MachineRegisterInfo: Remove UsedPhysReg infrastructure
[oota-llvm.git] / lib / CodeGen / RegAllocFast.cpp
1 //===-- RegAllocFast.cpp - A fast register allocator for debug code -------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This register allocator allocates registers to a basic block at a time,
11 // attempting to keep values in registers and reusing registers as appropriate.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/Passes.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/IndexedMap.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/SparseSet.h"
22 #include "llvm/ADT/Statistic.h"
23 #include "llvm/CodeGen/MachineFrameInfo.h"
24 #include "llvm/CodeGen/MachineFunctionPass.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/RegAllocRegistry.h"
29 #include "llvm/CodeGen/RegisterClassInfo.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/Support/CommandLine.h"
32 #include "llvm/Support/Debug.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/raw_ostream.h"
35 #include "llvm/Target/TargetInstrInfo.h"
36 #include "llvm/Target/TargetSubtargetInfo.h"
37 #include <algorithm>
38 using namespace llvm;
39
40 #define DEBUG_TYPE "regalloc"
41
42 STATISTIC(NumStores, "Number of stores added");
43 STATISTIC(NumLoads , "Number of loads added");
44 STATISTIC(NumCopies, "Number of copies coalesced");
45
46 static RegisterRegAlloc
47   fastRegAlloc("fast", "fast register allocator", createFastRegisterAllocator);
48
49 namespace {
50   class RAFast : public MachineFunctionPass {
51   public:
52     static char ID;
53     RAFast() : MachineFunctionPass(ID), StackSlotForVirtReg(-1),
54                isBulkSpilling(false) {}
55   private:
56     MachineFunction *MF;
57     MachineRegisterInfo *MRI;
58     const TargetRegisterInfo *TRI;
59     const TargetInstrInfo *TII;
60     RegisterClassInfo RegClassInfo;
61
62     // Basic block currently being allocated.
63     MachineBasicBlock *MBB;
64
65     // StackSlotForVirtReg - Maps virtual regs to the frame index where these
66     // values are spilled.
67     IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg;
68
69     // Everything we know about a live virtual register.
70     struct LiveReg {
71       MachineInstr *LastUse;    // Last instr to use reg.
72       unsigned VirtReg;         // Virtual register number.
73       unsigned PhysReg;         // Currently held here.
74       unsigned short LastOpNum; // OpNum on LastUse.
75       bool Dirty;               // Register needs spill.
76
77       explicit LiveReg(unsigned v)
78         : LastUse(nullptr), VirtReg(v), PhysReg(0), LastOpNum(0), Dirty(false){}
79
80       unsigned getSparseSetIndex() const {
81         return TargetRegisterInfo::virtReg2Index(VirtReg);
82       }
83     };
84
85     typedef SparseSet<LiveReg> LiveRegMap;
86
87     // LiveVirtRegs - This map contains entries for each virtual register
88     // that is currently available in a physical register.
89     LiveRegMap LiveVirtRegs;
90
91     DenseMap<unsigned, SmallVector<MachineInstr *, 4> > LiveDbgValueMap;
92
93     // RegState - Track the state of a physical register.
94     enum RegState {
95       // A disabled register is not available for allocation, but an alias may
96       // be in use. A register can only be moved out of the disabled state if
97       // all aliases are disabled.
98       regDisabled,
99
100       // A free register is not currently in use and can be allocated
101       // immediately without checking aliases.
102       regFree,
103
104       // A reserved register has been assigned explicitly (e.g., setting up a
105       // call parameter), and it remains reserved until it is used.
106       regReserved
107
108       // A register state may also be a virtual register number, indication that
109       // the physical register is currently allocated to a virtual register. In
110       // that case, LiveVirtRegs contains the inverse mapping.
111     };
112
113     // PhysRegState - One of the RegState enums, or a virtreg.
114     std::vector<unsigned> PhysRegState;
115
116     // Set of register units.
117     typedef SparseSet<unsigned> UsedInInstrSet;
118
119     // Set of register units that are used in the current instruction, and so
120     // cannot be allocated.
121     UsedInInstrSet UsedInInstr;
122
123     // Mark a physreg as used in this instruction.
124     void markRegUsedInInstr(unsigned PhysReg) {
125       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
126         UsedInInstr.insert(*Units);
127     }
128
129     // Check if a physreg or any of its aliases are used in this instruction.
130     bool isRegUsedInInstr(unsigned PhysReg) const {
131       for (MCRegUnitIterator Units(PhysReg, TRI); Units.isValid(); ++Units)
132         if (UsedInInstr.count(*Units))
133           return true;
134       return false;
135     }
136
137     // SkippedInstrs - Descriptors of instructions whose clobber list was
138     // ignored because all registers were spilled. It is still necessary to
139     // mark all the clobbered registers as used by the function.
140     SmallPtrSet<const MCInstrDesc*, 4> SkippedInstrs;
141
142     // isBulkSpilling - This flag is set when LiveRegMap will be cleared
143     // completely after spilling all live registers. LiveRegMap entries should
144     // not be erased.
