The hazard recognizer only needs a subtarget, not a target machine
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGRRList.cpp
1 //===----- ScheduleDAGRRList.cpp - Reg pressure reduction list scheduler --===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements bottom-up and top-down register pressure reduction list
11 // schedulers, using standard algorithms.  The basic approach uses a priority
12 // queue of available nodes to schedule.  One at a time, nodes are taken from
13 // the priority queue (thus in priority order), checked for legality to
14 // schedule, and emitted if legal.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #include "llvm/CodeGen/SchedulerRegistry.h"
19 #include "ScheduleDAGSDNodes.h"
20 #include "llvm/ADT/STLExtras.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
25 #include "llvm/CodeGen/SelectionDAGISel.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/InlineAsm.h"
28 #include "llvm/Support/Debug.h"
29 #include "llvm/Support/ErrorHandling.h"
30 #include "llvm/Support/raw_ostream.h"
31 #include "llvm/Target/TargetInstrInfo.h"
32 #include "llvm/Target/TargetLowering.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include <climits>
36 using namespace llvm;
37
38 #define DEBUG_TYPE "pre-RA-sched"
39
40 STATISTIC(NumBacktracks, "Number of times scheduler backtracked");
41 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
42 STATISTIC(NumDups,       "Number of duplicated nodes");
43 STATISTIC(NumPRCopies,   "Number of physical register copies");
44
45 static RegisterScheduler
46   burrListDAGScheduler("list-burr",
47                        "Bottom-up register reduction list scheduling",
48                        createBURRListDAGScheduler);
49 static RegisterScheduler
50   sourceListDAGScheduler("source",
51                          "Similar to list-burr but schedules in source "
52                          "order when possible",
53                          createSourceListDAGScheduler);
54
55 static RegisterScheduler
56   hybridListDAGScheduler("list-hybrid",
57                          "Bottom-up register pressure aware list scheduling "
58                          "which tries to balance latency and register pressure",
59                          createHybridListDAGScheduler);
60
61 static RegisterScheduler
62   ILPListDAGScheduler("list-ilp",
63                       "Bottom-up register pressure aware list scheduling "
64                       "which tries to balance ILP and register pressure",
65                       createILPListDAGScheduler);
66
67 static cl::opt<bool> DisableSchedCycles(
68   "disable-sched-cycles", cl::Hidden, cl::init(false),
69   cl::desc("Disable cycle-level precision during preRA scheduling"));
70
71 // Temporary sched=list-ilp flags until the heuristics are robust.
72 // Some options are also available under sched=list-hybrid.
73 static cl::opt<bool> DisableSchedRegPressure(
74   "disable-sched-reg-pressure", cl::Hidden, cl::init(false),
75   cl::desc("Disable regpressure priority in sched=list-ilp"));
76 static cl::opt<bool> DisableSchedLiveUses(
77   "disable-sched-live-uses", cl::Hidden, cl::init(true),
78   cl::desc("Disable live use priority in sched=list-ilp"));
79 static cl::opt<bool> DisableSchedVRegCycle(
80   "disable-sched-vrcycle", cl::Hidden, cl::init(false),
81   cl::desc("Disable virtual register cycle interference checks"));
82 static cl::opt<bool> DisableSchedPhysRegJoin(
83   "disable-sched-physreg-join", cl::Hidden, cl::init(false),
84   cl::desc("Disable physreg def-use affinity"));
85 static cl::opt<bool> DisableSchedStalls(
86   "disable-sched-stalls", cl::Hidden, cl::init(true),
87   cl::desc("Disable no-stall priority in sched=list-ilp"));
88 static cl::opt<bool> DisableSchedCriticalPath(
89   "disable-sched-critical-path", cl::Hidden, cl::init(false),
90   cl::desc("Disable critical path priority in sched=list-ilp"));
91 static cl::opt<bool> DisableSchedHeight(
92   "disable-sched-height", cl::Hidden, cl::init(false),
93   cl::desc("Disable scheduled-height priority in sched=list-ilp"));
94 static cl::opt<bool> Disable2AddrHack(
95   "disable-2addr-hack", cl::Hidden, cl::init(true),
96   cl::desc("Disable scheduler's two-address hack"));
97
98 static cl::opt<int> MaxReorderWindow(
99   "max-sched-reorder", cl::Hidden, cl::init(6),
100   cl::desc("Number of instructions to allow ahead of the critical path "
101            "in sched=list-ilp"));
102
103 static cl::opt<unsigned> AvgIPC(
104   "sched-avg-ipc", cl::Hidden, cl::init(1),
105   cl::desc("Average inst/cycle whan no target itinerary exists."));
106
107 namespace {
108 //===----------------------------------------------------------------------===//
109 /// ScheduleDAGRRList - The actual register reduction list scheduler
110 /// implementation.  This supports both top-down and bottom-up scheduling.
111 ///
112 class ScheduleDAGRRList : public ScheduleDAGSDNodes {
113 private:
114   /// NeedLatency - True if the scheduler will make use of latency information.
115   ///
116   bool NeedLatency;
117
118   /// AvailableQueue - The priority queue to use for the available SUnits.
119   SchedulingPriorityQueue *AvailableQueue;
120
121   /// PendingQueue - This contains all of the instructions whose operands have
122   /// been issued, but their results are not ready yet (due to the latency of
123   /// the operation).  Once the operands becomes available, the instruction is
124   /// added to the AvailableQueue.
125   std::vector<SUnit*> PendingQueue;
126
127   /// HazardRec - The hazard recognizer to use.
128   ScheduleHazardRecognizer *HazardRec;
129
130   /// CurCycle - The current scheduler state corresponds to this cycle.
131   unsigned CurCycle;
132
133   /// MinAvailableCycle - Cycle of the soonest available instruction.
134   unsigned MinAvailableCycle;
135
136   /// IssueCount - Count instructions issued in this cycle
137   /// Currently valid only for bottom-up scheduling.
138   unsigned IssueCount;
139
140   /// LiveRegDefs - A set of physical registers and their definition
141   /// that are "live". These nodes must be scheduled before any other nodes that
142   /// modifies the registers can be scheduled.
143   unsigned NumLiveRegs;
144   std::vector<SUnit*> LiveRegDefs;
145   std::vector<SUnit*> LiveRegGens;
146
147   // Collect interferences between physical register use/defs.
148   // Each interference is an SUnit and set of physical registers.
149   SmallVector<SUnit*, 4> Interferences;
150   typedef DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMapT;
151   LRegsMapT LRegsMap;
152
153   /// Topo - A topological ordering for SUnits which permits fast IsReachable
154   /// and similar queries.
155   ScheduleDAGTopologicalSort Topo;
156
157   // Hack to keep track of the inverse of FindCallSeqStart without more crazy
158   // DAG crawling.
159   DenseMap<SUnit*, SUnit*> CallSeqEndForStart;
160
161 public:
162   ScheduleDAGRRList(MachineFunction &mf, bool needlatency,
163                     SchedulingPriorityQueue *availqueue,
164                     CodeGenOpt::Level OptLevel)
165     : ScheduleDAGSDNodes(mf),
166       NeedLatency(needlatency), AvailableQueue(availqueue), CurCycle(0),
167       Topo(SUnits, nullptr) {
168
169     const TargetMachine &tm = mf.getTarget();
170     if (DisableSchedCycles || !NeedLatency)
171       HazardRec = new ScheduleHazardRecognizer();
172     else
173       HazardRec = tm.getInstrInfo()->CreateTargetHazardRecognizer(
174           tm.getSubtargetImpl(), this);
175   }
176
177   ~ScheduleDAGRRList() {
178     delete HazardRec;
179     delete AvailableQueue;
180   }
181
182   void Schedule() override;
183
184   ScheduleHazardRecognizer *getHazardRec() { return HazardRec; }
185
186   /// IsReachable - Checks if SU is reachable from TargetSU.
187   bool IsReachable(const SUnit *SU, const SUnit *TargetSU) {
188     return Topo.IsReachable(SU, TargetSU);
189   }
190
191   /// WillCreateCycle - Returns true if adding an edge from SU to TargetSU will
192   /// create a cycle.
193   bool WillCreateCycle(SUnit *SU, SUnit *TargetSU) {
194     return Topo.WillCreateCycle(SU, TargetSU);
195   }
196
197   /// AddPred - adds a predecessor edge to SUnit SU.
198   /// This returns true if this is a new predecessor.
199   /// Updates the topological ordering if required.
200   void AddPred(SUnit *SU, const SDep &D) {
201     Topo.AddPred(SU, D.getSUnit());
202     SU->addPred(D);
203   }
204
205   /// RemovePred - removes a predecessor edge from SUnit SU.
206   /// This returns true if an edge was removed.
207   /// Updates the topological ordering if required.
208   void RemovePred(SUnit *SU, const SDep &D) {
209     Topo.RemovePred(SU, D.getSUnit());
210     SU->removePred(D);
211   }
212
213 private:
214   bool isReady(SUnit *SU) {
215     return DisableSchedCycles || !AvailableQueue->hasReadyFilter() ||
216       AvailableQueue->isReady(SU);
217   }
218
219   void ReleasePred(SUnit *SU, const SDep *PredEdge);
220   void ReleasePredecessors(SUnit *SU);
221   void ReleasePending();
222   void AdvanceToCycle(unsigned NextCycle);
223   void AdvancePastStalls(SUnit *SU);
224   void EmitNode(SUnit *SU);
225   void ScheduleNodeBottomUp(SUnit*);
226   void CapturePred(SDep *PredEdge);
227   void UnscheduleNodeBottomUp(SUnit*);
228   void RestoreHazardCheckerBottomUp();
229   void BacktrackBottomUp(SUnit*, SUnit*);
230   SUnit *CopyAndMoveSuccessors(SUnit*);
231   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
232                                 const TargetRegisterClass*,
233                                 const TargetRegisterClass*,
234                                 SmallVectorImpl<SUnit*>&);
235   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
236
237   void releaseInterferences(unsigned Reg = 0);
238
239   SUnit *PickNodeToScheduleBottomUp();
240   void ListScheduleBottomUp();
241
242   /// CreateNewSUnit - Creates a new SUnit and returns a pointer to it.
243   /// Updates the topological ordering if required.
244   SUnit *CreateNewSUnit(SDNode *N) {
245     unsigned NumSUnits = SUnits.size();
246     SUnit *NewNode = newSUnit(N);
247     // Update the topological ordering.
248     if (NewNode->NodeNum >= NumSUnits)
249       Topo.InitDAGTopologicalSorting();
250     return NewNode;
251   }
252
253   /// CreateClone - Creates a new SUnit from an existing one.
254   /// Updates the topological ordering if required.
255   SUnit *CreateClone(SUnit *N) {
256     unsigned NumSUnits = SUnits.size();
257     SUnit *NewNode = Clone(N);
258     // Update the topological ordering.
259     if (NewNode->NodeNum >= NumSUnits)
260       Topo.InitDAGTopologicalSorting();
261     return NewNode;
262   }
263
264   /// forceUnitLatencies - Register-pressure-reducing scheduling doesn't
265   /// need actual latency information but the hybrid scheduler does.
266   bool forceUnitLatencies() const override {
267     return !NeedLatency;
268   }
269 };
270 }  // end anonymous namespace
271
272 /// GetCostForDef - Looks up the register class and cost for a given definition.
273 /// Typically this just means looking up the representative register class,
274 /// but for untyped values (MVT::Untyped) it means inspecting the node's
275 /// opcode to determine what register class is being generated.
276 static void GetCostForDef(const ScheduleDAGSDNodes::RegDefIter &RegDefPos,
277                           const TargetLowering *TLI,
278                           const TargetInstrInfo *TII,
279                           const TargetRegisterInfo *TRI,
280                           unsigned &RegClass, unsigned &Cost,
281                           const MachineFunction &MF) {
282   MVT VT = RegDefPos.GetValue();
283
284   // Special handling for untyped values.  These values can only come from
285   // the expansion of custom DAG-to-DAG patterns.
286   if (VT == MVT::Untyped) {
287     const SDNode *Node = RegDefPos.GetNode();
288
289     // Special handling for CopyFromReg of untyped values.
290     if (!Node->isMachineOpcode() && Node->getOpcode() == ISD::CopyFromReg) {
291       unsigned Reg = cast<RegisterSDNode>(Node->getOperand(1))->getReg();
292       const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(Reg);
293       RegClass = RC->getID();
294       Cost = 1;
295       return;
296     }
297
298     unsigned Opcode = Node->getMachineOpcode();
299     if (Opcode == TargetOpcode::REG_SEQUENCE) {
300       unsigned DstRCIdx = cast<ConstantSDNode>(Node->getOperand(0))->getZExtValue();
301       const TargetRegisterClass *RC = TRI->getRegClass(DstRCIdx);
302       RegClass = RC->getID();
303       Cost = 1;
304       return;
305     }
306
307     unsigned Idx = RegDefPos.GetIdx();
308     const MCInstrDesc Desc = TII->get(Opcode);
309     const TargetRegisterClass *RC = TII->getRegClass(Desc, Idx, TRI, MF);
310     RegClass = RC->getID();
311     // FIXME: Cost arbitrarily set to 1 because there doesn't seem to be a
312     // better way to determine it.
313     Cost = 1;
314   } else {
315     RegClass = TLI->getRepRegClassFor(VT)->getID();
316     Cost = TLI->getRepRegClassCostFor(VT);
317   }
318 }
319
320 /// Schedule - Schedule the DAG using list scheduling.
321 void ScheduleDAGRRList::Schedule() {
322   DEBUG(dbgs()
323         << "********** List Scheduling BB#" << BB->getNumber()
324         << " '" << BB->getName() << "' **********\n");
325
326   CurCycle = 0;
327   IssueCount = 0;
328   MinAvailableCycle = DisableSchedCycles ? 0 : UINT_MAX;
329   NumLiveRegs = 0;
330   // Allocate slots for each physical register, plus one for a special register
331   // to track the virtual resource of a calling sequence.
332   LiveRegDefs.resize(TRI->getNumRegs() + 1, nullptr);
333   LiveRegGens.resize(TRI->getNumRegs() + 1, nullptr);
334   CallSeqEndForStart.clear();
335   assert(Interferences.empty() && LRegsMap.empty() && "stale Interferences");
336
337   // Build the scheduling graph.
338   BuildSchedGraph(nullptr);
339
340   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
341           SUnits[su].dumpAll(this));
342   Topo.InitDAGTopologicalSorting();
343
344   AvailableQueue->initNodes(SUnits);
345
346   HazardRec->Reset();
347
348   // Execute the actual scheduling loop.
349   ListScheduleBottomUp();
350
351   AvailableQueue->releaseState();
352
353   DEBUG({
354       dbgs() << "*** Final schedule ***\n";
355       dumpSchedule();
356       dbgs() << '\n';
357     });
358 }
359
360 //===----------------------------------------------------------------------===//
361 //  Bottom-Up Scheduling
362 //===----------------------------------------------------------------------===//
363
364 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
365 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
366 void ScheduleDAGRRList::ReleasePred(SUnit *SU, const SDep *PredEdge) {
367   SUnit *PredSU = PredEdge->getSUnit();
368
369 #ifndef NDEBUG
370   if (PredSU->NumSuccsLeft == 0) {
371     dbgs() << "*** Scheduling failed! ***\n";
372     PredSU->dump(this);
373     dbgs() << " has been released too many times!\n";
374     llvm_unreachable(nullptr);
375   }
376 #endif
377   --PredSU->NumSuccsLeft;
378
379   if (!forceUnitLatencies()) {
380     // Updating predecessor's height. This is now the cycle when the
381     // predecessor can be scheduled without causing a pipeline stall.
