Reverts wrong modification to MachineBlockPlacement & BranchFolding; uses a new strat...
[oota-llvm.git] / lib / CodeGen / SelectionDAG / ScheduleDAGFast.cpp
1 //===----- ScheduleDAGFast.cpp - Fast poor list scheduler -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements a fast scheduler.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/SchedulerRegistry.h"
15 #include "InstrEmitter.h"
16 #include "ScheduleDAGSDNodes.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/CodeGen/SelectionDAGISel.h"
21 #include "llvm/IR/DataLayout.h"
22 #include "llvm/IR/InlineAsm.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/Target/TargetInstrInfo.h"
27 #include "llvm/Target/TargetRegisterInfo.h"
28 using namespace llvm;
29
30 #define DEBUG_TYPE "pre-RA-sched"
31
32 STATISTIC(NumUnfolds,    "Number of nodes unfolded");
33 STATISTIC(NumDups,       "Number of duplicated nodes");
34 STATISTIC(NumPRCopies,   "Number of physical copies");
35
36 static RegisterScheduler
37   fastDAGScheduler("fast", "Fast suboptimal list scheduling",
38                    createFastDAGScheduler);
39 static RegisterScheduler
40   linearizeDAGScheduler("linearize", "Linearize DAG, no scheduling",
41                         createDAGLinearizer);
42
43
44 namespace {
45   /// FastPriorityQueue - A degenerate priority queue that considers
46   /// all nodes to have the same priority.
47   ///
48   struct FastPriorityQueue {
49     SmallVector<SUnit *, 16> Queue;
50
51     bool empty() const { return Queue.empty(); }
52
53     void push(SUnit *U) {
54       Queue.push_back(U);
55     }
56
57     SUnit *pop() {
58       if (empty()) return nullptr;
59       SUnit *V = Queue.back();
60       Queue.pop_back();
61       return V;
62     }
63   };
64
65 //===----------------------------------------------------------------------===//
66 /// ScheduleDAGFast - The actual "fast" list scheduler implementation.
67 ///
68 class ScheduleDAGFast : public ScheduleDAGSDNodes {
69 private:
70   /// AvailableQueue - The priority queue to use for the available SUnits.
71   FastPriorityQueue AvailableQueue;
72
73   /// LiveRegDefs - A set of physical registers and their definition
74   /// that are "live". These nodes must be scheduled before any other nodes that
75   /// modifies the registers can be scheduled.
76   unsigned NumLiveRegs;
77   std::vector<SUnit*> LiveRegDefs;
78   std::vector<unsigned> LiveRegCycles;
79
80 public:
81   ScheduleDAGFast(MachineFunction &mf)
82     : ScheduleDAGSDNodes(mf) {}
83
84   void Schedule() override;
85
86   /// AddPred - adds a predecessor edge to SUnit SU.
87   /// This returns true if this is a new predecessor.
88   void AddPred(SUnit *SU, const SDep &D) {
89     SU->addPred(D);
90   }
91
92   /// RemovePred - removes a predecessor edge from SUnit SU.
93   /// This returns true if an edge was removed.
94   void RemovePred(SUnit *SU, const SDep &D) {
95     SU->removePred(D);
96   }
97
98 private:
99   void ReleasePred(SUnit *SU, SDep *PredEdge);
100   void ReleasePredecessors(SUnit *SU, unsigned CurCycle);
101   void ScheduleNodeBottomUp(SUnit*, unsigned);
102   SUnit *CopyAndMoveSuccessors(SUnit*);
103   void InsertCopiesAndMoveSuccs(SUnit*, unsigned,
104                                 const TargetRegisterClass*,
105                                 const TargetRegisterClass*,
106                                 SmallVectorImpl<SUnit*>&);
107   bool DelayForLiveRegsBottomUp(SUnit*, SmallVectorImpl<unsigned>&);
108   void ListScheduleBottomUp();
109
110   /// forceUnitLatencies - The fast scheduler doesn't care about real latencies.