145     bool isBulkSpilling;
146
147     enum : unsigned {
148       spillClean = 1,
149       spillDirty = 100,
150       spillImpossible = ~0u
151     };
152   public:
153     const char *getPassName() const override {
154       return "Fast Register Allocator";
155     }
156
157     void getAnalysisUsage(AnalysisUsage &AU) const override {
158       AU.setPreservesCFG();
159       MachineFunctionPass::getAnalysisUsage(AU);
160     }
161
162   private:
163     bool runOnMachineFunction(MachineFunction &Fn) override;
164     void AllocateBasicBlock();
165     void handleThroughOperands(MachineInstr *MI,
166                                SmallVectorImpl<unsigned> &VirtDead);
167     int getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC);
168     bool isLastUseOfLocalReg(MachineOperand&);
169
170     void addKillFlag(const LiveReg&);
171     void killVirtReg(LiveRegMap::iterator);
172     void killVirtReg(unsigned VirtReg);
173     void spillVirtReg(MachineBasicBlock::iterator MI, LiveRegMap::iterator);
174     void spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg);
175
176     void usePhysReg(MachineOperand&);
177     void definePhysReg(MachineInstr *MI, unsigned PhysReg, RegState NewState);
178     unsigned calcSpillCost(unsigned PhysReg) const;
179     void assignVirtToPhysReg(LiveReg&, unsigned PhysReg);
180     LiveRegMap::iterator findLiveVirtReg(unsigned VirtReg) {
181       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
182     }
183     LiveRegMap::const_iterator findLiveVirtReg(unsigned VirtReg) const {
184       return LiveVirtRegs.find(TargetRegisterInfo::virtReg2Index(VirtReg));
185     }
186     LiveRegMap::iterator assignVirtToPhysReg(unsigned VReg, unsigned PhysReg);
187     LiveRegMap::iterator allocVirtReg(MachineInstr *MI, LiveRegMap::iterator,
188                                       unsigned Hint);
189     LiveRegMap::iterator defineVirtReg(MachineInstr *MI, unsigned OpNum,
190                                        unsigned VirtReg, unsigned Hint);
191     LiveRegMap::iterator reloadVirtReg(MachineInstr *MI, unsigned OpNum,
192                                        unsigned VirtReg, unsigned Hint);
193     void spillAll(MachineBasicBlock::iterator MI);
194     bool setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg);
195   };
196   char RAFast::ID = 0;
197 }
198
199 /// getStackSpaceFor - This allocates space for the specified virtual register
200 /// to be held on the stack.
201 int RAFast::getStackSpaceFor(unsigned VirtReg, const TargetRegisterClass *RC) {
202   // Find the location Reg would belong...
203   int SS = StackSlotForVirtReg[VirtReg];
204   if (SS != -1)
205     return SS;          // Already has space allocated?
206
207   // Allocate a new stack object for this spill location...
208   int FrameIdx = MF->getFrameInfo()->CreateSpillStackObject(RC->getSize(),
209                                                             RC->getAlignment());
210
211   // Assign the slot.
212   StackSlotForVirtReg[VirtReg] = FrameIdx;
213   return FrameIdx;
214 }
215
216 /// isLastUseOfLocalReg - Return true if MO is the only remaining reference to
217 /// its virtual register, and it is guaranteed to be a block-local register.
218 ///
219 bool RAFast::isLastUseOfLocalReg(MachineOperand &MO) {
220   // If the register has ever been spilled or reloaded, we conservatively assume
221   // it is a global register used in multiple blocks.
222   if (StackSlotForVirtReg[MO.getReg()] != -1)
223     return false;
224
225   // Check that the use/def chain has exactly one operand - MO.
226   MachineRegisterInfo::reg_nodbg_iterator I = MRI->reg_nodbg_begin(MO.getReg());
227   if (&*I != &MO)
228     return false;
229   return ++I == MRI->reg_nodbg_end();
230 }
231
232 /// addKillFlag - Set kill flags on last use of a virtual register.
233 void RAFast::addKillFlag(const LiveReg &LR) {
234   if (!LR.LastUse) return;
235   MachineOperand &MO = LR.LastUse->getOperand(LR.LastOpNum);
236   if (MO.isUse() && !LR.LastUse->isRegTiedToDefOperand(LR.LastOpNum)) {
237     if (MO.getReg() == LR.PhysReg)
238       MO.setIsKill();
239     else
240       LR.LastUse->addRegisterKilled(LR.PhysReg, TRI, true);
241   }
242 }
243
244 /// killVirtReg - Mark virtreg as no longer available.
245 void RAFast::killVirtReg(LiveRegMap::iterator LRI) {
246   addKillFlag(*LRI);
247   assert(PhysRegState[LRI->PhysReg] == LRI->VirtReg &&
248          "Broken RegState mapping");
249   PhysRegState[LRI->PhysReg] = regFree;
250   // Erase from LiveVirtRegs unless we're spilling in bulk.
251   if (!isBulkSpilling)
252     LiveVirtRegs.erase(LRI);
253 }
254
255 /// killVirtReg - Mark virtreg as no longer available.
256 void RAFast::killVirtReg(unsigned VirtReg) {
257   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
258          "killVirtReg needs a virtual register");
259   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
260   if (LRI != LiveVirtRegs.end())
261     killVirtReg(LRI);
262 }
263
264 /// spillVirtReg - This method spills the value specified by VirtReg into the
265 /// corresponding stack slot if needed.
