Remove the eh.exception and eh.selector intrinsics. Also remove a hack to copy
[oota-llvm.git] / lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
1 //===-- FunctionLoweringInfo.cpp ------------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This implements routines for translating functions from LLVM IR into
11 // Machine IR.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "function-lowering-info"
16 #include "llvm/CodeGen/FunctionLoweringInfo.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/Function.h"
19 #include "llvm/Instructions.h"
20 #include "llvm/IntrinsicInst.h"
21 #include "llvm/LLVMContext.h"
22 #include "llvm/Module.h"
23 #include "llvm/Analysis/DebugInfo.h"
24 #include "llvm/CodeGen/Analysis.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineFrameInfo.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/Target/TargetRegisterInfo.h"
31 #include "llvm/Target/TargetData.h"
32 #include "llvm/Target/TargetInstrInfo.h"
33 #include "llvm/Target/TargetLowering.h"
34 #include "llvm/Target/TargetOptions.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/MathExtras.h"
38 #include <algorithm>
39 using namespace llvm;
40
41 /// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
42 /// PHI nodes or outside of the basic block that defines it, or used by a
43 /// switch or atomic instruction, which may expand to multiple basic blocks.
44 static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
45   if (I->use_empty()) return false;
46   if (isa<PHINode>(I)) return true;
47   const BasicBlock *BB = I->getParent();
48   for (Value::const_use_iterator UI = I->use_begin(), E = I->use_end();
49         UI != E; ++UI) {
50     const User *U = *UI;
51     if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
52       return true;
53   }
54   return false;
55 }
56
57 FunctionLoweringInfo::FunctionLoweringInfo(const TargetLowering &tli)
58   : TLI(tli) {
59 }
60
61 void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf) {
62   Fn = &fn;
63   MF = &mf;
64   RegInfo = &MF->getRegInfo();
65
66   // Check whether the function can return without sret-demotion.
67   SmallVector<ISD::OutputArg, 4> Outs;
68   GetReturnInfo(Fn->getReturnType(),
69                 Fn->getAttributes().getRetAttributes(), Outs, TLI);
70   CanLowerReturn = TLI.CanLowerReturn(Fn->getCallingConv(), *MF,
71                                       Fn->isVarArg(),
72                                       Outs, Fn->getContext());
73
74   // Initialize the mapping of values to registers.  This is only set up for
75   // instruction values that are used outside of the block that defines
76   // them.
77   Function::const_iterator BB = Fn->begin(), EB = Fn->end();
78   for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I)
79     if (const AllocaInst *AI = dyn_cast<AllocaInst>(I))
80       if (const ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
81         Type *Ty = AI->getAllocatedType();
82         uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
83         unsigned Align =
84           std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
85                    AI->getAlignment());
86
87         TySize *= CUI->getZExtValue();   // Get total allocated size.
88         if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
89
90         // The object may need to be placed onto the stack near the stack
91         // protector if one exists. Determine here if this object is a suitable
92         // candidate. I.e., it would trigger the creation of a stack protector.
93         bool MayNeedSP =
94           (AI->isArrayAllocation() ||
95            (TySize >= 8 && isa<ArrayType>(Ty) &&
96             cast<ArrayType>(Ty)->getElementType()->isIntegerTy(8)));
97         StaticAllocaMap[AI] =
98           MF->getFrameInfo()->CreateStackObject(TySize, Align, false, MayNeedSP);
99       }
100
101   for (; BB != EB; ++BB)
102     for (BasicBlock::const_iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
103       // Mark values used outside their block as exported, by allocating
104       // a virtual register for them.
105       if (isUsedOutsideOfDefiningBlock(I))
106         if (!isa<AllocaInst>(I) ||
107             !StaticAllocaMap.count(cast<AllocaInst>(I)))
108           InitializeRegForValue(I);
109
110       // Collect llvm.dbg.declare information. This is done now instead of
111       // during the initial isel pass through the IR so that it is done
112       // in a predictable order.
113       if (const DbgDeclareInst *DI = dyn_cast<DbgDeclareInst>(I)) {
114         MachineModuleInfo &MMI = MF->getMMI();
115         if (MMI.hasDebugInfo() &&
116             DIVariable(DI->getVariable()).Verify() &&
117             !DI->getDebugLoc().isUnknown()) {
118           // Don't handle byval struct arguments or VLAs, for example.