111   bool forceUnitLatencies() const override { return true; }
112 };
113 }  // end anonymous namespace
114
115
116 /// Schedule - Schedule the DAG using list scheduling.
117 void ScheduleDAGFast::Schedule() {
118   DEBUG(dbgs() << "********** List Scheduling **********\n");
119
120   NumLiveRegs = 0;
121   LiveRegDefs.resize(TRI->getNumRegs(), nullptr);
122   LiveRegCycles.resize(TRI->getNumRegs(), 0);
123
124   // Build the scheduling graph.
125   BuildSchedGraph(nullptr);
126
127   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
128           SUnits[su].dumpAll(this));
129
130   // Execute the actual scheduling loop.
131   ListScheduleBottomUp();
132 }
133
134 //===----------------------------------------------------------------------===//
135 //  Bottom-Up Scheduling
136 //===----------------------------------------------------------------------===//
137
138 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. Add it to
139 /// the AvailableQueue if the count reaches zero. Also update its cycle bound.
140 void ScheduleDAGFast::ReleasePred(SUnit *SU, SDep *PredEdge) {
141   SUnit *PredSU = PredEdge->getSUnit();
142
143 #ifndef NDEBUG
144   if (PredSU->NumSuccsLeft == 0) {
145     dbgs() << "*** Scheduling failed! ***\n";
146     PredSU->dump(this);
147     dbgs() << " has been released too many times!\n";
148     llvm_unreachable(nullptr);
149   }
150 #endif
151   --PredSU->NumSuccsLeft;
152
153   // If all the node's successors are scheduled, this node is ready
154   // to be scheduled. Ignore the special EntrySU node.
155   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU) {
156     PredSU->isAvailable = true;
157     AvailableQueue.push(PredSU);
158   }
159 }
160
161 void ScheduleDAGFast::ReleasePredecessors(SUnit *SU, unsigned CurCycle) {
162   // Bottom up: release predecessors
163   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
164        I != E; ++I) {
165     ReleasePred(SU, &*I);
166     if (I->isAssignedRegDep()) {
167       // This is a physical register dependency and it's impossible or
168       // expensive to copy the register. Make sure nothing that can
169       // clobber the register is scheduled between the predecessor and
170       // this node.
171       if (!LiveRegDefs[I->getReg()]) {
172         ++NumLiveRegs;
173         LiveRegDefs[I->getReg()] = I->getSUnit();
174         LiveRegCycles[I->getReg()] = CurCycle;
175       }
176     }
177   }
178 }
179
180 /// ScheduleNodeBottomUp - Add the node to the schedule. Decrement the pending
181 /// count of its predecessors. If a predecessor pending count is zero, add it to
182 /// the Available queue.
183 void ScheduleDAGFast::ScheduleNodeBottomUp(SUnit *SU, unsigned CurCycle) {
184   DEBUG(dbgs() << "*** Scheduling [" << CurCycle << "]: ");
185   DEBUG(SU->dump(this));
186
187   assert(CurCycle >= SU->getHeight() && "Node scheduled below its height!");
188   SU->setHeightToAtLeast(CurCycle);
189   Sequence.push_back(SU);
190
191   ReleasePredecessors(SU, CurCycle);
192
193   // Release all the implicit physical register defs that are live.
194   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
195        I != E; ++I) {
196     if (I->isAssignedRegDep()) {
197       if (LiveRegCycles[I->getReg()] == I->getSUnit()->getHeight()) {
198         assert(NumLiveRegs > 0 && "NumLiveRegs is already zero!");
199         assert(LiveRegDefs[I->getReg()] == SU &&
200                "Physical register dependency violated?");
201         --NumLiveRegs;
202         LiveRegDefs[I->getReg()] = nullptr;
203         LiveRegCycles[I->getReg()] = 0;
204       }
205     }
206   }
207
208   SU->isScheduled = true;
209 }
210
211 /// CopyAndMoveSuccessors - Clone the specified node and move its scheduled
212 /// successors to the newly created node.
