Set the byval flag for CCAssignFn callbacks that don't know about
7676         // inalloca.  This way we can know how many bytes we should've allocated
7677         // and how many bytes a callee cleanup function will pop.  If we port
7678         // inalloca to more targets, we'll have to add custom inalloca handling
7679         // in the various CC lowering callbacks.
7680         Flags.setByVal();
7681       }
7682       if (Flags.isByVal() || Flags.isInAlloca()) {
7683         PointerType *Ty = cast<PointerType>(I->getType());
7684         Type *ElementTy = Ty->getElementType();
7685         Flags.setByValSize(DL->getTypeAllocSize(ElementTy));
7686         // For ByVal, alignment should be passed from FE.  BE will guess if
7687         // this info is not there but there are cases it cannot get right.
7688         unsigned FrameAlign;
7689         if (F.getParamAlignment(Idx))
7690           FrameAlign = F.getParamAlignment(Idx);
7691         else
7692           FrameAlign = TLI->getByValTypeAlignment(ElementTy);
7693         Flags.setByValAlign(FrameAlign);
7694       }
7695       if (F.getAttributes().hasAttribute(Idx, Attribute::Nest))
7696         Flags.setNest();
7697       if (NeedsRegBlock) {
7698         Flags.setInConsecutiveRegs();
7699         if (Value == NumValues - 1)
7700           Flags.setInConsecutiveRegsLast();
7701       }
7702       Flags.setOrigAlign(OriginalAlignment);
7703
7704       MVT RegisterVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7705       unsigned NumRegs = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7706       for (unsigned i = 0; i != NumRegs; ++i) {
7707         ISD::InputArg MyFlags(Flags, RegisterVT, VT, isArgValueUsed,
7708                               Idx-1, PartBase+i*RegisterVT.getStoreSize());
7709         if (NumRegs > 1 && i == 0)
7710           MyFlags.Flags.setSplit();
7711         // if it isn't first piece, alignment must be 1
7712         else if (i > 0)
7713           MyFlags.Flags.setOrigAlign(1);
7714         Ins.push_back(MyFlags);
7715       }
7716       PartBase += VT.getStoreSize();
7717     }
7718   }
7719
7720   // Call the target to set up the argument values.
7721   SmallVector<SDValue, 8> InVals;
7722   SDValue NewRoot = TLI->LowerFormalArguments(
7723       DAG.getRoot(), F.getCallingConv(), F.isVarArg(), Ins, dl, DAG, InVals);
7724
7725   // Verify that the target's LowerFormalArguments behaved as expected.
7726   assert(NewRoot.getNode() && NewRoot.getValueType() == MVT::Other &&
7727          "LowerFormalArguments didn't return a valid chain!");
7728   assert(InVals.size() == Ins.size() &&
7729          "LowerFormalArguments didn't emit the correct number of values!");
7730   DEBUG({
7731       for (unsigned i = 0, e = Ins.size(); i != e; ++i) {
7732         assert(InVals[i].getNode() &&
7733                "LowerFormalArguments emitted a null value!");
7734         assert(EVT(Ins[i].VT) == InVals[i].getValueType() &&
7735                "LowerFormalArguments emitted a value with the wrong type!");
7736       }
7737     });
7738
7739   // Update the DAG with the new chain value resulting from argument lowering.
7740   DAG.setRoot(NewRoot);
7741
7742   // Set up the argument values.
7743   unsigned i = 0;
7744   Idx = 1;
7745   if (!FuncInfo->CanLowerReturn) {
7746     // Create a virtual register for the sret pointer, and put in a copy
7747     // from the sret argument into it.
7748     SmallVector<EVT, 1> ValueVTs;
7749     ComputeValueVTs(*TLI, PointerType::getUnqual(F.getReturnType()), ValueVTs);
7750     MVT VT = ValueVTs[0].getSimpleVT();
7751     MVT RegVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7752     ISD::NodeType AssertOp = ISD::DELETED_NODE;
7753     SDValue ArgValue = getCopyFromParts(DAG, dl, &InVals[0], 1,
7754                                         RegVT, VT, nullptr, AssertOp);
7755
7756     MachineFunction& MF = SDB->DAG.getMachineFunction();
7757     MachineRegisterInfo& RegInfo = MF.getRegInfo();
7758     unsigned SRetReg = RegInfo.createVirtualRegister(TLI->getRegClassFor(RegVT));
7759     FuncInfo->DemoteRegister = SRetReg;
7760     NewRoot =
7761         SDB->DAG.getCopyToReg(NewRoot, SDB->getCurSDLoc(), SRetReg, ArgValue);
7762     DAG.setRoot(NewRoot);
7763
7764     // i indexes lowered arguments.  Bump it past the hidden sret argument.