382     PredSU->setHeightToAtLeast(SU->getHeight() + PredEdge->getLatency());
383   }
384
385   // If all the node's successors are scheduled, this node is ready
386   // to be scheduled. Ignore the special EntrySU node.
387   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
388     PredSU->isAvailable = true;
389
390     unsigned Height = PredSU->getHeight();
391     if (Height < MinAvailableCycle)
392       MinAvailableCycle = Height;
393
394     if (isReady(PredSU)) {
395       AvailableQueue->push(PredSU);
396     }
397     // CapturePred and others may have left the node in the pending queue, avoid
398     // adding it twice.
399     else if (!PredSU->isPending) {
400       PredSU->isPending = true;
401       PendingQueue.push_back(PredSU);
402     }
403   }
404 }
405
406 /// IsChainDependent - Test if Outer is reachable from Inner through
407 /// chain dependencies.
408 static bool IsChainDependent(SDNode *Outer, SDNode *Inner,
409                              unsigned NestLevel,
410                              const TargetInstrInfo *TII) {
411   SDNode *N = Outer;
412   for (;;) {
413     if (N == Inner)
414       return true;
415     // For a TokenFactor, examine each operand. There may be multiple ways
416     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
417     // most nesting in order to ensure that we find the corresponding match.
418     if (N->getOpcode() == ISD::TokenFactor) {
419       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
420         if (IsChainDependent(N->getOperand(i).getNode(), Inner, NestLevel, TII))
421           return true;
422       return false;
423     }
424     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
425     if (N->isMachineOpcode()) {
426       if (N->getMachineOpcode() ==
427           (unsigned)TII->getCallFrameDestroyOpcode()) {
428         ++NestLevel;
429       } else if (N->getMachineOpcode() ==
430                  (unsigned)TII->getCallFrameSetupOpcode()) {
431         if (NestLevel == 0)
432           return false;
433         --NestLevel;
434       }
435     }
436     // Otherwise, find the chain and continue climbing.
437     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
438       if (N->getOperand(i).getValueType() == MVT::Other) {
439         N = N->getOperand(i).getNode();
440         goto found_chain_operand;
441       }
442     return false;
443   found_chain_operand:;
444     if (N->getOpcode() == ISD::EntryToken)
445       return false;
446   }
447 }
448
449 /// FindCallSeqStart - Starting from the (lowered) CALLSEQ_END node, locate
450 /// the corresponding (lowered) CALLSEQ_BEGIN node.
451 ///
452 /// NestLevel and MaxNested are used in recursion to indcate the current level
453 /// of nesting of CALLSEQ_BEGIN and CALLSEQ_END pairs, as well as the maximum
454 /// level seen so far.
455 ///
456 /// TODO: It would be better to give CALLSEQ_END an explicit operand to point
457 /// to the corresponding CALLSEQ_BEGIN to avoid needing to search for it.
458 static SDNode *
459 FindCallSeqStart(SDNode *N, unsigned &NestLevel, unsigned &MaxNest,
460                  const TargetInstrInfo *TII) {
461   for (;;) {
462     // For a TokenFactor, examine each operand. There may be multiple ways
463     // to get to the CALLSEQ_BEGIN, but we need to find the path with the
464     // most nesting in order to ensure that we find the corresponding match.
465     if (N->getOpcode() == ISD::TokenFactor) {
466       SDNode *Best = nullptr;
467       unsigned BestMaxNest = MaxNest;
468       for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
469         unsigned MyNestLevel = NestLevel;
470         unsigned MyMaxNest = MaxNest;
471         if (SDNode *New = FindCallSeqStart(N->getOperand(i).getNode(),
472                                            MyNestLevel, MyMaxNest, TII))
473           if (!Best || (MyMaxNest > BestMaxNest)) {
474             Best = New;
475             BestMaxNest = MyMaxNest;
476           }
477       }
478       assert(Best);
479       MaxNest = BestMaxNest;
480       return Best;
481     }
482     // Check for a lowered CALLSEQ_BEGIN or CALLSEQ_END.
483     if (N->isMachineOpcode()) {
484       if (N->getMachineOpcode() ==
485           (unsigned)TII->getCallFrameDestroyOpcode()) {
486         ++NestLevel;
487         MaxNest = std::max(MaxNest, NestLevel);
488       } else if (N->getMachineOpcode() ==
489                  (unsigned)TII->getCallFrameSetupOpcode()) {
490         assert(NestLevel != 0);
491         --NestLevel;
492         if (NestLevel == 0)
493           return N;
494       }
495     }
496     // Otherwise, find the chain and continue climbing.
497     for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
498       if (N->getOperand(i).getValueType() == MVT::Other) {
499         N = N->getOperand(i).getNode();
500         goto found_chain_operand;
501       }
502     return nullptr;
503   found_chain_operand:;
504     if (N->getOpcode() == ISD::EntryToken)
505       return nullptr;
506   }
507 }
508
509 /// Call ReleasePred for each predecessor, then update register live def/gen.
510 /// Always update LiveRegDefs for a register dependence even if the current SU
511 /// also defines the register. This effectively create one large live range
512 /// across a sequence of two-address node. This is important because the
513 /// entire chain must be scheduled together. Example:
514 ///
515 /// flags = (3) add
516 /// flags = (2) addc flags
517 /// flags = (1) addc flags
518 ///
519 /// results in
520 ///
521 /// LiveRegDefs[flags] = 3
522 /// LiveRegGens[flags] = 1
523 ///
524 /// If (2) addc is unscheduled, then (1) addc must also be unscheduled to avoid
525 /// interference on flags.
526 void ScheduleDAGRRList::ReleasePredecessors(SUnit *SU) {
527   // Bottom up: release predecessors
528   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
529        I != E; ++I) {
530     ReleasePred(SU, &*I);
531     if (I->isAssignedRegDep()) {
532       // This is a physical register dependency and it's impossible or
533       // expensive to copy the register. Make sure nothing that can
534       // clobber the register is scheduled between the predecessor and
535       // this node.
536       SUnit *RegDef = LiveRegDefs[I->getReg()]; (void)RegDef;
537       assert((!RegDef || RegDef == SU || RegDef == I->getSUnit()) &&
538              "interference on register dependence");
539       LiveRegDefs[I->getReg()] = I->getSUnit();
540       if (!LiveRegGens[I->getReg()]) {
541         ++NumLiveRegs;
542         LiveRegGens[I->getReg()] = SU;
543       }
544     }
545   }
546
547   // If we're scheduling a lowered CALLSEQ_END, find the corresponding
548   // CALLSEQ_BEGIN. Inject an artificial physical register dependence between
549   // these nodes, to prevent other calls from being interscheduled with them.
550   unsigned CallResource = TRI->getNumRegs();
551   if (!LiveRegDefs[CallResource])
552     for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode())
553       if (Node->isMachineOpcode() &&
554           Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
555         unsigned NestLevel = 0;
556         unsigned MaxNest = 0;
557         SDNode *N = FindCallSeqStart(Node, NestLevel, MaxNest, TII);
558
559         SUnit *Def = &SUnits[N->getNodeId()];
560         CallSeqEndForStart[Def] = SU;
561
562         ++NumLiveRegs;
563         LiveRegDefs[CallResource] = Def;
564         LiveRegGens[CallResource] = SU;
565         break;
566       }
567 }
568
569 /// Check to see if any of the pending instructions are ready to issue.  If
570 /// so, add them to the available queue.
571 void ScheduleDAGRRList::ReleasePending() {
572   if (DisableSchedCycles) {
573     assert(PendingQueue.empty() && "pending instrs not allowed in this mode");
574     return;
575   }
576
577   // If the available queue is empty, it is safe to reset MinAvailableCycle.
578   if (AvailableQueue->empty())
579     MinAvailableCycle = UINT_MAX;
580
581   // Check to see if any of the pending instructions are ready to issue.  If
582   // so, add them to the available queue.
583   for (unsigned i = 0, e = PendingQueue.size(); i != e; ++i) {
584     unsigned ReadyCycle = PendingQueue[i]->getHeight();
585     if (ReadyCycle < MinAvailableCycle)
586       MinAvailableCycle = ReadyCycle;
587
588     if (PendingQueue[i]->isAvailable) {
589       if (!isReady(PendingQueue[i]))
590           continue;
591       AvailableQueue->push(PendingQueue[i]);
592     }
593     PendingQueue[i]->isPending = false;
594     PendingQueue[i] = PendingQueue.back();
595     PendingQueue.pop_back();
596     --i; --e;
597   }
598 }
599
600 /// Move the scheduler state forward by the specified number of Cycles.
601 void ScheduleDAGRRList::AdvanceToCycle(unsigned NextCycle) {
602   if (NextCycle <= CurCycle)
603     return;
604
605   IssueCount = 0;
606   AvailableQueue->setCurCycle(NextCycle);
607   if (!HazardRec->isEnabled()) {
608     // Bypass lots of virtual calls in case of long latency.
609     CurCycle = NextCycle;
610   }
611   else {
612     for (; CurCycle != NextCycle; ++CurCycle) {
613       HazardRec->RecedeCycle();
614     }
615   }
616   // FIXME: Instead of visiting the pending Q each time, set a dirty flag on the
617   // available Q to release pending nodes at least once before popping.
618   ReleasePending();
619 }
620
621 /// Move the scheduler state forward until the specified node's dependents are
622 /// ready and can be scheduled with no resource conflicts.
623 void ScheduleDAGRRList::AdvancePastStalls(SUnit *SU) {
624   if (DisableSchedCycles)
625     return;
626
627   // FIXME: Nodes such as CopyFromReg probably should not advance the current
628   // cycle. Otherwise, we can wrongly mask real stalls. If the non-machine node
629   // has predecessors the cycle will be advanced when they are scheduled.
630   // But given the crude nature of modeling latency though such nodes, we
631   // currently need to treat these nodes like real instructions.
632   // if (!SU->getNode() || !SU->getNode()->isMachineOpcode()) return;
633
634   unsigned ReadyCycle = SU->getHeight();
635
636   // Bump CurCycle to account for latency. We assume the latency of other
637   // available instructions may be hidden by the stall (not a full pipe stall).
638   // This updates the hazard recognizer's cycle before reserving resources for
639   // this instruction.
640   AdvanceToCycle(ReadyCycle);
641
642   // Calls are scheduled in their preceding cycle, so don't conflict with
643   // hazards from instructions after the call. EmitNode will reset the
644   // scoreboard state before emitting the call.
645   if (SU->isCall)
646     return;
647
648   // FIXME: For resource conflicts in very long non-pipelined stages, we
649   // should probably skip ahead here to avoid useless scoreboard checks.
650   int Stalls = 0;
651   while (true) {
652     ScheduleHazardRecognizer::HazardType HT =
653       HazardRec->getHazardType(SU, -Stalls);
654
655     if (HT == ScheduleHazardRecognizer::NoHazard)
656       break;
657
658     ++Stalls;
659   }
660   AdvanceToCycle(CurCycle + Stalls);
661 }
662
663 /// Record this SUnit in the HazardRecognizer.
664 /// Does not update CurCycle.
665 void ScheduleDAGRRList::EmitNode(SUnit *SU) {
666   if (!HazardRec->isEnabled())
667     return;
668
669   // Check for phys reg copy.
670   if (!SU->getNode())
671     return;
672
673   switch (SU->getNode()->getOpcode()) {
674   default:
675     assert(SU->getNode()->isMachineOpcode() &&
676            "This target-independent node should not be scheduled.");
677     break;
678   case ISD::MERGE_VALUES:
679   case ISD::TokenFactor:
680   case ISD::LIFETIME_START:
681   case ISD::LIFETIME_END:
682   case ISD::CopyToReg:
683   case ISD::CopyFromReg:
684   case ISD::EH_LABEL:
685     // Noops don't affect the scoreboard state. Copies are likely to be
686     // removed.
687     return;
688   case ISD::INLINEASM:
689     // For inline asm, clear the pipeline state.
690     HazardRec->Reset();
691     return;
692   }
693   if (SU->isCall) {
694     // Calls are scheduled with their preceding instructions. For bottom-up
695     // scheduling, clear the pipeline state before emitting.
696     HazardRec->Reset();
697   }
698
699   HazardRec->EmitInstruction(SU);
700 }
701
702 static void resetVRegCycle(SUnit *SU);
703
704 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
705 /// count of its predecessors. If a predecessor pending count is zero, add it to
706 /// the Available queue.
707 void ScheduleDAGRRList::ScheduleNodeBottomUp(SUnit *SU) {
708   DEBUG(dbgs() << "\n*** Scheduling [" << CurCycle << "]: ");
709   DEBUG(SU->dump(this));
710
711 #ifndef NDEBUG
712   if (CurCycle < SU->getHeight())
713     DEBUG(dbgs() << "   Height [" << SU->getHeight()
714           << "] pipeline stall!\n");
715 #endif
716
717   // FIXME: Do not modify node height. It may interfere with
718   // backtracking. Instead add a "ready cycle" to SUnit. Before scheduling the
719   // node its ready cycle can aid heuristics, and after scheduling it can
720   // indicate the scheduled cycle.
721   SU->setHeightToAtLeast(CurCycle);
722
723   // Reserve resources for the scheduled instruction.
724   EmitNode(SU);
725
726   Sequence.push_back(SU);
727
728   AvailableQueue->scheduledNode(SU);
729
730   // If HazardRec is disabled, and each inst counts as one cycle, then
731   // advance CurCycle before ReleasePredecessors to avoid useless pushes to
732   // PendingQueue for schedulers that implement HasReadyFilter.
733   if (!HazardRec->isEnabled() && AvgIPC < 2)
734     AdvanceToCycle(CurCycle + 1);
735
736   // Update liveness of predecessors before successors to avoid treating a
737   // two-address node as a live range def.
738   ReleasePredecessors(SU);
739
740   // Release all the implicit physical register defs that are live.
741   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
742        I != E; ++I) {
743     // LiveRegDegs[I->getReg()] != SU when SU is a two-address node.
744     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] == SU) {
745       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
746       --NumLiveRegs;
747       LiveRegDefs[I->getReg()] = nullptr;
748       LiveRegGens[I->getReg()] = nullptr;
749       releaseInterferences(I->getReg());
750     }
751   }
752   // Release the special call resource dependence, if this is the beginning
753   // of a call.
754   unsigned CallResource = TRI->getNumRegs();
755   if (LiveRegDefs[CallResource] == SU)
756     for (const SDNode *SUNode = SU->getNode(); SUNode;
757          SUNode = SUNode->getGluedNode()) {
758       if (SUNode->isMachineOpcode() &&
759           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
760         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
761         --NumLiveRegs;
762         LiveRegDefs[CallResource] = nullptr;
763         LiveRegGens[CallResource] = nullptr;
764         releaseInterferences(CallResource);
765       }
766     }
767
768   resetVRegCycle(SU);
769
770   SU->isScheduled = true;
771
772   // Conditions under which the scheduler should eagerly advance the cycle:
773   // (1) No available instructions
774   // (2) All pipelines full, so available instructions must have hazards.
775   //
776   // If HazardRec is disabled, the cycle was pre-advanced before calling
777   // ReleasePredecessors. In that case, IssueCount should remain 0.
778   //
779   // Check AvailableQueue after ReleasePredecessors in case of zero latency.