266 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI, unsigned VirtReg) {
267   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
268          "Spilling a physical register is illegal!");
269   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
270   assert(LRI != LiveVirtRegs.end() && "Spilling unmapped virtual register");
271   spillVirtReg(MI, LRI);
272 }
273
274 /// spillVirtReg - Do the actual work of spilling.
275 void RAFast::spillVirtReg(MachineBasicBlock::iterator MI,
276                           LiveRegMap::iterator LRI) {
277   LiveReg &LR = *LRI;
278   assert(PhysRegState[LR.PhysReg] == LRI->VirtReg && "Broken RegState mapping");
279
280   if (LR.Dirty) {
281     // If this physreg is used by the instruction, we want to kill it on the
282     // instruction, not on the spill.
283     bool SpillKill = LR.LastUse != MI;
284     LR.Dirty = false;
285     DEBUG(dbgs() << "Spilling " << PrintReg(LRI->VirtReg, TRI)
286                  << " in " << PrintReg(LR.PhysReg, TRI));
287     const TargetRegisterClass *RC = MRI->getRegClass(LRI->VirtReg);
288     int FI = getStackSpaceFor(LRI->VirtReg, RC);
289     DEBUG(dbgs() << " to stack slot #" << FI << "\n");
290     TII->storeRegToStackSlot(*MBB, MI, LR.PhysReg, SpillKill, FI, RC, TRI);
291     ++NumStores;   // Update statistics
292
293     // If this register is used by DBG_VALUE then insert new DBG_VALUE to
294     // identify spilled location as the place to find corresponding variable's
295     // value.
296     SmallVectorImpl<MachineInstr *> &LRIDbgValues =
297       LiveDbgValueMap[LRI->VirtReg];
298     for (unsigned li = 0, le = LRIDbgValues.size(); li != le; ++li) {
299       MachineInstr *DBG = LRIDbgValues[li];
300       const MDNode *Var = DBG->getDebugVariable();
301       const MDNode *Expr = DBG->getDebugExpression();
302       bool IsIndirect = DBG->isIndirectDebugValue();
303       uint64_t Offset = IsIndirect ? DBG->getOperand(1).getImm() : 0;
304       DebugLoc DL = DBG->getDebugLoc();
305       assert(cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
306              "Expected inlined-at fields to agree");
307       MachineInstr *NewDV =
308           BuildMI(*MBB, MI, DL, TII->get(TargetOpcode::DBG_VALUE))
309               .addFrameIndex(FI)
310               .addImm(Offset)
311               .addMetadata(Var)
312               .addMetadata(Expr);
313       assert(NewDV->getParent() == MBB && "dangling parent pointer");
314       (void)NewDV;
315       DEBUG(dbgs() << "Inserting debug info due to spill:" << "\n" << *NewDV);
316     }
317     // Now this register is spilled there is should not be any DBG_VALUE
318     // pointing to this register because they are all pointing to spilled value
319     // now.
320     LRIDbgValues.clear();
321     if (SpillKill)
322       LR.LastUse = nullptr; // Don't kill register again
323   }
324   killVirtReg(LRI);
325 }
326
327 /// spillAll - Spill all dirty virtregs without killing them.
328 void RAFast::spillAll(MachineBasicBlock::iterator MI) {
329   if (LiveVirtRegs.empty()) return;
330   isBulkSpilling = true;
331   // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order
332   // of spilling here is deterministic, if arbitrary.
333   for (LiveRegMap::iterator i = LiveVirtRegs.begin(), e = LiveVirtRegs.end();
334        i != e; ++i)
335     spillVirtReg(MI, i);
336   LiveVirtRegs.clear();
337   isBulkSpilling = false;
338 }
339
340 /// usePhysReg - Handle the direct use of a physical register.
341 /// Check that the register is not used by a virtreg.
342 /// Kill the physreg, marking it free.
343 /// This may add implicit kills to MO->getParent() and invalidate MO.
344 void RAFast::usePhysReg(MachineOperand &MO) {
345   unsigned PhysReg = MO.getReg();
346   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg) &&
347          "Bad usePhysReg operand");
348   markRegUsedInInstr(PhysReg);
349   switch (PhysRegState[PhysReg]) {
350   case regDisabled:
351     break;
352   case regReserved:
353     PhysRegState[PhysReg] = regFree;
354     // Fall through
355   case regFree:
356     MO.setIsKill();
357     return;
358   default:
359     // The physreg was allocated to a virtual register. That means the value we
360     // wanted has been clobbered.
361     llvm_unreachable("Instruction uses an allocated register");
362   }
363
364   // Maybe a superregister is reserved?
365   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
366     unsigned Alias = *AI;
367     switch (PhysRegState[Alias]) {
368     case regDisabled:
369       break;
370     case regReserved:
371       // Either PhysReg is a subregister of Alias and we mark the
372       // whole register as free, or PhysReg is the superregister of
373       // Alias and we mark all the aliases as disabled before freeing
374       // PhysReg.
375       // In the latter case, since PhysReg was disabled, this means that
376       // its value is defined only by physical sub-registers. This check
377       // is performed by the assert of the default case in this loop.