213 SUnit *ScheduleDAGFast::CopyAndMoveSuccessors(SUnit *SU) {
214   if (SU->getNode()->getGluedNode())
215     return nullptr;
216
217   SDNode *N = SU->getNode();
218   if (!N)
219     return nullptr;
220
221   SUnit *NewSU;
222   bool TryUnfold = false;
223   for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
224     MVT VT = N->getSimpleValueType(i);
225     if (VT == MVT::Glue)
226       return nullptr;
227     else if (VT == MVT::Other)
228       TryUnfold = true;
229   }
230   for (const SDValue &Op : N->op_values()) {
231     MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
232     if (VT == MVT::Glue)
233       return nullptr;
234   }
235
236   if (TryUnfold) {
237     SmallVector<SDNode*, 2> NewNodes;
238     if (!TII->unfoldMemoryOperand(*DAG, N, NewNodes))
239       return nullptr;
240
241     DEBUG(dbgs() << "Unfolding SU # " << SU->NodeNum << "\n");
242     assert(NewNodes.size() == 2 && "Expected a load folding node!");
243
244     N = NewNodes[1];
245     SDNode *LoadNode = NewNodes[0];
246     unsigned NumVals = N->getNumValues();
247     unsigned OldNumVals = SU->getNode()->getNumValues();
248     for (unsigned i = 0; i != NumVals; ++i)
249       DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), i), SDValue(N, i));
250     DAG->ReplaceAllUsesOfValueWith(SDValue(SU->getNode(), OldNumVals-1),
251                                    SDValue(LoadNode, 1));
252
253     SUnit *NewSU = newSUnit(N);
254     assert(N->getNodeId() == -1 && "Node already inserted!");
255     N->setNodeId(NewSU->NodeNum);
256
257     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
258     for (unsigned i = 0; i != MCID.getNumOperands(); ++i) {
259       if (MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1) {
260         NewSU->isTwoAddress = true;
261         break;
262       }
263     }
264     if (MCID.isCommutable())
265       NewSU->isCommutable = true;
266
267     // LoadNode may already exist. This can happen when there is another
268     // load from the same location and producing the same type of value
269     // but it has different alignment or volatileness.
270     bool isNewLoad = true;
271     SUnit *LoadSU;
272     if (LoadNode->getNodeId() != -1) {
273       LoadSU = &SUnits[LoadNode->getNodeId()];
274       isNewLoad = false;
275     } else {
276       LoadSU = newSUnit(LoadNode);
277       LoadNode->setNodeId(LoadSU->NodeNum);
278     }
279
280     SDep ChainPred;
281     SmallVector<SDep, 4> ChainSuccs;
282     SmallVector<SDep, 4> LoadPreds;
283     SmallVector<SDep, 4> NodePreds;
284     SmallVector<SDep, 4> NodeSuccs;
285     for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
286          I != E; ++I) {
287       if (I->isCtrl())
288         ChainPred = *I;
289       else if (I->getSUnit()->getNode() &&
290                I->getSUnit()->getNode()->isOperandOf(LoadNode))
291         LoadPreds.push_back(*I);
292       else
293         NodePreds.push_back(*I);
294     }
295     for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
296          I != E; ++I) {
297       if (I->isCtrl())
298         ChainSuccs.push_back(*I);
299       else
300         NodeSuccs.push_back(*I);
301     }
302
303     if (ChainPred.getSUnit()) {
304       RemovePred(SU, ChainPred);
305       if (isNewLoad)
306         AddPred(LoadSU, ChainPred);
307     }
308     for (unsigned i = 0, e = LoadPreds.size(); i != e; ++i) {
309       const SDep &Pred = LoadPreds[i];
310       RemovePred(SU, Pred);
311       if (isNewLoad) {
312         AddPred(LoadSU, Pred);
313       }
314     }
315     for (unsigned i = 0, e = NodePreds.size(); i != e; ++i) {
316       const SDep &Pred = NodePreds[i];
317       RemovePred(SU, Pred);
318       AddPred(NewSU, Pred);
319     }
320     for (unsigned i = 0, e = NodeSuccs.size(); i != e; ++i) {