780   if (HazardRec->isEnabled() || AvgIPC > 1) {
781     if (SU->getNode() && SU->getNode()->isMachineOpcode())
782       ++IssueCount;
783     if ((HazardRec->isEnabled() && HazardRec->atIssueLimit())
784         || (!HazardRec->isEnabled() && IssueCount == AvgIPC))
785       AdvanceToCycle(CurCycle + 1);
786   }
787 }
788
789 /// CapturePred - This does the opposite of ReleasePred. Since SU is being
790 /// unscheduled, incrcease the succ left count of its predecessors. Remove
791 /// them from AvailableQueue if necessary.
792 void ScheduleDAGRRList::CapturePred(SDep *PredEdge) {
793   SUnit *PredSU = PredEdge->getSUnit();
794   if (PredSU->isAvailable) {
795     PredSU->isAvailable = false;
796     if (!PredSU->isPending)
797       AvailableQueue->remove(PredSU);
798   }
799
800   assert(PredSU->NumSuccsLeft < UINT_MAX && "NumSuccsLeft will overflow!");
801   ++PredSU->NumSuccsLeft;
802 }
803
804 /// UnscheduleNodeBottomUp - Remove the node from the schedule, update its and
805 /// its predecessor states to reflect the change.
806 void ScheduleDAGRRList::UnscheduleNodeBottomUp(SUnit *SU) {
807   DEBUG(dbgs() << "*** Unscheduling [" << SU->getHeight() << "]: ");
808   DEBUG(SU->dump(this));
809
810   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
811        I != E; ++I) {
812     CapturePred(&*I);
813     if (I->isAssignedRegDep() && SU == LiveRegGens[I->getReg()]){
814       assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
815       assert(LiveRegDefs[I->getReg()] == I->getSUnit() &&
816              "Physical register dependency violated?");
817       --NumLiveRegs;
818       LiveRegDefs[I->getReg()] = nullptr;
819       LiveRegGens[I->getReg()] = nullptr;
820       releaseInterferences(I->getReg());
821     }
822   }
823
824   // Reclaim the special call resource dependence, if this is the beginning
825   // of a call.
826   unsigned CallResource = TRI->getNumRegs();
827   for (const SDNode *SUNode = SU->getNode(); SUNode;
828        SUNode = SUNode->getGluedNode()) {
829     if (SUNode->isMachineOpcode() &&
830         SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameSetupOpcode()) {
831       ++NumLiveRegs;
832       LiveRegDefs[CallResource] = SU;
833       LiveRegGens[CallResource] = CallSeqEndForStart[SU];
834     }
835   }
836
837   // Release the special call resource dependence, if this is the end
838   // of a call.
839   if (LiveRegGens[CallResource] == SU)
840     for (const SDNode *SUNode = SU->getNode(); SUNode;
841          SUNode = SUNode->getGluedNode()) {
842       if (SUNode->isMachineOpcode() &&
843           SUNode->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
844         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
845         --NumLiveRegs;
846         LiveRegDefs[CallResource] = nullptr;
847         LiveRegGens[CallResource] = nullptr;
848         releaseInterferences(CallResource);
849       }
850     }
851
852   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
853        I != E; ++I) {
854     if (I->isAssignedRegDep()) {
855       if (!LiveRegDefs[I->getReg()])
856         ++NumLiveRegs;
857       // This becomes the nearest def. Note that an earlier def may still be
858       // pending if this is a two-address node.
859       LiveRegDefs[I->getReg()] = SU;
860       if (LiveRegGens[I->getReg()] == nullptr ||
861           I->getSUnit()->getHeight() < LiveRegGens[I->getReg()]->getHeight())
862         LiveRegGens[I->getReg()] = I->getSUnit();
863     }
864   }
865   if (SU->getHeight() < MinAvailableCycle)
866     MinAvailableCycle = SU->getHeight();
867
868   SU->setHeightDirty();
869   SU->isScheduled = false;
870   SU->isAvailable = true;
871   if (!DisableSchedCycles && AvailableQueue->hasReadyFilter()) {
872     // Don't make available until backtracking is complete.
873     SU->isPending = true;
874     PendingQueue.push_back(SU);
875   }
876   else {
877     AvailableQueue->push(SU);
878   }
879   AvailableQueue->unscheduledNode(SU);
880 }
881
882 /// After backtracking, the hazard checker needs to be restored to a state
883 /// corresponding the current cycle.
884 void ScheduleDAGRRList::RestoreHazardCheckerBottomUp() {
885   HazardRec->Reset();
886
887   unsigned LookAhead = std::min((unsigned)Sequence.size(),
888                                 HazardRec->getMaxLookAhead());
889   if (LookAhead == 0)
890     return;
891
892   std::vector<SUnit*>::const_iterator I = (Sequence.end() - LookAhead);
893   unsigned HazardCycle = (*I)->getHeight();
894   for (std::vector<SUnit*>::const_iterator E = Sequence.end(); I != E; ++I) {
895     SUnit *SU = *I;
896     for (; SU->getHeight() > HazardCycle; ++HazardCycle) {
897       HazardRec->RecedeCycle();
898     }
899     EmitNode(SU);
900   }
901 }
902
903 /// BacktrackBottomUp - Backtrack scheduling to a previous cycle specified in
904 /// BTCycle in order to schedule a specific node.
905 void ScheduleDAGRRList::BacktrackBottomUp(SUnit *SU, SUnit *BtSU) {
906   SUnit *OldSU = Sequence.back();
907   while (true) {
908     Sequence.pop_back();
909     // FIXME: use ready cycle instead of height
910     CurCycle = OldSU->getHeight();
911     UnscheduleNodeBottomUp(OldSU);
912     AvailableQueue->setCurCycle(CurCycle);
913     if (OldSU == BtSU)
914       break;
915     OldSU = Sequence.back();
916   }
917
918   assert(!SU->isSucc(OldSU) && "Something is wrong!");
919
920   RestoreHazardCheckerBottomUp();
921
922   ReleasePending();
923
924   ++NumBacktracks;
925 }
926
927 static bool isOperandOf(const SUnit *SU, SDNode *N) {
928   for (const SDNode *SUNode = SU->getNode(); SUNode;
929        SUNode = SUNode->getGluedNode()) {
930     if (SUNode->isOperandOf(N))
931       return true;
932   }
933   return false;
934 }
935
936 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
937 /// successors to the newly created node.
938 SUnit *ScheduleDAGRRList::CopyAndMoveSuccessors(SUnit *SU) {
939   SDNode *N = SU->getNode();
940   if (!N)
941     return nullptr;
942
943   if (SU->getNode()->getGluedNode())
944     return nullptr;
945
946   SUnit *NewSU;
947   bool TryUnfold = false;
948   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
949     EVT VT = N->getValueType(i);
950     if (VT == MVT::Glue)
951       return nullptr;
952     else if (VT == MVT::Other)
953       TryUnfold = true;
954   }
955   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i) {
956     const SDValue &Op = N->getOperand(i);
957     EVT VT = Op.getNode()->getValueType(Op.getResNo());
958     if (VT == MVT::Glue)
959       return nullptr;
960   }
961
962   if (TryUnfold) {
963     SmallVector<SDNode*, 2> NewNodes;
964     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
965       return nullptr;
966
967     // unfolding an x86 DEC64m operation results in store, dec, load which
968     // can't be handled here so quit
969     if (NewNodes.size() == 3)
970       return nullptr;
971
972     DEBUG(dbgs() << "Unfolding SU #" << SU->NodeNum << "\n");
973     assert(NewNodes.size() == 2 && "Expected a load folding node!");
974
975     N = NewNodes[1];
976     SDNode *LoadNode = NewNodes[0];
977     unsigned NumVals = N->getNumValues();
978     unsigned OldNumVals = SU->getNode()->getNumValues();
979     for (unsigned i = 0; i != NumVals; ++i)
980       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
981     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
982                                    SDValue(LoadNode, 1));
983
984     // LoadNode may already exist. This can happen when there is another
985     // load from the same location and producing the same type of value
986     // but it has different alignment or volatileness.
987     bool isNewLoad = true;
988     SUnit *LoadSU;
989     if (LoadNode->getNodeId() != -1) {
990       LoadSU = &SUnits[LoadNode->getNodeId()];
991       isNewLoad = false;
992     } else {
993       LoadSU = CreateNewSUnit(LoadNode);
994       LoadNode->setNodeId(LoadSU->NodeNum);
995
996       InitNumRegDefsLeft(LoadSU);
997       computeLatency(LoadSU);
998     }
999
1000     SUnit *NewSU = CreateNewSUnit(N);
1001     assert(N->getNodeId() == -1 && "Node already inserted!");
1002     N->setNodeId(NewSU->NodeNum);
1003
1004     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1005     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
1006       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
1007         NewSU->isTwoAddress = true;
1008         break;
1009       }
1010     }
1011     if (MCID.isCommutable())
1012       NewSU->isCommutable = true;
1013
1014     InitNumRegDefsLeft(NewSU);
1015     computeLatency(NewSU);
1016
1017     // Record all the edges to and from the old SU, by category.
1018     SmallVector<SDep, 4> ChainPreds;
1019     SmallVector<SDep, 4> ChainSuccs;
1020     SmallVector<SDep, 4> LoadPreds;
1021     SmallVector<SDep, 4> NodePreds;
1022     SmallVector<SDep, 4> NodeSuccs;
1023     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1024          I != E; ++I) {
1025       if (I->isCtrl())
1026         ChainPreds.push_back(*I);
1027       else if (isOperandOf(I->getSUnit(), LoadNode))
1028         LoadPreds.push_back(*I);
1029       else
1030         NodePreds.push_back(*I);
1031     }
1032     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1033          I != E; ++I) {
1034       if (I->isCtrl())
1035         ChainSuccs.push_back(*I);
1036       else
1037         NodeSuccs.push_back(*I);
1038     }
1039
1040     // Now assign edges to the newly-created nodes.
1041     for (unsigned i = 0, e = ChainPreds.size(); i != e; ++i) {
1042       const SDep &Pred = ChainPreds[i];
1043       RemovePred(SU, Pred);
1044       if (isNewLoad)
1045         AddPred(LoadSU, Pred);
1046     }
1047     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
1048       const SDep &Pred = LoadPreds[i];
1049       RemovePred(SU, Pred);
1050       if (isNewLoad)
1051         AddPred(LoadSU, Pred);
1052     }
1053     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
1054       const SDep &Pred = NodePreds[i];
1055       RemovePred(SU, Pred);
1056       AddPred(NewSU, Pred);
1057     }
1058     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
1059       SDep D = NodeSuccs[i];
1060       SUnit *SuccDep = D.getSUnit();
1061       D.setSUnit(SU);
1062       RemovePred(SuccDep, D);
1063       D.setSUnit(NewSU);
1064       AddPred(SuccDep, D);
1065       // Balance register pressure.
1066       if (AvailableQueue->tracksRegPressure() && SuccDep->isScheduled
1067           && !D.isCtrl() && NewSU->NumRegDefsLeft > 0)
1068         --NewSU->NumRegDefsLeft;
1069     }
1070     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
1071       SDep D = ChainSuccs[i];
1072       SUnit *SuccDep = D.getSUnit();
1073       D.setSUnit(SU);
1074       RemovePred(SuccDep, D);
1075       if (isNewLoad) {
1076         D.setSUnit(LoadSU);
1077         AddPred(SuccDep, D);
1078       }
1079     }
1080
1081     // Add a data dependency to reflect that NewSU reads the value defined
1082     // by LoadSU.
1083     SDep D(LoadSU, SDep::Data, 0);
1084     D.setLatency(LoadSU->Latency);
1085     AddPred(NewSU, D);
1086
1087     if (isNewLoad)
1088       AvailableQueue->addNode(LoadSU);
1089     AvailableQueue->addNode(NewSU);
1090
1091     ++NumUnfolds;
1092
1093     if (NewSU->NumSuccsLeft == 0) {
1094       NewSU->isAvailable = true;
1095       return NewSU;
1096     }
1097     SU = NewSU;
1098   }
1099
1100   DEBUG(dbgs() << "    Duplicating SU #" << SU->NodeNum << "\n");
1101   NewSU = CreateClone(SU);
1102
1103   // New SUnit has the exact same predecessors.
1104   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1105        I != E; ++I)
1106     if (!I->isArtificial())
1107       AddPred(NewSU, *I);
1108
1109   // Only copy scheduled successors. Cut them from old node's successor
1110   // list and move them over.
1111   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1112   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1113        I != E; ++I) {
1114     if (I->isArtificial())
1115       continue;
1116     SUnit *SuccSU = I->getSUnit();
1117     if (SuccSU->isScheduled) {
1118       SDep D = *I;
1119       D.setSUnit(NewSU);
1120       AddPred(SuccSU, D);
1121       D.setSUnit(SU);
1122       DelDeps.push_back(std::make_pair(SuccSU, D));
1123     }
1124   }
1125   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1126     RemovePred(DelDeps[i].first, DelDeps[i].second);
1127
1128   AvailableQueue->updateNode(SU);
1129   AvailableQueue->addNode(NewSU);
1130
1131   ++NumDups;
1132   return NewSU;
1133 }
1134
1135 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
1136 /// scheduled successors of the given SUnit to the last copy.
1137 void ScheduleDAGRRList::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
1138                                               const TargetRegisterClass *DestRC,
1139                                               const TargetRegisterClass *SrcRC,
1140                                               SmallVectorImpl<SUnit*> &Copies) {
1141   SUnit *CopyFromSU = CreateNewSUnit(nullptr);
1142   CopyFromSU->CopySrcRC = SrcRC;
1143   CopyFromSU->CopyDstRC = DestRC;
1144
1145   SUnit *CopyToSU = CreateNewSUnit(nullptr);
1146   CopyToSU->CopySrcRC = DestRC;
1147   CopyToSU->CopyDstRC = SrcRC;
1148
1149   // Only copy scheduled successors. Cut them from old node's successor
1150   // list and move them over.
1151   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
1152   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1153        I != E; ++I) {
1154     if (I->isArtificial())
1155       continue;
1156     SUnit *SuccSU = I->getSUnit();
1157     if (SuccSU->isScheduled) {
1158       SDep D = *I;
1159       D.setSUnit(CopyToSU);
1160       AddPred(SuccSU, D);
1161       DelDeps.push_back(std::make_pair(SuccSU, *I));
1162     }
1163     else {
1164       // Avoid scheduling the def-side copy before other successors. Otherwise
1165       // we could introduce another physreg interference on the copy and
1166       // continue inserting copies indefinitely.
1167       AddPred(SuccSU, SDep(CopyFromSU, SDep::Artificial));
1168     }
1169   }
1170   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
1171     RemovePred(DelDeps[i].first, DelDeps[i].second);
1172
1173   SDep FromDep(SU, SDep::Data, Reg);
1174   FromDep.setLatency(SU->Latency);
1175   AddPred(CopyFromSU, FromDep);
1176   SDep ToDep(CopyFromSU, SDep::Data, 0);
1177   ToDep.setLatency(CopyFromSU->Latency);
1178   AddPred(CopyToSU, ToDep);
1179
1180   AvailableQueue->updateNode(SU);
1181   AvailableQueue->addNode(CopyFromSU);
1182   AvailableQueue->addNode(CopyToSU);
1183   Copies.push_back(CopyFromSU);
1184   Copies.push_back(CopyToSU);
1185
1186   ++NumPRCopies;
1187 }
1188
1189 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
1190 /// definition of the specified node.
1191 /// FIXME: Move to SelectionDAG?
1192 static EVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
1193                                  const TargetInstrInfo *TII) {
1194   const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
1195   assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
1196   unsigned NumRes = MCID.getNumDefs();
1197   for (const uint16_t *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
1198     if (Reg == *ImpDef)
1199       break;
1200     ++NumRes;
1201   }
1202   return N->getValueType(NumRes);
1203 }
1204
1205 /// CheckForLiveRegDef - Return true and update live register vector if the
1206 /// specified register def of the specified SUnit clobbers any "live" registers.