378       // Note: The value of the superregister may only be partial
379       // defined, that is why regDisabled is a valid state for aliases.
380       assert((TRI->isSuperRegister(PhysReg, Alias) ||
381               TRI->isSuperRegister(Alias, PhysReg)) &&
382              "Instruction is not using a subregister of a reserved register");
383       // Fall through.
384     case regFree:
385       if (TRI->isSuperRegister(PhysReg, Alias)) {
386         // Leave the superregister in the working set.
387         PhysRegState[Alias] = regFree;
388         MO.getParent()->addRegisterKilled(Alias, TRI, true);
389         return;
390       }
391       // Some other alias was in the working set - clear it.
392       PhysRegState[Alias] = regDisabled;
393       break;
394     default:
395       llvm_unreachable("Instruction uses an alias of an allocated register");
396     }
397   }
398
399   // All aliases are disabled, bring register into working set.
400   PhysRegState[PhysReg] = regFree;
401   MO.setIsKill();
402 }
403
404 /// definePhysReg - Mark PhysReg as reserved or free after spilling any
405 /// virtregs. This is very similar to defineVirtReg except the physreg is
406 /// reserved instead of allocated.
407 void RAFast::definePhysReg(MachineInstr *MI, unsigned PhysReg,
408                            RegState NewState) {
409   markRegUsedInInstr(PhysReg);
410   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
411   case regDisabled:
412     break;
413   default:
414     spillVirtReg(MI, VirtReg);
415     // Fall through.
416   case regFree:
417   case regReserved:
418     PhysRegState[PhysReg] = NewState;
419     return;
420   }
421
422   // This is a disabled register, disable all aliases.
423   PhysRegState[PhysReg] = NewState;
424   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
425     unsigned Alias = *AI;
426     switch (unsigned VirtReg = PhysRegState[Alias]) {
427     case regDisabled:
428       break;
429     default:
430       spillVirtReg(MI, VirtReg);
431       // Fall through.
432     case regFree:
433     case regReserved:
434       PhysRegState[Alias] = regDisabled;
435       if (TRI->isSuperRegister(PhysReg, Alias))
436         return;
437       break;
438     }
439   }
440 }
441
442
443 // calcSpillCost - Return the cost of spilling clearing out PhysReg and
444 // aliases so it is free for allocation.
445 // Returns 0 when PhysReg is free or disabled with all aliases disabled - it
446 // can be allocated directly.
447 // Returns spillImpossible when PhysReg or an alias can't be spilled.
448 unsigned RAFast::calcSpillCost(unsigned PhysReg) const {
449   if (isRegUsedInInstr(PhysReg)) {
450     DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is already used in instr.\n");
451     return spillImpossible;
452   }
453   switch (unsigned VirtReg = PhysRegState[PhysReg]) {
454   case regDisabled:
455     break;
456   case regFree:
457     return 0;
458   case regReserved:
459     DEBUG(dbgs() << PrintReg(VirtReg, TRI) << " corresponding "
460                  << PrintReg(PhysReg, TRI) << " is reserved already.\n");
461     return spillImpossible;
462   default: {
463     LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
464     assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
465     return I->Dirty ? spillDirty : spillClean;
466   }
467   }
468
469   // This is a disabled register, add up cost of aliases.
470   DEBUG(dbgs() << PrintReg(PhysReg, TRI) << " is disabled.\n");
471   unsigned Cost = 0;
472   for (MCRegAliasIterator AI(PhysReg, TRI, false); AI.isValid(); ++AI) {
473     unsigned Alias = *AI;
474     switch (unsigned VirtReg = PhysRegState[Alias]) {
475     case regDisabled:
476       break;
477     case regFree:
478       ++Cost;
479       break;
480     case regReserved:
481       return spillImpossible;
482     default: {
483       LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg);
484       assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
485       Cost += I->Dirty ? spillDirty : spillClean;
486       break;
487     }
488     }
489   }
490   return Cost;
491 }
492
493
494 /// assignVirtToPhysReg - This method updates local state so that we know
495 /// that PhysReg is the proper container for VirtReg now.  The physical
496 /// register must not be used for anything else when this is called.
497 ///
498 void RAFast::assignVirtToPhysReg(LiveReg &LR, unsigned PhysReg) {
499   DEBUG(dbgs() << "Assigning " << PrintReg(LR.VirtReg, TRI) << " to "
500                << PrintReg(PhysReg, TRI) << "\n");
501   PhysRegState[PhysReg] = LR.VirtReg;
502   assert(!LR.PhysReg && "Already assigned a physreg");
503   LR.PhysReg = PhysReg;
504 }
505
506 RAFast::LiveRegMap::iterator
507 RAFast::assignVirtToPhysReg(unsigned VirtReg, unsigned PhysReg) {
508   LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg);
509   assert(LRI != LiveVirtRegs.end() && "VirtReg disappeared");
510   assignVirtToPhysReg(*LRI, PhysReg);
511   return LRI;
512 }
513
514 /// allocVirtReg - Allocate a physical register for VirtReg.