321       SDep D = NodeSuccs[i];
322       SUnit *SuccDep = D.getSUnit();
323       D.setSUnit(SU);
324       RemovePred(SuccDep, D);
325       D.setSUnit(NewSU);
326       AddPred(SuccDep, D);
327     }
328     for (unsigned i = 0, e = ChainSuccs.size(); i != e; ++i) {
329       SDep D = ChainSuccs[i];
330       SUnit *SuccDep = D.getSUnit();
331       D.setSUnit(SU);
332       RemovePred(SuccDep, D);
333       if (isNewLoad) {
334         D.setSUnit(LoadSU);
335         AddPred(SuccDep, D);
336       }
337     }
338     if (isNewLoad) {
339       SDep D(LoadSU, SDep::Barrier);
340       D.setLatency(LoadSU->Latency);
341       AddPred(NewSU, D);
342     }
343
344     ++NumUnfolds;
345
346     if (NewSU->NumSuccsLeft == 0) {
347       NewSU->isAvailable = true;
348       return NewSU;
349     }
350     SU = NewSU;
351   }
352
353   DEBUG(dbgs() << "Duplicating SU # " << SU->NodeNum << "\n");
354   NewSU = Clone(SU);
355
356   // New SUnit has the exact same predecessors.
357   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
358        I != E; ++I)
359     if (!I->isArtificial())
360       AddPred(NewSU, *I);
361
362   // Only copy scheduled successors. Cut them from old node's successor
363   // list and move them over.
364   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
365   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
366        I != E; ++I) {
367     if (I->isArtificial())
368       continue;
369     SUnit *SuccSU = I->getSUnit();
370     if (SuccSU->isScheduled) {
371       SDep D = *I;
372       D.setSUnit(NewSU);
373       AddPred(SuccSU, D);
374       D.setSUnit(SU);
375       DelDeps.push_back(std::make_pair(SuccSU, D));
376     }
377   }
378   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i)
379     RemovePred(DelDeps[i].first, DelDeps[i].second);
380
381   ++NumDups;
382   return NewSU;
383 }
384
385 /// InsertCopiesAndMoveSuccs - Insert register copies and move all
386 /// scheduled successors of the given SUnit to the last copy.
387 void ScheduleDAGFast::InsertCopiesAndMoveSuccs(SUnit *SU, unsigned Reg,
388                                               const TargetRegisterClass *DestRC,
389                                               const TargetRegisterClass *SrcRC,
390                                               SmallVectorImpl<SUnit*> &Copies) {
391   SUnit *CopyFromSU = newSUnit(static_cast<SDNode *>(nullptr));
392   CopyFromSU->CopySrcRC = SrcRC;
393   CopyFromSU->CopyDstRC = DestRC;
394
395   SUnit *CopyToSU = newSUnit(static_cast<SDNode *>(nullptr));
396   CopyToSU->CopySrcRC = DestRC;
397   CopyToSU->CopyDstRC = SrcRC;
398
399   // Only copy scheduled successors. Cut them from old node's successor
400   // list and move them over.
401   SmallVector<std::pair<SUnit *, SDep>, 4> DelDeps;
402   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
403        I != E; ++I) {
404     if (I->isArtificial())
405       continue;
406     SUnit *SuccSU = I->getSUnit();
407     if (SuccSU->isScheduled) {
408       SDep D = *I;
409       D.setSUnit(CopyToSU);
410       AddPred(SuccSU, D);
411       DelDeps.push_back(std::make_pair(SuccSU, *I));
412     }
413   }
414   for (unsigned i = 0, e = DelDeps.size(); i != e; ++i) {
415     RemovePred(DelDeps[i].first, DelDeps[i].second);
416   }
417   SDep FromDep(SU, SDep::Data, Reg);
418   FromDep.setLatency(SU->Latency);
419   AddPred(CopyFromSU, FromDep);
420   SDep ToDep(CopyFromSU, SDep::Data, 0);
421   ToDep.setLatency(CopyFromSU->Latency);
422   AddPred(CopyToSU, ToDep);
423
424   Copies.push_back(CopyFromSU);
425   Copies.push_back(CopyToSU);
426
427   ++NumPRCopies;
428 }
429
430 /// getPhysicalRegisterVT - Returns the ValueType of the physical register
431 /// definition of the specified node.