1207 static void CheckForLiveRegDef(SUnit *SU, unsigned Reg,
1208                                std::vector<SUnit*> &LiveRegDefs,
1209                                SmallSet<unsigned, 4> &RegAdded,
1210                                SmallVectorImpl<unsigned> &LRegs,
1211                                const TargetRegisterInfo *TRI) {
1212   for (MCRegAliasIterator AliasI(Reg, TRI, true); AliasI.isValid(); ++AliasI) {
1213
1214     // Check if Ref is live.
1215     if (!LiveRegDefs[*AliasI]) continue;
1216
1217     // Allow multiple uses of the same def.
1218     if (LiveRegDefs[*AliasI] == SU) continue;
1219
1220     // Add Reg to the set of interfering live regs.
1221     if (RegAdded.insert(*AliasI)) {
1222       LRegs.push_back(*AliasI);
1223     }
1224   }
1225 }
1226
1227 /// CheckForLiveRegDefMasked - Check for any live physregs that are clobbered
1228 /// by RegMask, and add them to LRegs.
1229 static void CheckForLiveRegDefMasked(SUnit *SU, const uint32_t *RegMask,
1230                                      std::vector<SUnit*> &LiveRegDefs,
1231                                      SmallSet<unsigned, 4> &RegAdded,
1232                                      SmallVectorImpl<unsigned> &LRegs) {
1233   // Look at all live registers. Skip Reg0 and the special CallResource.
1234   for (unsigned i = 1, e = LiveRegDefs.size()-1; i != e; ++i) {
1235     if (!LiveRegDefs[i]) continue;
1236     if (LiveRegDefs[i] == SU) continue;
1237     if (!MachineOperand::clobbersPhysReg(RegMask, i)) continue;
1238     if (RegAdded.insert(i))
1239       LRegs.push_back(i);
1240   }
1241 }
1242
1243 /// getNodeRegMask - Returns the register mask attached to an SDNode, if any.
1244 static const uint32_t *getNodeRegMask(const SDNode *N) {
1245   for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
1246     if (const RegisterMaskSDNode *Op =
1247         dyn_cast<RegisterMaskSDNode>(N->getOperand(i).getNode()))
1248       return Op->getRegMask();
1249   return nullptr;
1250 }
1251
1252 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
1253 /// scheduling of the given node to satisfy live physical register dependencies.
1254 /// If the specific node is the last one that's available to schedule, do
1255 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
1256 bool ScheduleDAGRRList::
1257 DelayForLiveRegsBottomUp(SUnit *SU, SmallVectorImpl<unsigned> &LRegs) {
1258   if (NumLiveRegs == 0)
1259     return false;
1260
1261   SmallSet<unsigned, 4> RegAdded;
1262   // If this node would clobber any "live" register, then it's not ready.
1263   //
1264   // If SU is the currently live definition of the same register that it uses,
1265   // then we are free to schedule it.
1266   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1267        I != E; ++I) {
1268     if (I->isAssignedRegDep() && LiveRegDefs[I->getReg()] != SU)
1269       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
1270                          RegAdded, LRegs, TRI);
1271   }
1272
1273   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
1274     if (Node->getOpcode() == ISD::INLINEASM) {
1275       // Inline asm can clobber physical defs.
1276       unsigned NumOps = Node->getNumOperands();
1277       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
1278         --NumOps;  // Ignore the glue operand.
1279
1280       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
1281         unsigned Flags =
1282           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
1283         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
1284
1285         ++i; // Skip the ID value.
1286         if (InlineAsm::isRegDefKind(Flags) ||
1287             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
1288             InlineAsm::isClobberKind(Flags)) {
1289           // Check for def of register or earlyclobber register.
1290           for (; NumVals; --NumVals, ++i) {
1291             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
1292             if (TargetRegisterInfo::isPhysicalRegister(Reg))
1293               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1294           }
1295         } else
1296           i += NumVals;
1297       }
1298       continue;
1299     }
1300
1301     if (!Node->isMachineOpcode())
1302       continue;
1303     // If we're in the middle of scheduling a call, don't begin scheduling
1304     // another call. Also, don't allow any physical registers to be live across
1305     // the call.
1306     if (Node->getMachineOpcode() == (unsigned)TII->getCallFrameDestroyOpcode()) {
1307       // Check the special calling-sequence resource.
1308       unsigned CallResource = TRI->getNumRegs();
1309       if (LiveRegDefs[CallResource]) {
1310         SDNode *Gen = LiveRegGens[CallResource]->getNode();
1311         while (SDNode *Glued = Gen->getGluedNode())
1312           Gen = Glued;
1313         if (!IsChainDependent(Gen, Node, 0, TII) && RegAdded.insert(CallResource))
1314           LRegs.push_back(CallResource);
1315       }
1316     }
1317     if (const uint32_t *RegMask = getNodeRegMask(Node))
1318       CheckForLiveRegDefMasked(SU, RegMask, LiveRegDefs, RegAdded, LRegs);
1319
1320     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
1321     if (!MCID.ImplicitDefs)
1322       continue;
1323     for (const uint16_t *Reg = MCID.getImplicitDefs(); *Reg; ++Reg)
1324       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
1325   }
1326
1327   return !LRegs.empty();
1328 }
1329
1330 void ScheduleDAGRRList::releaseInterferences(unsigned Reg) {
1331   // Add the nodes that aren't ready back onto the available list.
1332   for (unsigned i = Interferences.size(); i > 0; --i) {
1333     SUnit *SU = Interferences[i-1];
1334     LRegsMapT::iterator LRegsPos = LRegsMap.find(SU);
1335     if (Reg) {
1336       SmallVectorImpl<unsigned> &LRegs = LRegsPos->second;
1337       if (std::find(LRegs.begin(), LRegs.end(), Reg) == LRegs.end())
1338         continue;
1339     }
1340     SU->isPending = false;
1341     // The interfering node may no longer be available due to backtracking.
1342     // Furthermore, it may have been made available again, in which case it is
1343     // now already in the AvailableQueue.
1344     if (SU->isAvailable && !SU->NodeQueueId) {
1345       DEBUG(dbgs() << "    Repushing SU #" << SU->NodeNum << '\n');
1346       AvailableQueue->push(SU);
1347     }
1348     if (i < Interferences.size())
1349       Interferences[i-1] = Interferences.back();
1350     Interferences.pop_back();
1351     LRegsMap.erase(LRegsPos);
1352   }
1353 }
1354
1355 /// Return a node that can be scheduled in this cycle. Requirements:
1356 /// (1) Ready: latency has been satisfied
1357 /// (2) No Hazards: resources are available
1358 /// (3) No Interferences: may unschedule to break register interferences.
1359 SUnit *ScheduleDAGRRList::PickNodeToScheduleBottomUp() {
1360   SUnit *CurSU = AvailableQueue->empty() ? nullptr : AvailableQueue->pop();
1361   while (CurSU) {
1362     SmallVector<unsigned, 4> LRegs;
1363     if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
1364       break;
1365     DEBUG(dbgs() << "    Interfering reg " <<
1366           (LRegs[0] == TRI->getNumRegs() ? "CallResource"
1367            : TRI->getName(LRegs[0]))
1368            << " SU #" << CurSU->NodeNum << '\n');
1369     std::pair<LRegsMapT::iterator, bool> LRegsPair =
1370       LRegsMap.insert(std::make_pair(CurSU, LRegs));
1371     if (LRegsPair.second) {
1372       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
1373       Interferences.push_back(CurSU);
1374     }
1375     else {
1376       assert(CurSU->isPending && "Intereferences are pending");
1377       // Update the interference with current live regs.
1378       LRegsPair.first->second = LRegs;
1379     }
1380     CurSU = AvailableQueue->pop();
1381   }
1382   if (CurSU)
1383     return CurSU;
1384
1385   // All candidates are delayed due to live physical reg dependencies.
1386   // Try backtracking, code duplication, or inserting cross class copies
1387   // to resolve it.
1388   for (unsigned i = 0, e = Interferences.size(); i != e; ++i) {
1389     SUnit *TrySU = Interferences[i];
1390     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1391
1392     // Try unscheduling up to the point where it's safe to schedule
1393     // this node.
1394     SUnit *BtSU = nullptr;
1395     unsigned LiveCycle = UINT_MAX;
1396     for (unsigned j = 0, ee = LRegs.size(); j != ee; ++j) {
1397       unsigned Reg = LRegs[j];
1398       if (LiveRegGens[Reg]->getHeight() < LiveCycle) {
1399         BtSU = LiveRegGens[Reg];
1400         LiveCycle = BtSU->getHeight();
1401       }
1402     }
1403     if (!WillCreateCycle(TrySU, BtSU))  {
1404       // BacktrackBottomUp mutates Interferences!
1405       BacktrackBottomUp(TrySU, BtSU);
1406
1407       // Force the current node to be scheduled before the node that
1408       // requires the physical reg dep.
1409       if (BtSU->isAvailable) {
1410         BtSU->isAvailable = false;
1411         if (!BtSU->isPending)
1412           AvailableQueue->remove(BtSU);
1413       }
1414       DEBUG(dbgs() << "ARTIFICIAL edge from SU(" << BtSU->NodeNum << ") to SU("
1415             << TrySU->NodeNum << ")\n");
1416       AddPred(TrySU, SDep(BtSU, SDep::Artificial));
1417
1418       // If one or more successors has been unscheduled, then the current
1419       // node is no longer available.
1420       if (!TrySU->isAvailable)
1421         CurSU = AvailableQueue->pop();
1422       else {
1423         AvailableQueue->remove(TrySU);
1424         CurSU = TrySU;
1425       }
1426       // Interferences has been mutated. We must break.
1427       break;
1428     }
1429   }
1430
1431   if (!CurSU) {
1432     // Can't backtrack. If it's too expensive to copy the value, then try
1433     // duplicate the nodes that produces these "too expensive to copy"
1434     // values to break the dependency. In case even that doesn't work,
1435     // insert cross class copies.
1436     // If it's not too expensive, i.e. cost != -1, issue copies.
1437     SUnit *TrySU = Interferences[0];
1438     SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
1439     assert(LRegs.size() == 1 && "Can't handle this yet!");
1440     unsigned Reg = LRegs[0];
1441     SUnit *LRDef = LiveRegDefs[Reg];
1442     EVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
1443     const TargetRegisterClass *RC =
1444       TRI->getMinimalPhysRegClass(Reg, VT);
1445     const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
1446
1447     // If cross copy register class is the same as RC, then it must be possible
1448     // copy the value directly. Do not try duplicate the def.
1449     // If cross copy register class is not the same as RC, then it's possible to
1450     // copy the value but it require cross register class copies and it is
1451     // expensive.
1452     // If cross copy register class is null, then it's not possible to copy
1453     // the value at all.
1454     SUnit *NewDef = nullptr;
1455     if (DestRC != RC) {
1456       NewDef = CopyAndMoveSuccessors(LRDef);
1457       if (!DestRC && !NewDef)
1458         report_fatal_error("Can't handle live physical register dependency!");
1459     }
1460     if (!NewDef) {
1461       // Issue copies, these can be expensive cross register class copies.
1462       SmallVector<SUnit*, 2> Copies;
1463       InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
1464       DEBUG(dbgs() << "    Adding an edge from SU #" << TrySU->NodeNum
1465             << " to SU #" << Copies.front()->NodeNum << "\n");
1466       AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
1467       NewDef = Copies.back();
1468     }
1469
1470     DEBUG(dbgs() << "    Adding an edge from SU #" << NewDef->NodeNum
1471           << " to SU #" << TrySU->NodeNum << "\n");
1472     LiveRegDefs[Reg] = NewDef;
1473     AddPred(NewDef, SDep(TrySU, SDep::Artificial));
1474     TrySU->isAvailable = false;
1475     CurSU = NewDef;
1476   }
1477   assert(CurSU && "Unable to resolve live physical register dependencies!");
1478   return CurSU;
1479 }
1480
1481 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
1482 /// schedulers.
1483 void ScheduleDAGRRList::ListScheduleBottomUp() {
1484   // Release any predecessors of the special Exit node.
1485   ReleasePredecessors(&ExitSU);
1486
1487   // Add root to Available queue.
1488   if (!SUnits.empty()) {
1489     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
1490     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
1491     RootSU->isAvailable = true;
1492     AvailableQueue->push(RootSU);
1493   }
1494
1495   // While Available queue is not empty, grab the node with the highest
1496   // priority. If it is not ready put it back.  Schedule the node.
1497   Sequence.reserve(SUnits.size());
1498   while (!AvailableQueue->empty() || !Interferences.empty()) {
1499     DEBUG(dbgs() << "\nExamining Available:\n";
1500           AvailableQueue->dump(this));
1501
1502     // Pick the best node to schedule taking all constraints into
1503     // consideration.
1504     SUnit *SU = PickNodeToScheduleBottomUp();
1505
1506     AdvancePastStalls(SU);
1507
1508     ScheduleNodeBottomUp(SU);
1509
1510     while (AvailableQueue->empty() && !PendingQueue.empty()) {
1511       // Advance the cycle to free resources. Skip ahead to the next ready SU.
1512       assert(MinAvailableCycle < UINT_MAX && "MinAvailableCycle uninitialized");
1513       AdvanceToCycle(std::max(CurCycle + 1, MinAvailableCycle));
1514     }
1515   }
1516
1517   // Reverse the order if it is bottom up.
1518   std::reverse(Sequence.begin(), Sequence.end());
1519
1520 #ifndef NDEBUG
1521   VerifyScheduledSequence(/*isBottomUp=*/true);
1522 #endif
1523 }
1524
1525 //===----------------------------------------------------------------------===//
1526 //                RegReductionPriorityQueue Definition
1527 //===----------------------------------------------------------------------===//
1528 //
1529 // This is a SchedulingPriorityQueue that schedules using Sethi Ullman numbers
1530 // to reduce register pressure.
1531 //
1532 namespace {
1533 class RegReductionPQBase;
1534
1535 struct queue_sort : public std::binary_function<SUnit*, SUnit*, bool> {
1536   bool isReady(SUnit* SU, unsigned CurCycle) const { return true; }
1537 };
1538
1539 #ifndef NDEBUG
1540 template<class SF>
1541 struct reverse_sort : public queue_sort {
1542   SF &SortFunc;
1543   reverse_sort(SF &sf) : SortFunc(sf) {}
1544
1545   bool operator()(SUnit* left, SUnit* right) const {
1546     // reverse left/right rather than simply !SortFunc(left, right)
1547     // to expose different paths in the comparison logic.
1548     return SortFunc(right, left);
1549   }
1550 };
1551 #endif // NDEBUG
1552
1553 /// bu_ls_rr_sort - Priority function for bottom up register pressure
1554 // reduction scheduler.
1555 struct bu_ls_rr_sort : public queue_sort {
1556   enum {
1557     IsBottomUp = true,
1558     HasReadyFilter = false
1559   };
1560
1561   RegReductionPQBase *SPQ;
1562   bu_ls_rr_sort(RegReductionPQBase *spq) : SPQ(spq) {}
1563
1564   bool operator()(SUnit* left, SUnit* right) const;
1565 };
1566
1567 // src_ls_rr_sort - Priority function for source order scheduler.
1568 struct src_ls_rr_sort : public queue_sort {
1569   enum {
1570     IsBottomUp = true,
1571     HasReadyFilter = false
1572   };
1573
1574   RegReductionPQBase *SPQ;
1575   src_ls_rr_sort(RegReductionPQBase *spq)
1576     : SPQ(spq) {}
1577
1578   bool operator()(SUnit* left, SUnit* right) const;
1579 };
1580
1581 // hybrid_ls_rr_sort - Priority function for hybrid scheduler.