515 RAFast::LiveRegMap::iterator RAFast::allocVirtReg(MachineInstr *MI,
516                                                   LiveRegMap::iterator LRI,
517                                                   unsigned Hint) {
518   const unsigned VirtReg = LRI->VirtReg;
519
520   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
521          "Can only allocate virtual registers");
522
523   const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
524
525   // Ignore invalid hints.
526   if (Hint && (!TargetRegisterInfo::isPhysicalRegister(Hint) ||
527                !RC->contains(Hint) || !MRI->isAllocatable(Hint)))
528     Hint = 0;
529
530   // Take hint when possible.
531   if (Hint) {
532     // Ignore the hint if we would have to spill a dirty register.
533     unsigned Cost = calcSpillCost(Hint);
534     if (Cost < spillDirty) {
535       if (Cost)
536         definePhysReg(MI, Hint, regFree);
537       // definePhysReg may kill virtual registers and modify LiveVirtRegs.
538       // That invalidates LRI, so run a new lookup for VirtReg.
539       return assignVirtToPhysReg(VirtReg, Hint);
540     }
541   }
542
543   ArrayRef<MCPhysReg> AO = RegClassInfo.getOrder(RC);
544
545   // First try to find a completely free register.
546   for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
547     unsigned PhysReg = *I;
548     if (PhysRegState[PhysReg] == regFree && !isRegUsedInInstr(PhysReg)) {
549       assignVirtToPhysReg(*LRI, PhysReg);
550       return LRI;
551     }
552   }
553
554   DEBUG(dbgs() << "Allocating " << PrintReg(VirtReg) << " from "
555                << TRI->getRegClassName(RC) << "\n");
556
557   unsigned BestReg = 0, BestCost = spillImpossible;
558   for (ArrayRef<MCPhysReg>::iterator I = AO.begin(), E = AO.end(); I != E; ++I){
559     unsigned Cost = calcSpillCost(*I);
560     DEBUG(dbgs() << "\tRegister: " << PrintReg(*I, TRI) << "\n");
561     DEBUG(dbgs() << "\tCost: " << Cost << "\n");
562     DEBUG(dbgs() << "\tBestCost: " << BestCost << "\n");
563     // Cost is 0 when all aliases are already disabled.
564     if (Cost == 0) {
565       assignVirtToPhysReg(*LRI, *I);
566       return LRI;
567     }
568     if (Cost < BestCost)
569       BestReg = *I, BestCost = Cost;
570   }
571
572   if (BestReg) {
573     definePhysReg(MI, BestReg, regFree);
574     // definePhysReg may kill virtual registers and modify LiveVirtRegs.
575     // That invalidates LRI, so run a new lookup for VirtReg.
576     return assignVirtToPhysReg(VirtReg, BestReg);
577   }
578
579   // Nothing we can do. Report an error and keep going with a bad allocation.
580   if (MI->isInlineAsm())
581     MI->emitError("inline assembly requires more registers than available");
582   else
583     MI->emitError("ran out of registers during register allocation");
584   definePhysReg(MI, *AO.begin(), regFree);
585   return assignVirtToPhysReg(VirtReg, *AO.begin());
586 }
587
588 /// defineVirtReg - Allocate a register for VirtReg and mark it as dirty.
589 RAFast::LiveRegMap::iterator
590 RAFast::defineVirtReg(MachineInstr *MI, unsigned OpNum,
591                       unsigned VirtReg, unsigned Hint) {
592   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
593          "Not a virtual register");
594   LiveRegMap::iterator LRI;
595   bool New;
596   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
597   if (New) {
598     // If there is no hint, peek at the only use of this register.
599     if ((!Hint || !TargetRegisterInfo::isPhysicalRegister(Hint)) &&
600         MRI->hasOneNonDBGUse(VirtReg)) {
601       const MachineInstr &UseMI = *MRI->use_instr_nodbg_begin(VirtReg);
602       // It's a copy, use the destination register as a hint.
603       if (UseMI.isCopyLike())
604         Hint = UseMI.getOperand(0).getReg();
605     }
606     LRI = allocVirtReg(MI, LRI, Hint);
607   } else if (LRI->LastUse) {
608     // Redefining a live register - kill at the last use, unless it is this
609     // instruction defining VirtReg multiple times.
610     if (LRI->LastUse != MI || LRI->LastUse->getOperand(LRI->LastOpNum).isUse())
611       addKillFlag(*LRI);
612   }
613   assert(LRI->PhysReg && "Register not assigned");
614   LRI->LastUse = MI;
615   LRI->LastOpNum = OpNum;
616   LRI->Dirty = true;
617   markRegUsedInInstr(LRI->PhysReg);
618   return LRI;
619 }
620
621 /// reloadVirtReg - Make sure VirtReg is available in a physreg and return it.