432 /// FIXME: Move to SelectionDAG?
433 static MVT getPhysicalRegisterVT(SDNode *N, unsigned Reg,
434                                  const TargetInstrInfo *TII) {
435   unsigned NumRes;
436   if (N->getOpcode() == ISD::CopyFromReg) {
437     // CopyFromReg has: "chain, Val, glue" so operand 1 gives the type.
438     NumRes = 1;
439   } else {
440     const MCInstrDesc &MCID = TII->get(N->getMachineOpcode());
441     assert(MCID.ImplicitDefs && "Physical reg def must be in implicit def list!");
442     NumRes = MCID.getNumDefs();
443     for (const MCPhysReg *ImpDef = MCID.getImplicitDefs(); *ImpDef; ++ImpDef) {
444       if (Reg == *ImpDef)
445         break;
446       ++NumRes;
447     }
448   }
449   return N->getSimpleValueType(NumRes);
450 }
451
452 /// CheckForLiveRegDef - Return true and update live register vector if the
453 /// specified register def of the specified SUnit clobbers any "live" registers.
454 static bool CheckForLiveRegDef(SUnit *SU, unsigned Reg,
455                                std::vector<SUnit*> &LiveRegDefs,
456                                SmallSet<unsigned, 4> &RegAdded,
457                                SmallVectorImpl<unsigned> &LRegs,
458                                const TargetRegisterInfo *TRI) {
459   bool Added = false;
460   for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
461     if (LiveRegDefs[*AI] && LiveRegDefs[*AI] != SU) {
462       if (RegAdded.insert(*AI).second) {
463         LRegs.push_back(*AI);
464         Added = true;
465       }
466     }
467   }
468   return Added;
469 }
470
471 /// DelayForLiveRegsBottomUp - Returns true if it is necessary to delay
472 /// scheduling of the given node to satisfy live physical register dependencies.
473 /// If the specific node is the last one that's available to schedule, do
474 /// whatever is necessary (i.e. backtracking or cloning) to make it possible.
475 bool ScheduleDAGFast::DelayForLiveRegsBottomUp(SUnit *SU,
476                                               SmallVectorImpl<unsigned> &LRegs){
477   if (NumLiveRegs == 0)
478     return false;
479
480   SmallSet<unsigned, 4> RegAdded;
481   // If this node would clobber any "live" register, then it's not ready.
482   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
483        I != E; ++I) {
484     if (I->isAssignedRegDep()) {
485       CheckForLiveRegDef(I->getSUnit(), I->getReg(), LiveRegDefs,
486                          RegAdded, LRegs, TRI);
487     }
488   }
489
490   for (SDNode *Node = SU->getNode(); Node; Node = Node->getGluedNode()) {
491     if (Node->getOpcode() == ISD::INLINEASM) {
492       // Inline asm can clobber physical defs.
493       unsigned NumOps = Node->getNumOperands();
494       if (Node->getOperand(NumOps-1).getValueType() == MVT::Glue)
495         --NumOps;  // Ignore the glue operand.
496
497       for (unsigned i = InlineAsm::Op_FirstOperand; i != NumOps;) {
498         unsigned Flags =
499           cast<ConstantSDNode>(Node->getOperand(i))->getZExtValue();
500         unsigned NumVals = InlineAsm::getNumOperandRegisters(Flags);
501
502         ++i; // Skip the ID value.
503         if (InlineAsm::isRegDefKind(Flags) ||
504             InlineAsm::isRegDefEarlyClobberKind(Flags) ||
505             InlineAsm::isClobberKind(Flags)) {
506           // Check for def of register or earlyclobber register.