119           // Non-byval arguments are handled here (they refer to the stack
120           // temporary alloca at this point).
121           const Value *Address = DI->getAddress();
122           if (Address) {
123             if (const BitCastInst *BCI = dyn_cast<BitCastInst>(Address))
124               Address = BCI->getOperand(0);
125             if (const AllocaInst *AI = dyn_cast<AllocaInst>(Address)) {
126               DenseMap<const AllocaInst *, int>::iterator SI =
127                 StaticAllocaMap.find(AI);
128               if (SI != StaticAllocaMap.end()) { // Check for VLAs.
129                 int FI = SI->second;
130                 MMI.setVariableDbgInfo(DI->getVariable(),
131                                        FI, DI->getDebugLoc());
132               }
133             }
134           }
135         }
136       }
137     }
138
139   // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
140   // also creates the initial PHI MachineInstrs, though none of the input
141   // operands are populated.
142   for (BB = Fn->begin(); BB != EB; ++BB) {
143     MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(BB);
144     MBBMap[BB] = MBB;
145     MF->push_back(MBB);
146
147     // Transfer the address-taken flag. This is necessary because there could
148     // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
149     // the first one should be marked.
150     if (BB->hasAddressTaken())
151       MBB->setHasAddressTaken();
152
153     // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
154     // appropriate.
155     for (BasicBlock::const_iterator I = BB->begin();
156          const PHINode *PN = dyn_cast<PHINode>(I); ++I) {
157       if (PN->use_empty()) continue;
158
159       // Skip empty types
160       if (PN->getType()->isEmptyTy())
161         continue;
162
163       DebugLoc DL = PN->getDebugLoc();
164       unsigned PHIReg = ValueMap[PN];
165       assert(PHIReg && "PHI node does not have an assigned virtual register!");
166
167       SmallVector<EVT, 4> ValueVTs;
168       ComputeValueVTs(TLI, PN->getType(), ValueVTs);
169       for (unsigned vti = 0, vte = ValueVTs.size(); vti != vte; ++vti) {
170         EVT VT = ValueVTs[vti];
171         unsigned NumRegisters = TLI.getNumRegisters(Fn->getContext(), VT);
172         const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
173         for (unsigned i = 0; i != NumRegisters; ++i)
174           BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
175         PHIReg += NumRegisters;
176       }
177     }
178   }
179
180   // Mark landing pad blocks.
181   for (BB = Fn->begin(); BB != EB; ++BB)
182     if (const InvokeInst *Invoke = dyn_cast<InvokeInst>(BB->getTerminator()))
183       MBBMap[Invoke->getSuccessor(1)]->setIsLandingPad();
184 }
185
186 /// clear - Clear out all the function-specific state. This returns this
187 /// FunctionLoweringInfo to an empty state, ready to be used for a
188 /// different function.
189 void FunctionLoweringInfo::clear() {
190   assert(CatchInfoFound.size() == CatchInfoLost.size() &&
191          "Not all catch info was assigned to a landing pad!");
192
193   MBBMap.clear();
194   ValueMap.clear();
195   StaticAllocaMap.clear();
196 #ifndef NDEBUG
197   CatchInfoLost.clear();
198   CatchInfoFound.clear();
199 #endif
200   LiveOutRegInfo.clear();
201   VisitedBBs.clear();
202   ArgDbgValues.clear();
203   ByValArgFrameIndexMap.clear();
204   RegFixups.clear();
205 }
206
207 /// CreateReg - Allocate a single virtual register for the given type.
208 unsigned FunctionLoweringInfo::CreateReg(EVT VT) {
209   return RegInfo->createVirtualRegister(TLI.getRegClassFor(VT));
210 }
211
212 /// CreateRegs - Allocate the appropriate number of virtual registers of
213 /// the correctly promoted or expanded types.  Assign these registers
214 /// consecutive vreg numbers and return the first assigned number.
215 ///
216 /// In the case that the given value has struct or array type, this function
217 /// will assign registers for each member or element.