1582 struct hybrid_ls_rr_sort : public queue_sort {
1583   enum {
1584     IsBottomUp = true,
1585     HasReadyFilter = false
1586   };
1587
1588   RegReductionPQBase *SPQ;
1589   hybrid_ls_rr_sort(RegReductionPQBase *spq)
1590     : SPQ(spq) {}
1591
1592   bool isReady(SUnit *SU, unsigned CurCycle) const;
1593
1594   bool operator()(SUnit* left, SUnit* right) const;
1595 };
1596
1597 // ilp_ls_rr_sort - Priority function for ILP (instruction level parallelism)
1598 // scheduler.
1599 struct ilp_ls_rr_sort : public queue_sort {
1600   enum {
1601     IsBottomUp = true,
1602     HasReadyFilter = false
1603   };
1604
1605   RegReductionPQBase *SPQ;
1606   ilp_ls_rr_sort(RegReductionPQBase *spq)
1607     : SPQ(spq) {}
1608
1609   bool isReady(SUnit *SU, unsigned CurCycle) const;
1610
1611   bool operator()(SUnit* left, SUnit* right) const;
1612 };
1613
1614 class RegReductionPQBase : public SchedulingPriorityQueue {
1615 protected:
1616   std::vector<SUnit*> Queue;
1617   unsigned CurQueueId;
1618   bool TracksRegPressure;
1619   bool SrcOrder;
1620
1621   // SUnits - The SUnits for the current graph.
1622   std::vector<SUnit> *SUnits;
1623
1624   MachineFunction &MF;
1625   const TargetInstrInfo *TII;
1626   const TargetRegisterInfo *TRI;
1627   const TargetLowering *TLI;
1628   ScheduleDAGRRList *scheduleDAG;
1629
1630   // SethiUllmanNumbers - The SethiUllman number for each node.
1631   std::vector<unsigned> SethiUllmanNumbers;
1632
1633   /// RegPressure - Tracking current reg pressure per register class.
1634   ///
1635   std::vector<unsigned> RegPressure;
1636
1637   /// RegLimit - Tracking the number of allocatable registers per register
1638   /// class.
1639   std::vector<unsigned> RegLimit;
1640
1641 public:
1642   RegReductionPQBase(MachineFunction &mf,
1643                      bool hasReadyFilter,
1644                      bool tracksrp,
1645                      bool srcorder,
1646                      const TargetInstrInfo *tii,
1647                      const TargetRegisterInfo *tri,
1648                      const TargetLowering *tli)
1649     : SchedulingPriorityQueue(hasReadyFilter),
1650       CurQueueId(0), TracksRegPressure(tracksrp), SrcOrder(srcorder),
1651       MF(mf), TII(tii), TRI(tri), TLI(tli), scheduleDAG(nullptr) {
1652     if (TracksRegPressure) {
1653       unsigned NumRC = TRI->getNumRegClasses();
1654       RegLimit.resize(NumRC);
1655       RegPressure.resize(NumRC);
1656       std::fill(RegLimit.begin(), RegLimit.end(), 0);
1657       std::fill(RegPressure.begin(), RegPressure.end(), 0);
1658       for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1659              E = TRI->regclass_end(); I != E; ++I)
1660         RegLimit[(*I)->getID()] = tri->getRegPressureLimit(*I, MF);
1661     }
1662   }
1663
1664   void setScheduleDAG(ScheduleDAGRRList *scheduleDag) {
1665     scheduleDAG = scheduleDag;
1666   }
1667
1668   ScheduleHazardRecognizer* getHazardRec() {
1669     return scheduleDAG->getHazardRec();
1670   }
1671
1672   void initNodes(std::vector<SUnit> &sunits) override;
1673
1674   void addNode(const SUnit *SU) override;
1675
1676   void updateNode(const SUnit *SU) override;
1677
1678   void releaseState() override {
1679     SUnits = nullptr;
1680     SethiUllmanNumbers.clear();
1681     std::fill(RegPressure.begin(), RegPressure.end(), 0);
1682   }
1683
1684   unsigned getNodePriority(const SUnit *SU) const;
1685
1686   unsigned getNodeOrdering(const SUnit *SU) const {
1687     if (!SU->getNode()) return 0;
1688
1689     return SU->getNode()->getIROrder();
1690   }
1691
1692   bool empty() const override { return Queue.empty(); }
1693
1694   void push(SUnit *U) override {
1695     assert(!U->NodeQueueId && "Node in the queue already");
1696     U->NodeQueueId = ++CurQueueId;
1697     Queue.push_back(U);
1698   }
1699
1700   void remove(SUnit *SU) override {
1701     assert(!Queue.empty() && "Queue is empty!");
1702     assert(SU->NodeQueueId != 0 && "Not in queue!");
1703     std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(),
1704                                                  SU);
1705     if (I != std::prev(Queue.end()))
1706       std::swap(*I, Queue.back());
1707     Queue.pop_back();
1708     SU->NodeQueueId = 0;
1709   }
1710
1711   bool tracksRegPressure() const override { return TracksRegPressure; }
1712
1713   void dumpRegPressure() const;
1714
1715   bool HighRegPressure(const SUnit *SU) const;
1716
1717   bool MayReduceRegPressure(SUnit *SU) const;
1718
1719   int RegPressureDiff(SUnit *SU, unsigned &LiveUses) const;
1720
1721   void scheduledNode(SUnit *SU) override;
1722
1723   void unscheduledNode(SUnit *SU) override;
1724
1725 protected:
1726   bool canClobber(const SUnit *SU, const SUnit *Op);
1727   void AddPseudoTwoAddrDeps();
1728   void PrescheduleNodesWithMultipleUses();
1729   void CalculateSethiUllmanNumbers();
1730 };
1731
1732 template<class SF>
1733 static SUnit *popFromQueueImpl(std::vector<SUnit*> &Q, SF &Picker) {
1734   std::vector<SUnit *>::iterator Best = Q.begin();
1735   for (std::vector<SUnit *>::iterator I = std::next(Q.begin()),
1736          E = Q.end(); I != E; ++I)
1737     if (Picker(*Best, *I))
1738       Best = I;
1739   SUnit *V = *Best;
1740   if (Best != std::prev(Q.end()))
1741     std::swap(*Best, Q.back());
1742   Q.pop_back();
1743   return V;
1744 }
1745
1746 template<class SF>
1747 SUnit *popFromQueue(std::vector<SUnit*> &Q, SF &Picker, ScheduleDAG *DAG) {
1748 #ifndef NDEBUG
1749   if (DAG->StressSched) {
1750     reverse_sort<SF> RPicker(Picker);
1751     return popFromQueueImpl(Q, RPicker);
1752   }
1753 #endif
1754   (void)DAG;
1755   return popFromQueueImpl(Q, Picker);
1756 }
1757
1758 template<class SF>
1759 class RegReductionPriorityQueue : public RegReductionPQBase {
1760   SF Picker;
1761
1762 public:
1763   RegReductionPriorityQueue(MachineFunction &mf,
1764                             bool tracksrp,
1765                             bool srcorder,
1766                             const TargetInstrInfo *tii,
1767                             const TargetRegisterInfo *tri,
1768                             const TargetLowering *tli)
1769     : RegReductionPQBase(mf, SF::HasReadyFilter, tracksrp, srcorder,
1770                          tii, tri, tli),
1771       Picker(this) {}
1772
1773   bool isBottomUp() const override { return SF::IsBottomUp; }
1774
1775   bool isReady(SUnit *U) const override {
1776     return Picker.HasReadyFilter && Picker.isReady(U, getCurCycle());
1777   }
1778
1779   SUnit *pop() override {
1780     if (Queue.empty()) return nullptr;
1781
1782     SUnit *V = popFromQueue(Queue, Picker, scheduleDAG);
1783     V->NodeQueueId = 0;
1784     return V;
1785   }
1786
1787 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1788   void dump(ScheduleDAG *DAG) const override {
1789     // Emulate pop() without clobbering NodeQueueIds.
1790     std::vector<SUnit*> DumpQueue = Queue;
1791     SF DumpPicker = Picker;
1792     while (!DumpQueue.empty()) {
1793       SUnit *SU = popFromQueue(DumpQueue, DumpPicker, scheduleDAG);
1794       dbgs() << "Height " << SU->getHeight() << ": ";
1795       SU->dump(DAG);
1796     }
1797   }
1798 #endif
1799 };
1800
1801 typedef RegReductionPriorityQueue<bu_ls_rr_sort>
1802 BURegReductionPriorityQueue;
1803
1804 typedef RegReductionPriorityQueue<src_ls_rr_sort>
1805 SrcRegReductionPriorityQueue;
1806
1807 typedef RegReductionPriorityQueue<hybrid_ls_rr_sort>
1808 HybridBURRPriorityQueue;
1809
1810 typedef RegReductionPriorityQueue<ilp_ls_rr_sort>
1811 ILPBURRPriorityQueue;
1812 } // end anonymous namespace
1813
1814 //===----------------------------------------------------------------------===//
1815 //           Static Node Priority for Register Pressure Reduction
1816 //===----------------------------------------------------------------------===//
1817
1818 // Check for special nodes that bypass scheduling heuristics.
1819 // Currently this pushes TokenFactor nodes down, but may be used for other
1820 // pseudo-ops as well.
1821 //
1822 // Return -1 to schedule right above left, 1 for left above right.
1823 // Return 0 if no bias exists.
1824 static int checkSpecialNodes(const SUnit *left, const SUnit *right) {
1825   bool LSchedLow = left->isScheduleLow;
1826   bool RSchedLow = right->isScheduleLow;
1827   if (LSchedLow != RSchedLow)
1828     return LSchedLow < RSchedLow ? 1 : -1;
1829   return 0;
1830 }
1831
1832 /// CalcNodeSethiUllmanNumber - Compute Sethi Ullman number.
1833 /// Smaller number is the higher priority.
1834 static unsigned
1835 CalcNodeSethiUllmanNumber(const SUnit *SU, std::vector<unsigned> &SUNumbers) {
1836   unsigned &SethiUllmanNumber = SUNumbers[SU->NodeNum];
1837   if (SethiUllmanNumber != 0)
1838     return SethiUllmanNumber;
1839
1840   unsigned Extra = 0;
1841   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1842        I != E; ++I) {
1843     if (I->isCtrl()) continue;  // ignore chain preds
1844     SUnit *PredSU = I->getSUnit();
1845     unsigned PredSethiUllman = CalcNodeSethiUllmanNumber(PredSU, SUNumbers);
1846     if (PredSethiUllman > SethiUllmanNumber) {
1847       SethiUllmanNumber = PredSethiUllman;
1848       Extra = 0;
1849     } else if (PredSethiUllman == SethiUllmanNumber)
1850       ++Extra;
1851   }
1852
1853   SethiUllmanNumber += Extra;
1854
1855   if (SethiUllmanNumber == 0)
1856     SethiUllmanNumber = 1;
1857
1858   return SethiUllmanNumber;
1859 }
1860
1861 /// CalculateSethiUllmanNumbers - Calculate Sethi-Ullman numbers of all
1862 /// scheduling units.
1863 void RegReductionPQBase::CalculateSethiUllmanNumbers() {
1864   SethiUllmanNumbers.assign(SUnits->size(), 0);
1865
1866   for (unsigned i = 0, e = SUnits->size(); i != e; ++i)
1867     CalcNodeSethiUllmanNumber(&(*SUnits)[i], SethiUllmanNumbers);
1868 }
1869
1870 void RegReductionPQBase::addNode(const SUnit *SU) {
1871   unsigned SUSize = SethiUllmanNumbers.size();
1872   if (SUnits->size() > SUSize)
1873     SethiUllmanNumbers.resize(SUSize*2, 0);
1874   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1875 }
1876
1877 void RegReductionPQBase::updateNode(const SUnit *SU) {
1878   SethiUllmanNumbers[SU->NodeNum] = 0;
1879   CalcNodeSethiUllmanNumber(SU, SethiUllmanNumbers);
1880 }
1881
1882 // Lower priority means schedule further down. For bottom-up scheduling, lower
1883 // priority SUs are scheduled before higher priority SUs.
1884 unsigned RegReductionPQBase::getNodePriority(const SUnit *SU) const {
1885   assert(SU->NodeNum < SethiUllmanNumbers.size());
1886   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
1887   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
1888     // CopyToReg should be close to its uses to facilitate coalescing and
1889     // avoid spilling.
1890     return 0;
1891   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
1892       Opc == TargetOpcode::SUBREG_TO_REG ||
1893       Opc == TargetOpcode::INSERT_SUBREG)
1894     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
1895     // close to their uses to facilitate coalescing.
1896     return 0;
1897   if (SU->NumSuccs == 0 && SU->NumPreds != 0)
1898     // If SU does not have a register use, i.e. it doesn't produce a value
1899     // that would be consumed (e.g. store), then it terminates a chain of
1900     // computation.  Give it a large SethiUllman number so it will be
1901     // scheduled right before its predecessors that it doesn't lengthen
1902     // their live ranges.
1903     return 0xffff;
1904   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
1905     // If SU does not have a register def, schedule it close to its uses
1906     // because it does not lengthen any live ranges.
1907     return 0;
1908 #if 1
1909   return SethiUllmanNumbers[SU->NodeNum];
1910 #else
1911   unsigned Priority = SethiUllmanNumbers[SU->NodeNum];
1912   if (SU->isCallOp) {
1913     // FIXME: This assumes all of the defs are used as call operands.
1914     int NP = (int)Priority - SU->getNode()->getNumValues();
1915     return (NP > 0) ? NP : 0;
1916   }
1917   return Priority;
1918 #endif
1919 }
1920
1921 //===----------------------------------------------------------------------===//
1922 //                     Register Pressure Tracking
1923 //===----------------------------------------------------------------------===//
1924
1925 void RegReductionPQBase::dumpRegPressure() const {
1926 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1927   for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
1928          E = TRI->regclass_end(); I != E; ++I) {
1929     const TargetRegisterClass *RC = *I;
1930     unsigned Id = RC->getID();
1931     unsigned RP = RegPressure[Id];
1932     if (!RP) continue;
1933     DEBUG(dbgs() << RC->getName() << ": " << RP << " / " << RegLimit[Id]
1934           << '\n');
1935   }
1936 #endif
1937 }
1938
1939 bool RegReductionPQBase::HighRegPressure(const SUnit *SU) const {
1940   if (!TLI)
1941     return false;
1942
1943   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1944        I != E; ++I) {
1945     if (I->isCtrl())
1946       continue;
1947     SUnit *PredSU = I->getSUnit();
1948     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1949     // to cover the number of registers defined (they are all live).
1950     if (PredSU->NumRegDefsLeft == 0) {
1951       continue;
1952     }
1953     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
1954          RegDefPos.IsValid(); RegDefPos.Advance()) {
1955       unsigned RCId, Cost;
1956       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
1957
1958       if ((RegPressure[RCId] + Cost) >= RegLimit[RCId])
1959         return true;
1960     }
1961   }
1962   return false;
1963 }
1964
1965 bool RegReductionPQBase::MayReduceRegPressure(SUnit *SU) const {
1966   const SDNode *N = SU->getNode();
1967
1968   if (!N->isMachineOpcode() || !SU->NumSuccs)
1969     return false;
1970
1971   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
1972   for (unsigned i = 0; i != NumDefs; ++i) {
1973     MVT VT = N->getSimpleValueType(i);
1974     if (!N->hasAnyUseOfValue(i))
1975       continue;
1976     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
1977     if (RegPressure[RCId] >= RegLimit[RCId])
1978       return true;
1979   }
1980   return false;
1981 }
1982
1983 // Compute the register pressure contribution by this instruction by count up
1984 // for uses that are not live and down for defs. Only count register classes
1985 // that are already under high pressure. As a side effect, compute the number of
1986 // uses of registers that are already live.