507           for (; NumVals; --NumVals, ++i) {
508             unsigned Reg = cast<RegisterSDNode>(Node->getOperand(i))->getReg();
509             if (TargetRegisterInfo::isPhysicalRegister(Reg))
510               CheckForLiveRegDef(SU, Reg, LiveRegDefs, RegAdded, LRegs, TRI);
511           }
512         } else
513           i += NumVals;
514       }
515       continue;
516     }
517     if (!Node->isMachineOpcode())
518       continue;
519     const MCInstrDesc &MCID = TII->get(Node->getMachineOpcode());
520     if (!MCID.ImplicitDefs)
521       continue;
522     for (const MCPhysReg *Reg = MCID.getImplicitDefs(); *Reg; ++Reg) {
523       CheckForLiveRegDef(SU, *Reg, LiveRegDefs, RegAdded, LRegs, TRI);
524     }
525   }
526   return !LRegs.empty();
527 }
528
529
530 /// ListScheduleBottomUp - The main loop of list scheduling for bottom-up
531 /// schedulers.
532 void ScheduleDAGFast::ListScheduleBottomUp() {
533   unsigned CurCycle = 0;
534
535   // Release any predecessors of the special Exit node.
536   ReleasePredecessors(&ExitSU, CurCycle);
537
538   // Add root to Available queue.
539   if (!SUnits.empty()) {
540     SUnit *RootSU = &SUnits[DAG->getRoot().getNode()->getNodeId()];
541     assert(RootSU->Succs.empty() && "Graph root shouldn't have successors!");
542     RootSU->isAvailable = true;
543     AvailableQueue.push(RootSU);
544   }
545
546   // While Available queue is not empty, grab the node with the highest
547   // priority. If it is not ready put it back.  Schedule the node.
548   SmallVector<SUnit*, 4> NotReady;
549   DenseMap<SUnit*, SmallVector<unsigned, 4> > LRegsMap;
550   Sequence.reserve(SUnits.size());
551   while (!AvailableQueue.empty()) {
552     bool Delayed = false;
553     LRegsMap.clear();
554     SUnit *CurSU = AvailableQueue.pop();
555     while (CurSU) {
556       SmallVector<unsigned, 4> LRegs;
557       if (!DelayForLiveRegsBottomUp(CurSU, LRegs))
558         break;
559       Delayed = true;
560       LRegsMap.insert(std::make_pair(CurSU, LRegs));
561
562       CurSU->isPending = true;  // This SU is not in AvailableQueue right now.
563       NotReady.push_back(CurSU);
564       CurSU = AvailableQueue.pop();
565     }
566
567     // All candidates are delayed due to live physical reg dependencies.
568     // Try code duplication or inserting cross class copies
569     // to resolve it.
570     if (Delayed && !CurSU) {
571       if (!CurSU) {
572         // Try duplicating the nodes that produces these
573         // "expensive to copy" values to break the dependency. In case even
574         // that doesn't work, insert cross class copies.
575         SUnit *TrySU = NotReady[0];
576         SmallVectorImpl<unsigned> &LRegs = LRegsMap[TrySU];
577         assert(LRegs.size() == 1 && "Can't handle this yet!");
578         unsigned Reg = LRegs[0];
579         SUnit *LRDef = LiveRegDefs[Reg];
580         MVT VT = getPhysicalRegisterVT(LRDef->getNode(), Reg, TII);
581         const TargetRegisterClass *RC =
582           TRI->getMinimalPhysRegClass(Reg, VT);
583         const TargetRegisterClass *DestRC = TRI->getCrossCopyRegClass(RC);
584
585         // If cross copy register class is the same as RC, then it must be
586         // possible copy the value directly. Do not try duplicate the def.
587         // If cross copy register class is not the same as RC, then it's
588         // possible to copy the value but it require cross register class copies
589         // and it is expensive.
590         // If cross copy register class is null, then it's not possible to copy
591         // the value at all.
592         SUnit *NewDef = nullptr;
593         if (DestRC != RC) {
594           NewDef = CopyAndMoveSuccessors(LRDef);
595           if (!DestRC && !NewDef)
596             report_fatal_error("Can't handle live physical "
597                                "register dependency!");
598         }
599         if (!NewDef) {
600           // Issue copies, these can be expensive cross register class copies.