218 ///
219 unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
220   SmallVector<EVT, 4> ValueVTs;
221   ComputeValueVTs(TLI, Ty, ValueVTs);
222
223   unsigned FirstReg = 0;
224   for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
225     EVT ValueVT = ValueVTs[Value];
226     EVT RegisterVT = TLI.getRegisterType(Ty->getContext(), ValueVT);
227
228     unsigned NumRegs = TLI.getNumRegisters(Ty->getContext(), ValueVT);
229     for (unsigned i = 0; i != NumRegs; ++i) {
230       unsigned R = CreateReg(RegisterVT);
231       if (!FirstReg) FirstReg = R;
232     }
233   }
234   return FirstReg;
235 }
236
237 /// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
238 /// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
239 /// the register's LiveOutInfo is for a smaller bit width, it is extended to
240 /// the larger bit width by zero extension. The bit width must be no smaller
241 /// than the LiveOutInfo's existing bit width.
242 const FunctionLoweringInfo::LiveOutInfo *
243 FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
244   if (!LiveOutRegInfo.inBounds(Reg))
245     return NULL;
246
247   LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
248   if (!LOI->IsValid)
249     return NULL;
250
251   if (BitWidth > LOI->KnownZero.getBitWidth()) {
252     LOI->NumSignBits = 1;
253     LOI->KnownZero = LOI->KnownZero.zextOrTrunc(BitWidth);
254     LOI->KnownOne = LOI->KnownOne.zextOrTrunc(BitWidth);
255   }
256
257   return LOI;
258 }
259
260 /// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
261 /// register based on the LiveOutInfo of its operands.
262 void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
263   Type *Ty = PN->getType();
264   if (!Ty->isIntegerTy() || Ty->isVectorTy())
265     return;
266
267   SmallVector<EVT, 1> ValueVTs;
268   ComputeValueVTs(TLI, Ty, ValueVTs);
269   assert(ValueVTs.size() == 1 &&
270          "PHIs with non-vector integer types should have a single VT.");
271   EVT IntVT = ValueVTs[0];
272
273   if (TLI.getNumRegisters(PN->getContext(), IntVT) != 1)
274     return;
275   IntVT = TLI.getTypeToTransformTo(PN->getContext(), IntVT);
276   unsigned BitWidth = IntVT.getSizeInBits();
277
278   unsigned DestReg = ValueMap[PN];
279   if (!TargetRegisterInfo::isVirtualRegister(DestReg))
280     return;
281   LiveOutRegInfo.grow(DestReg);
282   LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];
283
284   Value *V = PN->getIncomingValue(0);
285   if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
286     DestLOI.NumSignBits = 1;
287     APInt Zero(BitWidth, 0);
288     DestLOI.KnownZero = Zero;
289     DestLOI.KnownOne = Zero;
290     return;
291   }
292
293   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
294     APInt Val = CI->getValue().zextOrTrunc(BitWidth);
295     DestLOI.NumSignBits = Val.getNumSignBits();
296     DestLOI.KnownZero = ~Val;
297     DestLOI.KnownOne = Val;
298   } else {
299     assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
300                                 "CopyToReg node was created.");
301     unsigned SrcReg = ValueMap[V];
302     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
303       DestLOI.IsValid = false;
304       return;
305     }
306     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
307     if (!SrcLOI) {
308       DestLOI.IsValid = false;
309       return;
310     }
311     DestLOI = *SrcLOI;
312   }
313
314   assert(DestLOI.KnownZero.getBitWidth() == BitWidth &&
315          DestLOI.KnownOne.getBitWidth() == BitWidth &&
316          "Masks should have the same bit width as the type.");
317
318   for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
319     Value *V = PN->getIncomingValue(i);
320     if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
321       DestLOI.NumSignBits = 1;
322       APInt Zero(BitWidth, 0);
323       DestLOI.KnownZero = Zero;
324       DestLOI.KnownOne = Zero;
325       return;
326     }
327
328     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
329       APInt Val = CI->getValue().zextOrTrunc(BitWidth);
330       DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
331       DestLOI.KnownZero &= ~Val;
332       DestLOI.KnownOne &= Val;
333       continue;
334     }
335
336     assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
337                                 "its CopyToReg node was created.");
338     unsigned SrcReg = ValueMap[V];
339     if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
340       DestLOI.IsValid = false;
341       return;
342     }
343     const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
344     if (!SrcLOI) {
345       DestLOI.IsValid = false;
346       return;
347     }
348     DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
349     DestLOI.KnownZero &= SrcLOI->KnownZero;
350     DestLOI.KnownOne &= SrcLOI->KnownOne;
351   }
352 }
353
354 /// setArgumentFrameIndex - Record frame index for the byval
355 /// argument. This overrides previous frame index entry for this argument,
356 /// if any.