7765     // Idx indexes LLVM arguments.  Don't touch it.
7766     ++i;
7767   }
7768
7769   for (Function::const_arg_iterator I = F.arg_begin(), E = F.arg_end(); I != E;
7770       ++I, ++Idx) {
7771     SmallVector<SDValue, 4> ArgValues;
7772     SmallVector<EVT, 4> ValueVTs;
7773     ComputeValueVTs(*TLI, I->getType(), ValueVTs);
7774     unsigned NumValues = ValueVTs.size();
7775
7776     // If this argument is unused then remember its value. It is used to generate
7777     // debugging information.
7778     if (I->use_empty() && NumValues) {
7779       SDB->setUnusedArgValue(I, InVals[i]);
7780
7781       // Also remember any frame index for use in FastISel.
7782       if (FrameIndexSDNode *FI =
7783           dyn_cast<FrameIndexSDNode>(InVals[i].getNode()))
7784         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7785     }
7786
7787     for (unsigned Val = 0; Val != NumValues; ++Val) {
7788       EVT VT = ValueVTs[Val];
7789       MVT PartVT = TLI->getRegisterType(*CurDAG->getContext(), VT);
7790       unsigned NumParts = TLI->getNumRegisters(*CurDAG->getContext(), VT);
7791
7792       if (!I->use_empty()) {
7793         ISD::NodeType AssertOp = ISD::DELETED_NODE;
7794         if (F.getAttributes().hasAttribute(Idx, Attribute::SExt))
7795           AssertOp = ISD::AssertSext;
7796         else if (F.getAttributes().hasAttribute(Idx, Attribute::ZExt))
7797           AssertOp = ISD::AssertZext;
7798
7799         ArgValues.push_back(getCopyFromParts(DAG, dl, &InVals[i],
7800                                              NumParts, PartVT, VT,
7801                                              nullptr, AssertOp));
7802       }
7803
7804       i += NumParts;
7805     }
7806
7807     // We don't need to do anything else for unused arguments.
7808     if (ArgValues.empty())
7809       continue;
7810
7811     // Note down frame index.
7812     if (FrameIndexSDNode *FI =
7813         dyn_cast<FrameIndexSDNode>(ArgValues[0].getNode()))
7814       FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7815
7816     SDValue Res = DAG.getMergeValues(makeArrayRef(ArgValues.data(), NumValues),
7817                                      SDB->getCurSDLoc());
7818
7819     SDB->setValue(I, Res);
7820     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::BUILD_PAIR) {
7821       if (LoadSDNode *LNode =
7822           dyn_cast<LoadSDNode>(Res.getOperand(0).getNode()))
7823         if (FrameIndexSDNode *FI =
7824             dyn_cast<FrameIndexSDNode>(LNode->getBasePtr().getNode()))
7825         FuncInfo->setArgumentFrameIndex(I, FI->getIndex());
7826     }
7827
7828     // If this argument is live outside of the entry block, insert a copy from
7829     // wherever we got it to the vreg that other BB's will reference it as.
7830     if (!TM.Options.EnableFastISel && Res.getOpcode() == ISD::CopyFromReg) {
7831       // If we can, though, try to skip creating an unnecessary vreg.
7832       // FIXME: This isn't very clean... it would be nice to make this more
7833       // general.  It's also subtly incompatible with the hacks FastISel
7834       // uses with vregs.
7835       unsigned Reg = cast<RegisterSDNode>(Res.getOperand(1))->getReg();
7836       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
7837         FuncInfo->ValueMap[I] = Reg;
7838         continue;
7839       }
7840     }
7841     if (!isOnlyUsedInEntryBlock(I, TM.Options.EnableFastISel)) {
7842       FuncInfo->InitializeRegForValue(I);
7843       SDB->CopyToExportRegsIfNeeded(I);
7844     }
7845   }
7846
7847   assert(i == InVals.size() && "Argument register count mismatch!");
7848
7849   // Finally, if the target has anything special to do, allow it to do so.
7850   // FIXME: this should insert code into the DAG!
7851   EmitFunctionEntryCode();
7852 }
7853
7854 /// Handle PHI nodes in successor blocks.  Emit code into the SelectionDAG to
7855 /// ensure constants are generated when needed.  Remember the virtual registers
7856 /// that need to be added to the Machine PHI nodes as input.  We cannot just
7857 /// directly add them, because expansion might result in multiple MBB's for one
7858 /// BB.  As such, the start of the BB might correspond to a different MBB than
7859 /// the end.