1987 //
1988 // FIXME: This encompasses the logic in HighRegPressure and MayReduceRegPressure
1989 // so could probably be factored.
1990 int RegReductionPQBase::RegPressureDiff(SUnit *SU, unsigned &LiveUses) const {
1991   LiveUses = 0;
1992   int PDiff = 0;
1993   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
1994        I != E; ++I) {
1995     if (I->isCtrl())
1996       continue;
1997     SUnit *PredSU = I->getSUnit();
1998     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
1999     // to cover the number of registers defined (they are all live).
2000     if (PredSU->NumRegDefsLeft == 0) {
2001       if (PredSU->getNode()->isMachineOpcode())
2002         ++LiveUses;
2003       continue;
2004     }
2005     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2006          RegDefPos.IsValid(); RegDefPos.Advance()) {
2007       MVT VT = RegDefPos.GetValue();
2008       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2009       if (RegPressure[RCId] >= RegLimit[RCId])
2010         ++PDiff;
2011     }
2012   }
2013   const SDNode *N = SU->getNode();
2014
2015   if (!N || !N->isMachineOpcode() || !SU->NumSuccs)
2016     return PDiff;
2017
2018   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2019   for (unsigned i = 0; i != NumDefs; ++i) {
2020     MVT VT = N->getSimpleValueType(i);
2021     if (!N->hasAnyUseOfValue(i))
2022       continue;
2023     unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2024     if (RegPressure[RCId] >= RegLimit[RCId])
2025       --PDiff;
2026   }
2027   return PDiff;
2028 }
2029
2030 void RegReductionPQBase::scheduledNode(SUnit *SU) {
2031   if (!TracksRegPressure)
2032     return;
2033
2034   if (!SU->getNode())
2035     return;
2036
2037   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2038        I != E; ++I) {
2039     if (I->isCtrl())
2040       continue;
2041     SUnit *PredSU = I->getSUnit();
2042     // NumRegDefsLeft is zero when enough uses of this node have been scheduled
2043     // to cover the number of registers defined (they are all live).
2044     if (PredSU->NumRegDefsLeft == 0) {
2045       continue;
2046     }
2047     // FIXME: The ScheduleDAG currently loses information about which of a
2048     // node's values is consumed by each dependence. Consequently, if the node
2049     // defines multiple register classes, we don't know which to pressurize
2050     // here. Instead the following loop consumes the register defs in an
2051     // arbitrary order. At least it handles the common case of clustered loads
2052     // to the same class. For precise liveness, each SDep needs to indicate the
2053     // result number. But that tightly couples the ScheduleDAG with the
2054     // SelectionDAG making updates tricky. A simpler hack would be to attach a
2055     // value type or register class to SDep.
2056     //
2057     // The most important aspect of register tracking is balancing the increase
2058     // here with the reduction further below. Note that this SU may use multiple
2059     // defs in PredSU. The can't be determined here, but we've already
2060     // compensated by reducing NumRegDefsLeft in PredSU during
2061     // ScheduleDAGSDNodes::AddSchedEdges.
2062     --PredSU->NumRegDefsLeft;
2063     unsigned SkipRegDefs = PredSU->NumRegDefsLeft;
2064     for (ScheduleDAGSDNodes::RegDefIter RegDefPos(PredSU, scheduleDAG);
2065          RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2066       if (SkipRegDefs)
2067         continue;
2068
2069       unsigned RCId, Cost;
2070       GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2071       RegPressure[RCId] += Cost;
2072       break;
2073     }
2074   }
2075
2076   // We should have this assert, but there may be dead SDNodes that never
2077   // materialize as SUnits, so they don't appear to generate liveness.
2078   //assert(SU->NumRegDefsLeft == 0 && "not all regdefs have scheduled uses");
2079   int SkipRegDefs = (int)SU->NumRegDefsLeft;
2080   for (ScheduleDAGSDNodes::RegDefIter RegDefPos(SU, scheduleDAG);
2081        RegDefPos.IsValid(); RegDefPos.Advance(), --SkipRegDefs) {
2082     if (SkipRegDefs > 0)
2083       continue;
2084     unsigned RCId, Cost;
2085     GetCostForDef(RegDefPos, TLI, TII, TRI, RCId, Cost, MF);
2086     if (RegPressure[RCId] < Cost) {
2087       // Register pressure tracking is imprecise. This can happen. But we try
2088       // hard not to let it happen because it likely results in poor scheduling.
2089       DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") has too many regdefs\n");
2090       RegPressure[RCId] = 0;
2091     }
2092     else {
2093       RegPressure[RCId] -= Cost;
2094     }
2095   }
2096   dumpRegPressure();
2097 }
2098
2099 void RegReductionPQBase::unscheduledNode(SUnit *SU) {
2100   if (!TracksRegPressure)
2101     return;
2102
2103   const SDNode *N = SU->getNode();
2104   if (!N) return;
2105
2106   if (!N->isMachineOpcode()) {
2107     if (N->getOpcode() != ISD::CopyToReg)
2108       return;
2109   } else {
2110     unsigned Opc = N->getMachineOpcode();
2111     if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2112         Opc == TargetOpcode::INSERT_SUBREG ||
2113         Opc == TargetOpcode::SUBREG_TO_REG ||
2114         Opc == TargetOpcode::REG_SEQUENCE ||
2115         Opc == TargetOpcode::IMPLICIT_DEF)
2116       return;
2117   }
2118
2119   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2120        I != E; ++I) {
2121     if (I->isCtrl())
2122       continue;
2123     SUnit *PredSU = I->getSUnit();
2124     // NumSuccsLeft counts all deps. Don't compare it with NumSuccs which only
2125     // counts data deps.
2126     if (PredSU->NumSuccsLeft != PredSU->Succs.size())
2127       continue;
2128     const SDNode *PN = PredSU->getNode();
2129     if (!PN->isMachineOpcode()) {
2130       if (PN->getOpcode() == ISD::CopyFromReg) {
2131         MVT VT = PN->getSimpleValueType(0);
2132         unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2133         RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2134       }
2135       continue;
2136     }
2137     unsigned POpc = PN->getMachineOpcode();
2138     if (POpc == TargetOpcode::IMPLICIT_DEF)
2139       continue;
2140     if (POpc == TargetOpcode::EXTRACT_SUBREG ||
2141         POpc == TargetOpcode::INSERT_SUBREG ||
2142         POpc == TargetOpcode::SUBREG_TO_REG) {
2143       MVT VT = PN->getSimpleValueType(0);
2144       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2145       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2146       continue;
2147     }
2148     unsigned NumDefs = TII->get(PN->getMachineOpcode()).getNumDefs();
2149     for (unsigned i = 0; i != NumDefs; ++i) {
2150       MVT VT = PN->getSimpleValueType(i);
2151       if (!PN->hasAnyUseOfValue(i))
2152         continue;
2153       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2154       if (RegPressure[RCId] < TLI->getRepRegClassCostFor(VT))
2155         // Register pressure tracking is imprecise. This can happen.
2156         RegPressure[RCId] = 0;
2157       else
2158         RegPressure[RCId] -= TLI->getRepRegClassCostFor(VT);
2159     }
2160   }
2161
2162   // Check for isMachineOpcode() as PrescheduleNodesWithMultipleUses()
2163   // may transfer data dependencies to CopyToReg.
2164   if (SU->NumSuccs && N->isMachineOpcode()) {
2165     unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2166     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2167       MVT VT = N->getSimpleValueType(i);
2168       if (VT == MVT::Glue || VT == MVT::Other)
2169         continue;
2170       if (!N->hasAnyUseOfValue(i))
2171         continue;
2172       unsigned RCId = TLI->getRepRegClassFor(VT)->getID();
2173       RegPressure[RCId] += TLI->getRepRegClassCostFor(VT);
2174     }
2175   }
2176
2177   dumpRegPressure();
2178 }
2179
2180 //===----------------------------------------------------------------------===//
2181 //           Dynamic Node Priority for Register Pressure Reduction
2182 //===----------------------------------------------------------------------===//
2183
2184 /// closestSucc - Returns the scheduled cycle of the successor which is
2185 /// closest to the current cycle.
2186 static unsigned closestSucc(const SUnit *SU) {
2187   unsigned MaxHeight = 0;
2188   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2189        I != E; ++I) {
2190     if (I->isCtrl()) continue;  // ignore chain succs
2191     unsigned Height = I->getSUnit()->getHeight();
2192     // If there are bunch of CopyToRegs stacked up, they should be considered
2193     // to be at the same position.
2194     if (I->getSUnit()->getNode() &&
2195         I->getSUnit()->getNode()->getOpcode() == ISD::CopyToReg)
2196       Height = closestSucc(I->getSUnit())+1;
2197     if (Height > MaxHeight)
2198       MaxHeight = Height;
2199   }
2200   return MaxHeight;
2201 }
2202
2203 /// calcMaxScratches - Returns an cost estimate of the worse case requirement
2204 /// for scratch registers, i.e. number of data dependencies.
2205 static unsigned calcMaxScratches(const SUnit *SU) {
2206   unsigned Scratches = 0;
2207   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2208        I != E; ++I) {
2209     if (I->isCtrl()) continue;  // ignore chain preds
2210     Scratches++;
2211   }
2212   return Scratches;
2213 }
2214
2215 /// hasOnlyLiveInOpers - Return true if SU has only value predecessors that are
2216 /// CopyFromReg from a virtual register.
2217 static bool hasOnlyLiveInOpers(const SUnit *SU) {
2218   bool RetVal = false;
2219   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2220        I != E; ++I) {
2221     if (I->isCtrl()) continue;
2222     const SUnit *PredSU = I->getSUnit();
2223     if (PredSU->getNode() &&
2224         PredSU->getNode()->getOpcode() == ISD::CopyFromReg) {
2225       unsigned Reg =
2226         cast<RegisterSDNode>(PredSU->getNode()->getOperand(1))->getReg();
2227       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2228         RetVal = true;
2229         continue;
2230       }
2231     }
2232     return false;
2233   }
2234   return RetVal;
2235 }
2236
2237 /// hasOnlyLiveOutUses - Return true if SU has only value successors that are
2238 /// CopyToReg to a virtual register. This SU def is probably a liveout and
2239 /// it has no other use. It should be scheduled closer to the terminator.
2240 static bool hasOnlyLiveOutUses(const SUnit *SU) {
2241   bool RetVal = false;
2242   for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
2243        I != E; ++I) {
2244     if (I->isCtrl()) continue;
2245     const SUnit *SuccSU = I->getSUnit();
2246     if (SuccSU->getNode() && SuccSU->getNode()->getOpcode() == ISD::CopyToReg) {
2247       unsigned Reg =
2248         cast<RegisterSDNode>(SuccSU->getNode()->getOperand(1))->getReg();
2249       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
2250         RetVal = true;
2251         continue;
2252       }
2253     }
2254     return false;
2255   }
2256   return RetVal;
2257 }
2258
2259 // Set isVRegCycle for a node with only live in opers and live out uses. Also
2260 // set isVRegCycle for its CopyFromReg operands.
2261 //
2262 // This is only relevant for single-block loops, in which case the VRegCycle
2263 // node is likely an induction variable in which the operand and target virtual
2264 // registers should be coalesced (e.g. pre/post increment values). Setting the
2265 // isVRegCycle flag helps the scheduler prioritize other uses of the same
2266 // CopyFromReg so that this node becomes the virtual register "kill". This
2267 // avoids interference between the values live in and out of the block and
2268 // eliminates a copy inside the loop.
2269 static void initVRegCycle(SUnit *SU) {
2270   if (DisableSchedVRegCycle)
2271     return;
2272
2273   if (!hasOnlyLiveInOpers(SU) || !hasOnlyLiveOutUses(SU))
2274     return;
2275
2276   DEBUG(dbgs() << "VRegCycle: SU(" << SU->NodeNum << ")\n");
2277
2278   SU->isVRegCycle = true;
2279
2280   for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
2281        I != E; ++I) {
2282     if (I->isCtrl()) continue;
2283     I->getSUnit()->isVRegCycle = true;
2284   }
2285 }
2286
2287 // After scheduling the definition of a VRegCycle, clear the isVRegCycle flag of
2288 // CopyFromReg operands. We should no longer penalize other uses of this VReg.
2289 static void resetVRegCycle(SUnit *SU) {
2290   if (!SU->isVRegCycle)
2291     return;
2292
2293   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2294        I != E; ++I) {
2295     if (I->isCtrl()) continue;  // ignore chain preds
2296     SUnit *PredSU = I->getSUnit();
2297     if (PredSU->isVRegCycle) {
2298       assert(PredSU->getNode()->getOpcode() == ISD::CopyFromReg &&
2299              "VRegCycle def must be CopyFromReg");
2300       I->getSUnit()->isVRegCycle = 0;
2301     }
2302   }
2303 }
2304
2305 // Return true if this SUnit uses a CopyFromReg node marked as a VRegCycle. This
2306 // means a node that defines the VRegCycle has not been scheduled yet.
2307 static bool hasVRegCycleUse(const SUnit *SU) {
2308   // If this SU also defines the VReg, don't hoist it as a "use".
2309   if (SU->isVRegCycle)
2310     return false;
2311
2312   for (SUnit::const_pred_iterator I = SU->Preds.begin(),E = SU->Preds.end();
2313        I != E; ++I) {
2314     if (I->isCtrl()) continue;  // ignore chain preds
2315     if (I->getSUnit()->isVRegCycle &&
2316         I->getSUnit()->getNode()->getOpcode() == ISD::CopyFromReg) {
2317       DEBUG(dbgs() << "  VReg cycle use: SU (" << SU->NodeNum << ")\n");
2318       return true;
2319     }
2320   }
2321   return false;
2322 }
2323
2324 // Check for either a dependence (latency) or resource (hazard) stall.
2325 //
2326 // Note: The ScheduleHazardRecognizer interface requires a non-const SU.
2327 static bool BUHasStall(SUnit *SU, int Height, RegReductionPQBase *SPQ) {
2328   if ((int)SPQ->getCurCycle() < Height) return true;
2329   if (SPQ->getHazardRec()->getHazardType(SU, 0)
2330       != ScheduleHazardRecognizer::NoHazard)
2331     return true;
2332   return false;
2333 }
2334
2335 // Return -1 if left has higher priority, 1 if right has higher priority.
2336 // Return 0 if latency-based priority is equivalent.
2337 static int BUCompareLatency(SUnit *left, SUnit *right, bool checkPref,
2338                             RegReductionPQBase *SPQ) {
2339   // Scheduling an instruction that uses a VReg whose postincrement has not yet
2340   // been scheduled will induce a copy. Model this as an extra cycle of latency.
2341   int LPenalty = hasVRegCycleUse(left) ? 1 : 0;
2342   int RPenalty = hasVRegCycleUse(right) ? 1 : 0;
2343   int LHeight = (int)left->getHeight() + LPenalty;
2344   int RHeight = (int)right->getHeight() + RPenalty;
2345
2346   bool LStall = (!checkPref || left->SchedulingPref == Sched::ILP) &&
2347     BUHasStall(left, LHeight, SPQ);
2348   bool RStall = (!checkPref || right->SchedulingPref == Sched::ILP) &&
2349     BUHasStall(right, RHeight, SPQ);
2350
2351   // If scheduling one of the node will cause a pipeline stall, delay it.