357 void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
358                                                       int FI) {
359   ByValArgFrameIndexMap[A] = FI;
360 }
361
362 /// getArgumentFrameIndex - Get frame index for the byval argument.
363 /// If the argument does not have any assigned frame index then 0 is
364 /// returned.
365 int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
366   DenseMap<const Argument *, int>::iterator I =
367     ByValArgFrameIndexMap.find(A);
368   if (I != ByValArgFrameIndexMap.end())
369     return I->second;
370   DEBUG(dbgs() << "Argument does not have assigned frame index!");
371   return 0;
372 }
373
374 /// AddCatchInfo - Extract the personality and type infos from an eh.selector
375 /// call, and add them to the specified machine basic block.
376 void llvm::AddCatchInfo(const CallInst &I, MachineModuleInfo *MMI,
377                         MachineBasicBlock *MBB) {
378   // Inform the MachineModuleInfo of the personality for this landing pad.
379   const ConstantExpr *CE = cast<ConstantExpr>(I.getArgOperand(1));
380   assert(CE->getOpcode() == Instruction::BitCast &&
381          isa<Function>(CE->getOperand(0)) &&
382          "Personality should be a function");
383   MMI->addPersonality(MBB, cast<Function>(CE->getOperand(0)));
384
385   // Gather all the type infos for this landing pad and pass them along to
386   // MachineModuleInfo.
387   std::vector<const GlobalVariable *> TyInfo;
388   unsigned N = I.getNumArgOperands();
389
390   for (unsigned i = N - 1; i > 1; --i) {
391     if (const ConstantInt *CI = dyn_cast<ConstantInt>(I.getArgOperand(i))) {
392       unsigned FilterLength = CI->getZExtValue();
393       unsigned FirstCatch = i + FilterLength + !FilterLength;
394       assert(FirstCatch <= N && "Invalid filter length");
395
396       if (FirstCatch < N) {
397         TyInfo.reserve(N - FirstCatch);
398         for (unsigned j = FirstCatch; j < N; ++j)
399           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
400         MMI->addCatchTypeInfo(MBB, TyInfo);
401         TyInfo.clear();
402       }
403
404       if (!FilterLength) {
405         // Cleanup.
406         MMI->addCleanup(MBB);
407       } else {
408         // Filter.
409         TyInfo.reserve(FilterLength - 1);
410         for (unsigned j = i + 1; j < FirstCatch; ++j)
411           TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
412         MMI->addFilterTypeInfo(MBB, TyInfo);
413         TyInfo.clear();
414       }
415
416       N = i;
417     }
418   }
419
420   if (N > 2) {
421     TyInfo.reserve(N - 2);
422     for (unsigned j = 2; j < N; ++j)
423       TyInfo.push_back(ExtractTypeInfo(I.getArgOperand(j)));
424     MMI->addCatchTypeInfo(MBB, TyInfo);
425   }
426 }
427
428 /// AddLandingPadInfo - Extract the exception handling information from the
429 /// landingpad instruction and add them to the specified machine module info.
430 void llvm::AddLandingPadInfo(const LandingPadInst &I, MachineModuleInfo &MMI,
431                              MachineBasicBlock *MBB) {
432   MMI.addPersonality(MBB,
433                      cast<Function>(I.getPersonalityFn()->stripPointerCasts()));
434
435   if (I.isCleanup())
436     MMI.addCleanup(MBB);
437
438   // FIXME: New EH - Add the clauses in reverse order. This isn't 100% correct,
439   //        but we need to do it this way because of how the DWARF EH emitter
440   //        processes the clauses.
441   for (unsigned i = I.getNumClauses(); i != 0; --i) {
442     Value *Val = I.getClause(i - 1);
443     if (I.isCatch(i - 1)) {
444       MMI.addCatchTypeInfo(MBB,
445                            dyn_cast<GlobalVariable>(Val->stripPointerCasts()));
446     } else {
447       // Add filters in a list.
448       Constant *CVal = cast<Constant>(Val);
449       SmallVector<const GlobalVariable*, 4> FilterList;
450       for (User::op_iterator
451              II = CVal->op_begin(), IE = CVal->op_end(); II != IE; ++II)
452         FilterList.push_back(cast<GlobalVariable>((*II)->stripPointerCasts()));
453
454       MMI.addFilterTypeInfo(MBB, FilterList);
455     }
456   }
457 }