7860 ///
7861 void
7862 SelectionDAGBuilder::HandlePHINodesInSuccessorBlocks(const BasicBlock *LLVMBB) {
7863   const TerminatorInst *TI = LLVMBB->getTerminator();
7864
7865   SmallPtrSet<MachineBasicBlock *, 4> SuccsHandled;
7866
7867   // Check successor nodes' PHI nodes that expect a constant to be available
7868   // from this block.
7869   for (unsigned succ = 0, e = TI->getNumSuccessors(); succ != e; ++succ) {
7870     const BasicBlock *SuccBB = TI->getSuccessor(succ);
7871     if (!isa<PHINode>(SuccBB->begin())) continue;
7872     MachineBasicBlock *SuccMBB = FuncInfo.MBBMap[SuccBB];
7873
7874     // If this terminator has multiple identical successors (common for
7875     // switches), only handle each succ once.
7876     if (!SuccsHandled.insert(SuccMBB).second)
7877       continue;
7878
7879     MachineBasicBlock::iterator MBBI = SuccMBB->begin();
7880
7881     // At this point we know that there is a 1-1 correspondence between LLVM PHI
7882     // nodes and Machine PHI nodes, but the incoming operands have not been
7883     // emitted yet.
7884     for (BasicBlock::const_iterator I = SuccBB->begin();
7885          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
7886       // Ignore dead phi's.
7887       if (PN->use_empty()) continue;
7888
7889       // Skip empty types
7890       if (PN->getType()->isEmptyTy())
7891         continue;
7892
7893       unsigned Reg;
7894       const Value *PHIOp = PN->getIncomingValueForBlock(LLVMBB);
7895
7896       if (const Constant *C = dyn_cast<Constant>(PHIOp)) {
7897         unsigned &RegOut = ConstantsOut[C];
7898         if (RegOut == 0) {
7899           RegOut = FuncInfo.CreateRegs(C->getType());
7900           CopyValueToVirtualRegister(C, RegOut);
7901         }
7902         Reg = RegOut;
7903       } else {
7904         DenseMap<const Value *, unsigned>::iterator I =
7905           FuncInfo.ValueMap.find(PHIOp);
7906         if (I != FuncInfo.ValueMap.end())
7907           Reg = I->second;
7908         else {
7909           assert(isa<AllocaInst>(PHIOp) &&
7910                  FuncInfo.StaticAllocaMap.count(cast<AllocaInst>(PHIOp)) &&
7911                  "Didn't codegen value into a register!??");
7912           Reg = FuncInfo.CreateRegs(PHIOp->getType());
7913           CopyValueToVirtualRegister(PHIOp, Reg);
7914         }
7915       }
7916
7917       // Remember that this register needs to added to the machine PHI node as
7918       // the input for this MBB.
7919       SmallVector<EVT, 4> ValueVTs;
7920       const TargetLowering &TLI = DAG.getTargetLoweringInfo();
7921       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
7922       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
7923         EVT VT = ValueVTs[vti];
7924         unsigned NumRegisters = TLI.getNumRegisters(*DAG.getContext(), VT);
7925         for (unsigned i = 0, e = NumRegisters; i != e; ++i)
7926           FuncInfo.PHINodesToUpdate.push_back(std::make_pair(MBBI++, Reg+i));
7927         Reg += NumRegisters;
7928       }
7929     }
7930   }
7931
7932   ConstantsOut.clear();
7933 }
7934
7935 /// Add a successor MBB to ParentMBB< creating a new MachineBB for BB if SuccMBB
7936 /// is 0.
7937 MachineBasicBlock *
7938 SelectionDAGBuilder::StackProtectorDescriptor::
7939 AddSuccessorMBB(const BasicBlock *BB,
7940                 MachineBasicBlock *ParentMBB,
7941                 bool IsLikely,
7942                 MachineBasicBlock *SuccMBB) {
7943   // If SuccBB has not been created yet, create it.
7944   if (!SuccMBB) {
7945     MachineFunction *MF = ParentMBB->getParent();
7946     MachineFunction::iterator BBI = ParentMBB;
7947     SuccMBB = MF->CreateMachineBasicBlock(BB);
7948     MF->insert(++BBI, SuccMBB);
7949   }
7950   // Add it as a successor of ParentMBB.
7951   ParentMBB->addSuccessor(
7952       SuccMBB, BranchProbabilityInfo::getBranchWeightStackProtector(IsLikely));
7953   return SuccMBB;
7954 }