601           SmallVector<SUnit*, 2> Copies;
602           InsertCopiesAndMoveSuccs(LRDef, Reg, DestRC, RC, Copies);
603           DEBUG(dbgs() << "Adding an edge from SU # " << TrySU->NodeNum
604                        << " to SU #" << Copies.front()->NodeNum << "\n");
605           AddPred(TrySU, SDep(Copies.front(), SDep::Artificial));
606           NewDef = Copies.back();
607         }
608
609         DEBUG(dbgs() << "Adding an edge from SU # " << NewDef->NodeNum
610                      << " to SU #" << TrySU->NodeNum << "\n");
611         LiveRegDefs[Reg] = NewDef;
612         AddPred(NewDef, SDep(TrySU, SDep::Artificial));
613         TrySU->isAvailable = false;
614         CurSU = NewDef;
615       }
616
617       if (!CurSU) {
618         llvm_unreachable("Unable to resolve live physical register dependencies!");
619       }
620     }
621
622     // Add the nodes that aren't ready back onto the available list.
623     for (unsigned i = 0, e = NotReady.size(); i != e; ++i) {
624       NotReady[i]->isPending = false;
625       // May no longer be available due to backtracking.
626       if (NotReady[i]->isAvailable)
627         AvailableQueue.push(NotReady[i]);
628     }
629     NotReady.clear();
630
631     if (CurSU)
632       ScheduleNodeBottomUp(CurSU, CurCycle);
633     ++CurCycle;
634   }
635
636   // Reverse the order since it is bottom up.
637   std::reverse(Sequence.begin(), Sequence.end());
638
639 #ifndef NDEBUG
640   VerifyScheduledSequence(/*isBottomUp=*/true);
641 #endif
642 }
643
644
645 namespace {
646 //===----------------------------------------------------------------------===//
647 // ScheduleDAGLinearize - No scheduling scheduler, it simply linearize the
648 // DAG in topological order.
649 // IMPORTANT: this may not work for targets with phyreg dependency.
650 //
651 class ScheduleDAGLinearize : public ScheduleDAGSDNodes {
652 public:
653   ScheduleDAGLinearize(MachineFunction &mf) : ScheduleDAGSDNodes(mf) {}
654
655   void Schedule() override;
656
657   MachineBasicBlock *
658     EmitSchedule(MachineBasicBlock::iterator &InsertPos) override;
659
660 private:
661   std::vector<SDNode*> Sequence;
662   DenseMap<SDNode*, SDNode*> GluedMap;  // Cache glue to its user
663
664   void ScheduleNode(SDNode *N);
665 };
666 } // end anonymous namespace
667
668 void ScheduleDAGLinearize::ScheduleNode(SDNode *N) {
669   if (N->getNodeId() != 0)
670     llvm_unreachable(nullptr);
671
672   if (!N->isMachineOpcode() &&
673       (N->getOpcode() == ISD::EntryToken || isPassiveNode(N)))
674     // These nodes do not need to be translated into MIs.
675     return;
676
677   DEBUG(dbgs() << "\n*** Scheduling: ");
678   DEBUG(N->dump(DAG));
679   Sequence.push_back(N);
680
681   unsigned NumOps = N->getNumOperands();
682   if (unsigned NumLeft = NumOps) {
683     SDNode *GluedOpN = nullptr;
684     do {
685       const SDValue &Op = N->getOperand(NumLeft-1);
686       SDNode *OpN = Op.getNode();
687
688       if (NumLeft == NumOps && Op.getValueType() == MVT::Glue) {
689         // Schedule glue operand right above N.
690         GluedOpN = OpN;
691         assert(OpN->getNodeId() != 0 && "Glue operand not ready?");
692         OpN->setNodeId(0);
693         ScheduleNode(OpN);
694         continue;
695       }
696
697       if (OpN == GluedOpN)
698         // Glue operand is already scheduled.
699         continue;
700
701       DenseMap<SDNode*, SDNode*>::iterator DI = GluedMap.find(OpN);
702       if (DI != GluedMap.end() && DI->second != N)
703         // Users of glues are counted against the glued users.