622 RAFast::LiveRegMap::iterator
623 RAFast::reloadVirtReg(MachineInstr *MI, unsigned OpNum,
624                       unsigned VirtReg, unsigned Hint) {
625   assert(TargetRegisterInfo::isVirtualRegister(VirtReg) &&
626          "Not a virtual register");
627   LiveRegMap::iterator LRI;
628   bool New;
629   std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg));
630   MachineOperand &MO = MI->getOperand(OpNum);
631   if (New) {
632     LRI = allocVirtReg(MI, LRI, Hint);
633     const TargetRegisterClass *RC = MRI->getRegClass(VirtReg);
634     int FrameIndex = getStackSpaceFor(VirtReg, RC);
635     DEBUG(dbgs() << "Reloading " << PrintReg(VirtReg, TRI) << " into "
636                  << PrintReg(LRI->PhysReg, TRI) << "\n");
637     TII->loadRegFromStackSlot(*MBB, MI, LRI->PhysReg, FrameIndex, RC, TRI);
638     ++NumLoads;
639   } else if (LRI->Dirty) {
640     if (isLastUseOfLocalReg(MO)) {
641       DEBUG(dbgs() << "Killing last use: " << MO << "\n");
642       if (MO.isUse())
643         MO.setIsKill();
644       else
645         MO.setIsDead();
646     } else if (MO.isKill()) {
647       DEBUG(dbgs() << "Clearing dubious kill: " << MO << "\n");
648       MO.setIsKill(false);
649     } else if (MO.isDead()) {
650       DEBUG(dbgs() << "Clearing dubious dead: " << MO << "\n");
651       MO.setIsDead(false);
652     }
653   } else if (MO.isKill()) {
654     // We must remove kill flags from uses of reloaded registers because the
655     // register would be killed immediately, and there might be a second use:
656     //   %foo = OR %x<kill>, %x
657     // This would cause a second reload of %x into a different register.
658     DEBUG(dbgs() << "Clearing clean kill: " << MO << "\n");
659     MO.setIsKill(false);
660   } else if (MO.isDead()) {
661     DEBUG(dbgs() << "Clearing clean dead: " << MO << "\n");
662     MO.setIsDead(false);
663   }
664   assert(LRI->PhysReg && "Register not assigned");
665   LRI->LastUse = MI;
666   LRI->LastOpNum = OpNum;
667   markRegUsedInInstr(LRI->PhysReg);
668   return LRI;
669 }
670
671 // setPhysReg - Change operand OpNum in MI the refer the PhysReg, considering
672 // subregs. This may invalidate any operand pointers.
673 // Return true if the operand kills its register.
674 bool RAFast::setPhysReg(MachineInstr *MI, unsigned OpNum, unsigned PhysReg) {
675   MachineOperand &MO = MI->getOperand(OpNum);
676   bool Dead = MO.isDead();
677   if (!MO.getSubReg()) {
678     MO.setReg(PhysReg);
679     return MO.isKill() || Dead;
680   }
681
682   // Handle subregister index.
683   MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : 0);
684   MO.setSubReg(0);
685
686   // A kill flag implies killing the full register. Add corresponding super
687   // register kill.
688   if (MO.isKill()) {
689     MI->addRegisterKilled(PhysReg, TRI, true);
690     return true;
691   }
692
693   // A <def,read-undef> of a sub-register requires an implicit def of the full
694   // register.
695   if (MO.isDef() && MO.isUndef())
696     MI->addRegisterDefined(PhysReg, TRI);
697
698   return Dead;
699 }
700
701 // Handle special instruction operand like early clobbers and tied ops when
702 // there are additional physreg defines.
703 void RAFast::handleThroughOperands(MachineInstr *MI,
704                                    SmallVectorImpl<unsigned> &VirtDead) {
705   DEBUG(dbgs() << "Scanning for through registers:");
706   SmallSet<unsigned, 8> ThroughRegs;
707   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
708     MachineOperand &MO = MI->getOperand(i);
709     if (!MO.isReg()) continue;
710     unsigned Reg = MO.getReg();
711     if (!TargetRegisterInfo::isVirtualRegister(Reg))
712       continue;
713     if (MO.isEarlyClobber() || MI->isRegTiedToDefOperand(i) ||
714         (MO.getSubReg() && MI->readsVirtualRegister(Reg))) {
715       if (ThroughRegs.insert(Reg).second)
716         DEBUG(dbgs() << ' ' << PrintReg(Reg));
717     }
718   }
719
720   // If any physreg defines collide with preallocated through registers,
721   // we must spill and reallocate.
722   DEBUG(dbgs() << "\nChecking for physdef collisions.\n");
723   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
724     MachineOperand &MO = MI->getOperand(i);
725     if (!MO.isReg() || !MO.isDef()) continue;
726     unsigned Reg = MO.getReg();
727     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
728     markRegUsedInInstr(Reg);
729     for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI) {
730       if (ThroughRegs.count(PhysRegState[*AI]))
731         definePhysReg(MI, *AI, regFree);
732     }
733   }
734
735   SmallVector<unsigned, 8> PartialDefs;
736   DEBUG(dbgs() << "Allocating tied uses.\n");
737   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
738     MachineOperand &MO = MI->getOperand(i);
739     if (!MO.isReg()) continue;
740     unsigned Reg = MO.getReg();
741     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
742     if (MO.isUse()) {
743       unsigned DefIdx = 0;
744       if (!MI->isRegTiedToDefOperand(i, &DefIdx)) continue;
745       DEBUG(dbgs() << "Operand " << i << "("<< MO << ") is tied to operand "
746         << DefIdx << ".\n");
747       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
748       unsigned PhysReg = LRI->PhysReg;
749       setPhysReg(MI, i, PhysReg);
750       // Note: we don't update the def operand yet. That would cause the normal
751       // def-scan to attempt spilling.