2352   // If scheduling either one of the node will cause a pipeline stall, sort
2353   // them according to their height.
2354   if (LStall) {
2355     if (!RStall)
2356       return 1;
2357     if (LHeight != RHeight)
2358       return LHeight > RHeight ? 1 : -1;
2359   } else if (RStall)
2360     return -1;
2361
2362   // If either node is scheduling for latency, sort them by height/depth
2363   // and latency.
2364   if (!checkPref || (left->SchedulingPref == Sched::ILP ||
2365                      right->SchedulingPref == Sched::ILP)) {
2366     // If neither instruction stalls (!LStall && !RStall) and HazardRecognizer
2367     // is enabled, grouping instructions by cycle, then its height is already
2368     // covered so only its depth matters. We also reach this point if both stall
2369     // but have the same height.
2370     if (!SPQ->getHazardRec()->isEnabled()) {
2371       if (LHeight != RHeight)
2372         return LHeight > RHeight ? 1 : -1;
2373     }
2374     int LDepth = left->getDepth() - LPenalty;
2375     int RDepth = right->getDepth() - RPenalty;
2376     if (LDepth != RDepth) {
2377       DEBUG(dbgs() << "  Comparing latency of SU (" << left->NodeNum
2378             << ") depth " << LDepth << " vs SU (" << right->NodeNum
2379             << ") depth " << RDepth << "\n");
2380       return LDepth < RDepth ? 1 : -1;
2381     }
2382     if (left->Latency != right->Latency)
2383       return left->Latency > right->Latency ? 1 : -1;
2384   }
2385   return 0;
2386 }
2387
2388 static bool BURRSort(SUnit *left, SUnit *right, RegReductionPQBase *SPQ) {
2389   // Schedule physical register definitions close to their use. This is
2390   // motivated by microarchitectures that can fuse cmp+jump macro-ops. But as
2391   // long as shortening physreg live ranges is generally good, we can defer
2392   // creating a subtarget hook.
2393   if (!DisableSchedPhysRegJoin) {
2394     bool LHasPhysReg = left->hasPhysRegDefs;
2395     bool RHasPhysReg = right->hasPhysRegDefs;
2396     if (LHasPhysReg != RHasPhysReg) {
2397       #ifndef NDEBUG
2398       static const char *const PhysRegMsg[] = { " has no physreg",
2399                                                 " defines a physreg" };
2400       #endif
2401       DEBUG(dbgs() << "  SU (" << left->NodeNum << ") "
2402             << PhysRegMsg[LHasPhysReg] << " SU(" << right->NodeNum << ") "
2403             << PhysRegMsg[RHasPhysReg] << "\n");
2404       return LHasPhysReg < RHasPhysReg;
2405     }
2406   }
2407
2408   // Prioritize by Sethi-Ulmann number and push CopyToReg nodes down.
2409   unsigned LPriority = SPQ->getNodePriority(left);
2410   unsigned RPriority = SPQ->getNodePriority(right);
2411
2412   // Be really careful about hoisting call operands above previous calls.
2413   // Only allows it if it would reduce register pressure.
2414   if (left->isCall && right->isCallOp) {
2415     unsigned RNumVals = right->getNode()->getNumValues();
2416     RPriority = (RPriority > RNumVals) ? (RPriority - RNumVals) : 0;
2417   }
2418   if (right->isCall && left->isCallOp) {
2419     unsigned LNumVals = left->getNode()->getNumValues();
2420     LPriority = (LPriority > LNumVals) ? (LPriority - LNumVals) : 0;
2421   }
2422
2423   if (LPriority != RPriority)
2424     return LPriority > RPriority;
2425
2426   // One or both of the nodes are calls and their sethi-ullman numbers are the
2427   // same, then keep source order.
2428   if (left->isCall || right->isCall) {
2429     unsigned LOrder = SPQ->getNodeOrdering(left);
2430     unsigned ROrder = SPQ->getNodeOrdering(right);
2431
2432     // Prefer an ordering where the lower the non-zero order number, the higher
2433     // the preference.
2434     if ((LOrder || ROrder) && LOrder != ROrder)
2435       return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2436   }
2437
2438   // Try schedule def + use closer when Sethi-Ullman numbers are the same.
2439   // e.g.
2440   // t1 = op t2, c1
2441   // t3 = op t4, c2
2442   //
2443   // and the following instructions are both ready.
2444   // t2 = op c3
2445   // t4 = op c4
2446   //
2447   // Then schedule t2 = op first.
2448   // i.e.
2449   // t4 = op c4
2450   // t2 = op c3
2451   // t1 = op t2, c1
2452   // t3 = op t4, c2
2453   //
2454   // This creates more short live intervals.
2455   unsigned LDist = closestSucc(left);
2456   unsigned RDist = closestSucc(right);
2457   if (LDist != RDist)
2458     return LDist < RDist;
2459
2460   // How many registers becomes live when the node is scheduled.
2461   unsigned LScratch = calcMaxScratches(left);
2462   unsigned RScratch = calcMaxScratches(right);
2463   if (LScratch != RScratch)
2464     return LScratch > RScratch;
2465
2466   // Comparing latency against a call makes little sense unless the node
2467   // is register pressure-neutral.
2468   if ((left->isCall && RPriority > 0) || (right->isCall && LPriority > 0))
2469     return (left->NodeQueueId > right->NodeQueueId);
2470
2471   // Do not compare latencies when one or both of the nodes are calls.
2472   if (!DisableSchedCycles &&
2473       !(left->isCall || right->isCall)) {
2474     int result = BUCompareLatency(left, right, false /*checkPref*/, SPQ);
2475     if (result != 0)
2476       return result > 0;
2477   }
2478   else {
2479     if (left->getHeight() != right->getHeight())
2480       return left->getHeight() > right->getHeight();
2481
2482     if (left->getDepth() != right->getDepth())
2483       return left->getDepth() < right->getDepth();
2484   }
2485
2486   assert(left->NodeQueueId && right->NodeQueueId &&
2487          "NodeQueueId cannot be zero");
2488   return (left->NodeQueueId > right->NodeQueueId);
2489 }
2490
2491 // Bottom up
2492 bool bu_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2493   if (int res = checkSpecialNodes(left, right))
2494     return res > 0;
2495
2496   return BURRSort(left, right, SPQ);
2497 }
2498
2499 // Source order, otherwise bottom up.
2500 bool src_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2501   if (int res = checkSpecialNodes(left, right))
2502     return res > 0;
2503
2504   unsigned LOrder = SPQ->getNodeOrdering(left);
2505   unsigned ROrder = SPQ->getNodeOrdering(right);
2506
2507   // Prefer an ordering where the lower the non-zero order number, the higher
2508   // the preference.
2509   if ((LOrder || ROrder) && LOrder != ROrder)
2510     return LOrder != 0 && (LOrder < ROrder || ROrder == 0);
2511
2512   return BURRSort(left, right, SPQ);
2513 }
2514
2515 // If the time between now and when the instruction will be ready can cover
2516 // the spill code, then avoid adding it to the ready queue. This gives long
2517 // stalls highest priority and allows hoisting across calls. It should also
2518 // speed up processing the available queue.
2519 bool hybrid_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2520   static const unsigned ReadyDelay = 3;
2521
2522   if (SPQ->MayReduceRegPressure(SU)) return true;
2523
2524   if (SU->getHeight() > (CurCycle + ReadyDelay)) return false;
2525
2526   if (SPQ->getHazardRec()->getHazardType(SU, -ReadyDelay)
2527       != ScheduleHazardRecognizer::NoHazard)
2528     return false;
2529
2530   return true;
2531 }
2532
2533 // Return true if right should be scheduled with higher priority than left.
2534 bool hybrid_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2535   if (int res = checkSpecialNodes(left, right))
2536     return res > 0;
2537
2538   if (left->isCall || right->isCall)
2539     // No way to compute latency of calls.
2540     return BURRSort(left, right, SPQ);
2541
2542   bool LHigh = SPQ->HighRegPressure(left);
2543   bool RHigh = SPQ->HighRegPressure(right);
2544   // Avoid causing spills. If register pressure is high, schedule for
2545   // register pressure reduction.
2546   if (LHigh && !RHigh) {
2547     DEBUG(dbgs() << "  pressure SU(" << left->NodeNum << ") > SU("
2548           << right->NodeNum << ")\n");
2549     return true;
2550   }
2551   else if (!LHigh && RHigh) {
2552     DEBUG(dbgs() << "  pressure SU(" << right->NodeNum << ") > SU("
2553           << left->NodeNum << ")\n");
2554     return false;
2555   }
2556   if (!LHigh && !RHigh) {
2557     int result = BUCompareLatency(left, right, true /*checkPref*/, SPQ);
2558     if (result != 0)
2559       return result > 0;
2560   }
2561   return BURRSort(left, right, SPQ);
2562 }
2563
2564 // Schedule as many instructions in each cycle as possible. So don't make an
2565 // instruction available unless it is ready in the current cycle.
2566 bool ilp_ls_rr_sort::isReady(SUnit *SU, unsigned CurCycle) const {
2567   if (SU->getHeight() > CurCycle) return false;
2568
2569   if (SPQ->getHazardRec()->getHazardType(SU, 0)
2570       != ScheduleHazardRecognizer::NoHazard)
2571     return false;
2572
2573   return true;
2574 }
2575
2576 static bool canEnableCoalescing(SUnit *SU) {
2577   unsigned Opc = SU->getNode() ? SU->getNode()->getOpcode() : 0;
2578   if (Opc == ISD::TokenFactor || Opc == ISD::CopyToReg)
2579     // CopyToReg should be close to its uses to facilitate coalescing and
2580     // avoid spilling.
2581     return true;
2582
2583   if (Opc == TargetOpcode::EXTRACT_SUBREG ||
2584       Opc == TargetOpcode::SUBREG_TO_REG ||
2585       Opc == TargetOpcode::INSERT_SUBREG)
2586     // EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG nodes should be
2587     // close to their uses to facilitate coalescing.
2588     return true;
2589
2590   if (SU->NumPreds == 0 && SU->NumSuccs != 0)
2591     // If SU does not have a register def, schedule it close to its uses
2592     // because it does not lengthen any live ranges.
2593     return true;
2594
2595   return false;
2596 }
2597
2598 // list-ilp is currently an experimental scheduler that allows various
2599 // heuristics to be enabled prior to the normal register reduction logic.
2600 bool ilp_ls_rr_sort::operator()(SUnit *left, SUnit *right) const {
2601   if (int res = checkSpecialNodes(left, right))
2602     return res > 0;
2603
2604   if (left->isCall || right->isCall)
2605     // No way to compute latency of calls.
2606     return BURRSort(left, right, SPQ);
2607
2608   unsigned LLiveUses = 0, RLiveUses = 0;
2609   int LPDiff = 0, RPDiff = 0;
2610   if (!DisableSchedRegPressure || !DisableSchedLiveUses) {
2611     LPDiff = SPQ->RegPressureDiff(left, LLiveUses);
2612     RPDiff = SPQ->RegPressureDiff(right, RLiveUses);
2613   }
2614   if (!DisableSchedRegPressure && LPDiff != RPDiff) {
2615     DEBUG(dbgs() << "RegPressureDiff SU(" << left->NodeNum << "): " << LPDiff
2616           << " != SU(" << right->NodeNum << "): " << RPDiff << "\n");
2617     return LPDiff > RPDiff;
2618   }
2619
2620   if (!DisableSchedRegPressure && (LPDiff > 0 || RPDiff > 0)) {
2621     bool LReduce = canEnableCoalescing(left);
2622     bool RReduce = canEnableCoalescing(right);
2623     if (LReduce && !RReduce) return false;
2624     if (RReduce && !LReduce) return true;
2625   }
2626
2627   if (!DisableSchedLiveUses && (LLiveUses != RLiveUses)) {
2628     DEBUG(dbgs() << "Live uses SU(" << left->NodeNum << "): " << LLiveUses
2629           << " != SU(" << right->NodeNum << "): " << RLiveUses << "\n");
2630     return LLiveUses < RLiveUses;
2631   }
2632
2633   if (!DisableSchedStalls) {
2634     bool LStall = BUHasStall(left, left->getHeight(), SPQ);
2635     bool RStall = BUHasStall(right, right->getHeight(), SPQ);
2636     if (LStall != RStall)
2637       return left->getHeight() > right->getHeight();
2638   }
2639
2640   if (!DisableSchedCriticalPath) {
2641     int spread = (int)left->getDepth() - (int)right->getDepth();
2642     if (std::abs(spread) > MaxReorderWindow) {
2643       DEBUG(dbgs() << "Depth of SU(" << left->NodeNum << "): "
2644             << left->getDepth() << " != SU(" << right->NodeNum << "): "
2645             << right->getDepth() << "\n");
2646       return left->getDepth() < right->getDepth();
2647     }
2648   }
2649
2650   if (!DisableSchedHeight && left->getHeight() != right->getHeight()) {
2651     int spread = (int)left->getHeight() - (int)right->getHeight();
2652     if (std::abs(spread) > MaxReorderWindow)
2653       return left->getHeight() > right->getHeight();
2654   }
2655
2656   return BURRSort(left, right, SPQ);
2657 }
2658
2659 void RegReductionPQBase::initNodes(std::vector<SUnit> &sunits) {
2660   SUnits = &sunits;
2661   // Add pseudo dependency edges for two-address nodes.
2662   if (!Disable2AddrHack)
2663     AddPseudoTwoAddrDeps();
2664   // Reroute edges to nodes with multiple uses.
2665   if (!TracksRegPressure && !SrcOrder)
2666     PrescheduleNodesWithMultipleUses();
2667   // Calculate node priorities.
2668   CalculateSethiUllmanNumbers();
2669
2670   // For single block loops, mark nodes that look like canonical IV increments.
2671   if (scheduleDAG->BB->isSuccessor(scheduleDAG->BB)) {
2672     for (unsigned i = 0, e = sunits.size(); i != e; ++i) {
2673       initVRegCycle(&sunits[i]);
2674     }
2675   }
2676 }
2677
2678 //===----------------------------------------------------------------------===//
2679 //                    Preschedule for Register Pressure
2680 //===----------------------------------------------------------------------===//
2681
2682 bool RegReductionPQBase::canClobber(const SUnit *SU, const SUnit *Op) {
2683   if (SU->isTwoAddress) {
2684     unsigned Opc = SU->getNode()->getMachineOpcode();
2685     const MCInstrDesc &MCID = TII->get(Opc);
2686     unsigned NumRes = MCID.getNumDefs();
2687     unsigned NumOps = MCID.getNumOperands() - NumRes;
2688     for (unsigned i = 0; i != NumOps; ++i) {
2689       if (MCID.getOperandConstraint(i+NumRes, MCOI::TIED_TO) != -1) {
2690         SDNode *DU = SU->getNode()->getOperand(i).getNode();
2691         if (DU->getNodeId() != -1 &&
2692             Op->OrigNode == &(*SUnits)[DU->getNodeId()])
2693           return true;
2694       }
2695     }
2696   }
2697   return false;
2698 }
2699
2700 /// canClobberReachingPhysRegUse - True if SU would clobber one of it's
2701 /// successor's explicit physregs whose definition can reach DepSU.
2702 /// i.e. DepSU should not be scheduled above SU.