704         OpN = DI->second;
705
706       unsigned Degree = OpN->getNodeId();
707       assert(Degree > 0 && "Predecessor over-released!");
708       OpN->setNodeId(--Degree);
709       if (Degree == 0)
710         ScheduleNode(OpN);
711     } while (--NumLeft);
712   }
713 }
714
715 /// findGluedUser - Find the representative use of a glue value by walking
716 /// the use chain.
717 static SDNode *findGluedUser(SDNode *N) {
718   while (SDNode *Glued = N->getGluedUser())
719     N = Glued;
720   return N;
721 }
722
723 void ScheduleDAGLinearize::Schedule() {
724   DEBUG(dbgs() << "********** DAG Linearization **********\n");
725
726   SmallVector<SDNode*, 8> Glues;
727   unsigned DAGSize = 0;
728   for (SDNode &Node : DAG->allnodes()) {
729     SDNode *N = &Node;
730
731     // Use node id to record degree.
732     unsigned Degree = N->use_size();
733     N->setNodeId(Degree);
734     unsigned NumVals = N->getNumValues();
735     if (NumVals && N->getValueType(NumVals-1) == MVT::Glue &&
736         N->hasAnyUseOfValue(NumVals-1)) {
737       SDNode *User = findGluedUser(N);
738       if (User) {
739         Glues.push_back(N);
740         GluedMap.insert(std::make_pair(N, User));
741       }
742     }
743
744     if (N->isMachineOpcode() ||
745         (N->getOpcode() != ISD::EntryToken && !isPassiveNode(N)))
746       ++DAGSize;
747   }
748
749   for (unsigned i = 0, e = Glues.size(); i != e; ++i) {
750     SDNode *Glue = Glues[i];
751     SDNode *GUser = GluedMap[Glue];
752     unsigned Degree = Glue->getNodeId();
753     unsigned UDegree = GUser->getNodeId();
754
755     // Glue user must be scheduled together with the glue operand. So other
756     // users of the glue operand must be treated as its users.
757     SDNode *ImmGUser = Glue->getGluedUser();
758     for (SDNode::use_iterator ui = Glue->use_begin(), ue = Glue->use_end();
759          ui != ue; ++ui)
760       if (*ui == ImmGUser)
761         --Degree;
762     GUser->setNodeId(UDegree + Degree);
763     Glue->setNodeId(1);
764   }
765
766   Sequence.reserve(DAGSize);
767   ScheduleNode(DAG->getRoot().getNode());
768 }
769
770 MachineBasicBlock*
771 ScheduleDAGLinearize::EmitSchedule(MachineBasicBlock::iterator &InsertPos) {
772   InstrEmitter Emitter(BB, InsertPos);
773   DenseMap<SDValue, unsigned> VRBaseMap;
774
775   DEBUG({
776       dbgs() << "\n*** Final schedule ***\n";
777     });
778
779   // FIXME: Handle dbg_values.
780   unsigned NumNodes = Sequence.size();
781   for (unsigned i = 0; i != NumNodes; ++i) {
782     SDNode *N = Sequence[NumNodes-i-1];
783     DEBUG(N->dump(DAG));
784     Emitter.EmitNode(N, false, false, VRBaseMap);
785   }
786
787   DEBUG(dbgs() << '\n');
788
789   InsertPos = Emitter.getInsertPos();
790   return Emitter.getBlock();
791 }
792
793 //===----------------------------------------------------------------------===//
794 //                         Public Constructor Functions
795 //===----------------------------------------------------------------------===//
796
797 llvm::ScheduleDAGSDNodes *
798 llvm::createFastDAGScheduler(SelectionDAGISel *IS, CodeGenOpt::Level) {
799   return new ScheduleDAGFast(*IS->MF);
800 }
801
802 llvm::ScheduleDAGSDNodes *
803 llvm::createDAGLinearizer(SelectionDAGISel *IS, CodeGenOpt::Level) {
804   return new ScheduleDAGLinearize(*IS->MF);
805 }