752     } else if (MO.getSubReg() && MI->readsVirtualRegister(Reg)) {
753       DEBUG(dbgs() << "Partial redefine: " << MO << "\n");
754       // Reload the register, but don't assign to the operand just yet.
755       // That would confuse the later phys-def processing pass.
756       LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, 0);
757       PartialDefs.push_back(LRI->PhysReg);
758     }
759   }
760
761   DEBUG(dbgs() << "Allocating early clobbers.\n");
762   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
763     MachineOperand &MO = MI->getOperand(i);
764     if (!MO.isReg()) continue;
765     unsigned Reg = MO.getReg();
766     if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
767     if (!MO.isEarlyClobber())
768       continue;
769     // Note: defineVirtReg may invalidate MO.
770     LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, 0);
771     unsigned PhysReg = LRI->PhysReg;
772     if (setPhysReg(MI, i, PhysReg))
773       VirtDead.push_back(Reg);
774   }
775
776   // Restore UsedInInstr to a state usable for allocating normal virtual uses.
777   UsedInInstr.clear();
778   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
779     MachineOperand &MO = MI->getOperand(i);
780     if (!MO.isReg() || (MO.isDef() && !MO.isEarlyClobber())) continue;
781     unsigned Reg = MO.getReg();
782     if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
783     DEBUG(dbgs() << "\tSetting " << PrintReg(Reg, TRI)
784                  << " as used in instr\n");
785     markRegUsedInInstr(Reg);
786   }
787
788   // Also mark PartialDefs as used to avoid reallocation.
789   for (unsigned i = 0, e = PartialDefs.size(); i != e; ++i)
790     markRegUsedInInstr(PartialDefs[i]);
791 }
792
793 void RAFast::AllocateBasicBlock() {
794   DEBUG(dbgs() << "\nAllocating " << *MBB);
795
796   PhysRegState.assign(TRI->getNumRegs(), regDisabled);
797   assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?");
798
799   MachineBasicBlock::iterator MII = MBB->begin();
800
801   // Add live-in registers as live.
802   for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
803          E = MBB->livein_end(); I != E; ++I)
804     if (MRI->isAllocatable(*I))
805       definePhysReg(MII, *I, regReserved);
806
807   SmallVector<unsigned, 8> VirtDead;
808   SmallVector<MachineInstr*, 32> Coalesced;
809
810   // Otherwise, sequentially allocate each instruction in the MBB.
811   while (MII != MBB->end()) {
812     MachineInstr *MI = MII++;
813     const MCInstrDesc &MCID = MI->getDesc();
814     DEBUG({
815         dbgs() << "\n>> " << *MI << "Regs:";
816         for (unsigned Reg = 1, E = TRI->getNumRegs(); Reg != E; ++Reg) {
817           if (PhysRegState[Reg] == regDisabled) continue;
818           dbgs() << " " << TRI->getName(Reg);
819           switch(PhysRegState[Reg]) {
820           case regFree:
821             break;
822           case regReserved:
823             dbgs() << "*";
824             break;
825           default: {
826             dbgs() << '=' << PrintReg(PhysRegState[Reg]);
827             LiveRegMap::iterator I = findLiveVirtReg(PhysRegState[Reg]);
828             assert(I != LiveVirtRegs.end() && "Missing VirtReg entry");
829             if (I->Dirty)
830               dbgs() << "*";
831             assert(I->PhysReg == Reg && "Bad inverse map");
832             break;
833           }
834           }
835         }
836         dbgs() << '\n';
837         // Check that LiveVirtRegs is the inverse.
838         for (LiveRegMap::iterator i = LiveVirtRegs.begin(),
839              e = LiveVirtRegs.end(); i != e; ++i) {
840            assert(TargetRegisterInfo::isVirtualRegister(i->VirtReg) &&
841                   "Bad map key");
842            assert(TargetRegisterInfo::isPhysicalRegister(i->PhysReg) &&
843                   "Bad map value");
844            assert(PhysRegState[i->PhysReg] == i->VirtReg && "Bad inverse map");
845         }
846       });
847
848     // Debug values are not allowed to change codegen in any way.
849     if (MI->isDebugValue()) {
850       bool ScanDbgValue = true;
851       while (ScanDbgValue) {
852         ScanDbgValue = false;
853         for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
854           MachineOperand &MO = MI->getOperand(i);
855           if (!MO.isReg()) continue;
856           unsigned Reg = MO.getReg();
857           if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
858           LiveRegMap::iterator LRI = findLiveVirtReg(Reg);
859           if (LRI != LiveVirtRegs.end())
860             setPhysReg(MI, i, LRI->PhysReg);
861           else {
862             int SS = StackSlotForVirtReg[Reg];
863             if (SS == -1) {
864               // We can't allocate a physreg for a DebugValue, sorry!
865               DEBUG(dbgs() << "Unable to allocate vreg used by DBG_VALUE");
866               MO.setReg(0);
867             }
868             else {
869               // Modify DBG_VALUE now that the value is in a spill slot.