2703 static bool canClobberReachingPhysRegUse(const SUnit *DepSU, const SUnit *SU,
2704                                          ScheduleDAGRRList *scheduleDAG,
2705                                          const TargetInstrInfo *TII,
2706                                          const TargetRegisterInfo *TRI) {
2707   const uint16_t *ImpDefs
2708     = TII->get(SU->getNode()->getMachineOpcode()).getImplicitDefs();
2709   const uint32_t *RegMask = getNodeRegMask(SU->getNode());
2710   if(!ImpDefs && !RegMask)
2711     return false;
2712
2713   for (SUnit::const_succ_iterator SI = SU->Succs.begin(), SE = SU->Succs.end();
2714        SI != SE; ++SI) {
2715     SUnit *SuccSU = SI->getSUnit();
2716     for (SUnit::const_pred_iterator PI = SuccSU->Preds.begin(),
2717            PE = SuccSU->Preds.end(); PI != PE; ++PI) {
2718       if (!PI->isAssignedRegDep())
2719         continue;
2720
2721       if (RegMask && MachineOperand::clobbersPhysReg(RegMask, PI->getReg()) &&
2722           scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2723         return true;
2724
2725       if (ImpDefs)
2726         for (const uint16_t *ImpDef = ImpDefs; *ImpDef; ++ImpDef)
2727           // Return true if SU clobbers this physical register use and the
2728           // definition of the register reaches from DepSU. IsReachable queries
2729           // a topological forward sort of the DAG (following the successors).
2730           if (TRI->regsOverlap(*ImpDef, PI->getReg()) &&
2731               scheduleDAG->IsReachable(DepSU, PI->getSUnit()))
2732             return true;
2733     }
2734   }
2735   return false;
2736 }
2737
2738 /// canClobberPhysRegDefs - True if SU would clobber one of SuccSU's
2739 /// physical register defs.
2740 static bool canClobberPhysRegDefs(const SUnit *SuccSU, const SUnit *SU,
2741                                   const TargetInstrInfo *TII,
2742                                   const TargetRegisterInfo *TRI) {
2743   SDNode *N = SuccSU->getNode();
2744   unsigned NumDefs = TII->get(N->getMachineOpcode()).getNumDefs();
2745   const uint16_t *ImpDefs = TII->get(N->getMachineOpcode()).getImplicitDefs();
2746   assert(ImpDefs && "Caller should check hasPhysRegDefs");
2747   for (const SDNode *SUNode = SU->getNode(); SUNode;
2748        SUNode = SUNode->getGluedNode()) {
2749     if (!SUNode->isMachineOpcode())
2750       continue;
2751     const uint16_t *SUImpDefs =
2752       TII->get(SUNode->getMachineOpcode()).getImplicitDefs();
2753     const uint32_t *SURegMask = getNodeRegMask(SUNode);
2754     if (!SUImpDefs && !SURegMask)
2755       continue;
2756     for (unsigned i = NumDefs, e = N->getNumValues(); i != e; ++i) {
2757       EVT VT = N->getValueType(i);
2758       if (VT == MVT::Glue || VT == MVT::Other)
2759         continue;
2760       if (!N->hasAnyUseOfValue(i))
2761         continue;
2762       unsigned Reg = ImpDefs[i - NumDefs];
2763       if (SURegMask && MachineOperand::clobbersPhysReg(SURegMask, Reg))
2764         return true;
2765       if (!SUImpDefs)
2766         continue;
2767       for (;*SUImpDefs; ++SUImpDefs) {
2768         unsigned SUReg = *SUImpDefs;
2769         if (TRI->regsOverlap(Reg, SUReg))
2770           return true;
2771       }
2772     }
2773   }
2774   return false;
2775 }
2776
2777 /// PrescheduleNodesWithMultipleUses - Nodes with multiple uses
2778 /// are not handled well by the general register pressure reduction
2779 /// heuristics. When presented with code like this:
2780 ///
2781 ///      N
2782 ///    / |
2783 ///   /  |
2784 ///  U  store
2785 ///  |
2786 /// ...
2787 ///
2788 /// the heuristics tend to push the store up, but since the
2789 /// operand of the store has another use (U), this would increase
2790 /// the length of that other use (the U->N edge).
2791 ///
2792 /// This function transforms code like the above to route U's
2793 /// dependence through the store when possible, like this:
2794 ///
2795 ///      N
2796 ///      ||
2797 ///      ||
2798 ///     store
2799 ///       |
2800 ///       U
2801 ///       |
2802 ///      ...
2803 ///
2804 /// This results in the store being scheduled immediately
2805 /// after N, which shortens the U->N live range, reducing
2806 /// register pressure.
2807 ///
2808 void RegReductionPQBase::PrescheduleNodesWithMultipleUses() {
2809   // Visit all the nodes in topological order, working top-down.
2810   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2811     SUnit *SU = &(*SUnits)[i];
2812     // For now, only look at nodes with no data successors, such as stores.
2813     // These are especially important, due to the heuristics in
2814     // getNodePriority for nodes with no data successors.
2815     if (SU->NumSuccs != 0)
2816       continue;
2817     // For now, only look at nodes with exactly one data predecessor.
2818     if (SU->NumPreds != 1)
2819       continue;
2820     // Avoid prescheduling copies to virtual registers, which don't behave
2821     // like other nodes from the perspective of scheduling heuristics.
2822     if (SDNode *N = SU->getNode())
2823       if (N->getOpcode() == ISD::CopyToReg &&
2824           TargetRegisterInfo::isVirtualRegister
2825             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2826         continue;
2827
2828     // Locate the single data predecessor.
2829     SUnit *PredSU = nullptr;
2830     for (SUnit::const_pred_iterator II = SU->Preds.begin(),
2831          EE = SU->Preds.end(); II != EE; ++II)
2832       if (!II->isCtrl()) {
2833         PredSU = II->getSUnit();
2834         break;
2835       }
2836     assert(PredSU);
2837
2838     // Don't rewrite edges that carry physregs, because that requires additional
2839     // support infrastructure.
2840     if (PredSU->hasPhysRegDefs)
2841       continue;
2842     // Short-circuit the case where SU is PredSU's only data successor.
2843     if (PredSU->NumSuccs == 1)
2844       continue;
2845     // Avoid prescheduling to copies from virtual registers, which don't behave
2846     // like other nodes from the perspective of scheduling heuristics.
2847     if (SDNode *N = SU->getNode())
2848       if (N->getOpcode() == ISD::CopyFromReg &&
2849           TargetRegisterInfo::isVirtualRegister
2850             (cast<RegisterSDNode>(N->getOperand(1))->getReg()))
2851         continue;
2852
2853     // Perform checks on the successors of PredSU.
2854     for (SUnit::const_succ_iterator II = PredSU->Succs.begin(),
2855          EE = PredSU->Succs.end(); II != EE; ++II) {
2856       SUnit *PredSuccSU = II->getSUnit();
2857       if (PredSuccSU == SU) continue;
2858       // If PredSU has another successor with no data successors, for
2859       // now don't attempt to choose either over the other.
2860       if (PredSuccSU->NumSuccs == 0)
2861         goto outer_loop_continue;
2862       // Don't break physical register dependencies.
2863       if (SU->hasPhysRegClobbers && PredSuccSU->hasPhysRegDefs)
2864         if (canClobberPhysRegDefs(PredSuccSU, SU, TII, TRI))
2865           goto outer_loop_continue;
2866       // Don't introduce graph cycles.
2867       if (scheduleDAG->IsReachable(SU, PredSuccSU))
2868         goto outer_loop_continue;
2869     }
2870
2871     // Ok, the transformation is safe and the heuristics suggest it is
2872     // profitable. Update the graph.
2873     DEBUG(dbgs() << "    Prescheduling SU #" << SU->NodeNum
2874                  << " next to PredSU #" << PredSU->NodeNum
2875                  << " to guide scheduling in the presence of multiple uses\n");
2876     for (unsigned i = 0; i != PredSU->Succs.size(); ++i) {
2877       SDep Edge = PredSU->Succs[i];
2878       assert(!Edge.isAssignedRegDep());
2879       SUnit *SuccSU = Edge.getSUnit();
2880       if (SuccSU != SU) {
2881         Edge.setSUnit(PredSU);
2882         scheduleDAG->RemovePred(SuccSU, Edge);
2883         scheduleDAG->AddPred(SU, Edge);
2884         Edge.setSUnit(SU);
2885         scheduleDAG->AddPred(SuccSU, Edge);
2886         --i;
2887       }
2888     }
2889   outer_loop_continue:;
2890   }
2891 }
2892
2893 /// AddPseudoTwoAddrDeps - If two nodes share an operand and one of them uses
2894 /// it as a def&use operand. Add a pseudo control edge from it to the other
2895 /// node (if it won't create a cycle) so the two-address one will be scheduled
2896 /// first (lower in the schedule). If both nodes are two-address, favor the
2897 /// one that has a CopyToReg use (more likely to be a loop induction update).
2898 /// If both are two-address, but one is commutable while the other is not
2899 /// commutable, favor the one that's not commutable.
2900 void RegReductionPQBase::AddPseudoTwoAddrDeps() {
2901   for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
2902     SUnit *SU = &(*SUnits)[i];
2903     if (!SU->isTwoAddress)
2904       continue;
2905
2906     SDNode *Node = SU->getNode();
2907     if (!Node || !Node->isMachineOpcode() || SU->getNode()->getGluedNode())
2908       continue;
2909
2910     bool isLiveOut = hasOnlyLiveOutUses(SU);
2911     unsigned Opc = Node->getMachineOpcode();
2912     const MCInstrDesc &MCID = TII->get(Opc);
2913     unsigned NumRes = MCID.getNumDefs();
2914     unsigned NumOps = MCID.getNumOperands() - NumRes;
2915     for (unsigned j = 0; j != NumOps; ++j) {
2916       if (MCID.getOperandConstraint(j+NumRes, MCOI::TIED_TO) == -1)
2917         continue;
2918       SDNode *DU = SU->getNode()->getOperand(j).getNode();
2919       if (DU->getNodeId() == -1)
2920         continue;
2921       const SUnit *DUSU = &(*SUnits)[DU->getNodeId()];
2922       if (!DUSU) continue;
2923       for (SUnit::const_succ_iterator I = DUSU->Succs.begin(),
2924            E = DUSU->Succs.end(); I != E; ++I) {
2925         if (I->isCtrl()) continue;
2926         SUnit *SuccSU = I->getSUnit();
2927         if (SuccSU == SU)
2928           continue;
2929         // Be conservative. Ignore if nodes aren't at roughly the same
2930         // depth and height.
2931         if (SuccSU->getHeight() < SU->getHeight() &&
2932             (SU->getHeight() - SuccSU->getHeight()) > 1)
2933           continue;
2934         // Skip past COPY_TO_REGCLASS nodes, so that the pseudo edge
2935         // constrains whatever is using the copy, instead of the copy
2936         // itself. In the case that the copy is coalesced, this
2937         // preserves the intent of the pseudo two-address heurietics.
2938         while (SuccSU->Succs.size() == 1 &&
2939                SuccSU->getNode()->isMachineOpcode() &&
2940                SuccSU->getNode()->getMachineOpcode() ==
2941                  TargetOpcode::COPY_TO_REGCLASS)
2942           SuccSU = SuccSU->Succs.front().getSUnit();
2943         // Don't constrain non-instruction nodes.
2944         if (!SuccSU->getNode() || !SuccSU->getNode()->isMachineOpcode())
2945           continue;
2946         // Don't constrain nodes with physical register defs if the
2947         // predecessor can clobber them.
2948         if (SuccSU->hasPhysRegDefs && SU->hasPhysRegClobbers) {
2949           if (canClobberPhysRegDefs(SuccSU, SU, TII, TRI))
2950             continue;
2951         }
2952         // Don't constrain EXTRACT_SUBREG, INSERT_SUBREG, and SUBREG_TO_REG;
2953         // these may be coalesced away. We want them close to their uses.
2954         unsigned SuccOpc = SuccSU->getNode()->getMachineOpcode();
2955         if (SuccOpc == TargetOpcode::EXTRACT_SUBREG ||
2956             SuccOpc == TargetOpcode::INSERT_SUBREG ||
2957             SuccOpc == TargetOpcode::SUBREG_TO_REG)
2958           continue;
2959         if (!canClobberReachingPhysRegUse(SuccSU, SU, scheduleDAG, TII, TRI) &&
2960             (!canClobber(SuccSU, DUSU) ||
2961              (isLiveOut && !hasOnlyLiveOutUses(SuccSU)) ||
2962              (!SU->isCommutable && SuccSU->isCommutable)) &&
2963             !scheduleDAG->IsReachable(SuccSU, SU)) {
2964           DEBUG(dbgs() << "    Adding a pseudo-two-addr edge from SU #"
2965                        << SU->NodeNum << " to SU #" << SuccSU->NodeNum << "\n");
2966           scheduleDAG->AddPred(SU, SDep(SuccSU, SDep::Artificial));
2967         }
2968       }
2969     }
2970   }
2971 }
2972
2973 //===----------------------------------------------------------------------===//
2974 //                         Public Constructor Functions
2975 //===----------------------------------------------------------------------===//
2976
2977 llvm::ScheduleDAGSDNodes *
2978 llvm::createBURRListDAGScheduler(SelectionDAGISel *IS,
2979                                  CodeGenOpt::Level OptLevel) {
2980   const TargetMachine &TM = IS->TM;
2981   const TargetInstrInfo *TII = TM.getInstrInfo();
2982   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2983
2984   BURegReductionPriorityQueue *PQ =
2985     new BURegReductionPriorityQueue(*IS->MF, false, false, TII, TRI, nullptr);
2986   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
2987   PQ->setScheduleDAG(SD);
2988   return SD;
2989 }
2990
2991 llvm::ScheduleDAGSDNodes *
2992 llvm::createSourceListDAGScheduler(SelectionDAGISel *IS,
2993                                    CodeGenOpt::Level OptLevel) {
2994   const TargetMachine &TM = IS->TM;
2995   const TargetInstrInfo *TII = TM.getInstrInfo();
2996   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
2997
2998   SrcRegReductionPriorityQueue *PQ =
2999     new SrcRegReductionPriorityQueue(*IS->MF, false, true, TII, TRI, nullptr);
3000   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, false, PQ, OptLevel);
3001   PQ->setScheduleDAG(SD);
3002   return SD;
3003 }
3004
3005 llvm::ScheduleDAGSDNodes *
3006 llvm::createHybridListDAGScheduler(SelectionDAGISel *IS,
3007                                    CodeGenOpt::Level OptLevel) {
3008   const TargetMachine &TM = IS->TM;
3009   const TargetInstrInfo *TII = TM.getInstrInfo();
3010   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3011   const TargetLowering *TLI = IS->getTargetLowering();
3012
3013   HybridBURRPriorityQueue *PQ =
3014     new HybridBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3015
3016   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3017   PQ->setScheduleDAG(SD);
3018   return SD;
3019 }
3020
3021 llvm::ScheduleDAGSDNodes *
3022 llvm::createILPListDAGScheduler(SelectionDAGISel *IS,
3023                                 CodeGenOpt::Level OptLevel) {
3024   const TargetMachine &TM = IS->TM;
3025   const TargetInstrInfo *TII = TM.getInstrInfo();
3026   const TargetRegisterInfo *TRI = TM.getRegisterInfo();
3027   const TargetLowering *TLI = IS->getTargetLowering();
3028
3029   ILPBURRPriorityQueue *PQ =
3030     new ILPBURRPriorityQueue(*IS->MF, true, false, TII, TRI, TLI);
3031   ScheduleDAGRRList *SD = new ScheduleDAGRRList(*IS->MF, true, PQ, OptLevel);
3032   PQ->setScheduleDAG(SD);
3033   return SD;
3034 }