870               bool IsIndirect = MI->isIndirectDebugValue();
871               uint64_t Offset = IsIndirect ? MI->getOperand(1).getImm() : 0;
872               const MDNode *Var = MI->getDebugVariable();
873               const MDNode *Expr = MI->getDebugExpression();
874               DebugLoc DL = MI->getDebugLoc();
875               MachineBasicBlock *MBB = MI->getParent();
876               assert(
877                   cast<DILocalVariable>(Var)->isValidLocationForIntrinsic(DL) &&
878                   "Expected inlined-at fields to agree");
879               MachineInstr *NewDV = BuildMI(*MBB, MBB->erase(MI), DL,
880                                             TII->get(TargetOpcode::DBG_VALUE))
881                                         .addFrameIndex(SS)
882                                         .addImm(Offset)
883                                         .addMetadata(Var)
884                                         .addMetadata(Expr);
885               DEBUG(dbgs() << "Modifying debug info due to spill:"
886                            << "\t" << *NewDV);
887               // Scan NewDV operands from the beginning.
888               MI = NewDV;
889               ScanDbgValue = true;
890               break;
891             }
892           }
893           LiveDbgValueMap[Reg].push_back(MI);
894         }
895       }
896       // Next instruction.
897       continue;
898     }
899
900     // If this is a copy, we may be able to coalesce.
901     unsigned CopySrc = 0, CopyDst = 0, CopySrcSub = 0, CopyDstSub = 0;
902     if (MI->isCopy()) {
903       CopyDst = MI->getOperand(0).getReg();
904       CopySrc = MI->getOperand(1).getReg();
905       CopyDstSub = MI->getOperand(0).getSubReg();
906       CopySrcSub = MI->getOperand(1).getSubReg();
907     }
908
909     // Track registers used by instruction.
910     UsedInInstr.clear();
911
912     // First scan.
913     // Mark physreg uses and early clobbers as used.
914     // Find the end of the virtreg operands
915     unsigned VirtOpEnd = 0;
916     bool hasTiedOps = false;
917     bool hasEarlyClobbers = false;
918     bool hasPartialRedefs = false;
919     bool hasPhysDefs = false;
920     for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
921       MachineOperand &MO = MI->getOperand(i);
922       // Make sure MRI knows about registers clobbered by regmasks.
923       if (MO.isRegMask()) {
924         MRI->addPhysRegsUsedFromRegMask(MO.getRegMask());
925         continue;
926       }
927       if (!MO.isReg()) continue;
928       unsigned Reg = MO.getReg();
929       if (!Reg) continue;
930       if (TargetRegisterInfo::isVirtualRegister(Reg)) {
931         VirtOpEnd = i+1;
932         if (MO.isUse()) {
933           hasTiedOps = hasTiedOps ||
934                               MCID.getOperandConstraint(i, MCOI::TIED_TO) != -1;
935         } else {
936           if (MO.isEarlyClobber())
937             hasEarlyClobbers = true;
938           if (MO.getSubReg() && MI->readsVirtualRegister(Reg))
939             hasPartialRedefs = true;
940         }
941         continue;
942       }
943       if (!MRI->isAllocatable(Reg)) continue;
944       if (MO.isUse()) {
945         usePhysReg(MO);
946       } else if (MO.isEarlyClobber()) {
947         definePhysReg(MI, Reg, (MO.isImplicit() || MO.isDead()) ?
948                                regFree : regReserved);
949         hasEarlyClobbers = true;
950       } else
951         hasPhysDefs = true;
952     }
953
954     // The instruction may have virtual register operands that must be allocated
955     // the same register at use-time and def-time: early clobbers and tied
956     // operands. If there are also physical defs, these registers must avoid
957     // both physical defs and uses, making them more constrained than normal
958     // operands.
959     // Similarly, if there are multiple defs and tied operands, we must make
960     // sure the same register is allocated to uses and defs.
961     // We didn't detect inline asm tied operands above, so just make this extra
962     // pass for all inline asm.
963     if (MI->isInlineAsm() || hasEarlyClobbers || hasPartialRedefs ||
964         (hasTiedOps && (hasPhysDefs || MCID.getNumDefs() > 1))) {
965       handleThroughOperands(MI, VirtDead);
966       // Don't attempt coalescing when we have funny stuff going on.
967       CopyDst = 0;
968       // Pretend we have early clobbers so the use operands get marked below.
969       // This is not necessary for the common case of a single tied use.
970       hasEarlyClobbers = true;
971     }
972
973     // Second scan.
974     // Allocate virtreg uses.
975     for (unsigned i = 0; i != VirtOpEnd; ++i) {
976       MachineOperand &MO = MI->getOperand(i);
977       if (!MO.isReg()) continue;
978       unsigned Reg = MO.getReg();
979       if (!TargetRegisterInfo::isVirtualRegister(Reg)) continue;
980       if (MO.isUse()) {
981         LiveRegMap::iterator LRI = reloadVirtReg(MI, i, Reg, CopyDst);
982         unsigned PhysReg = LRI->PhysReg;
983         CopySrc = (CopySrc == Reg || CopySrc == PhysReg) ? PhysReg : 0;
984         if (setPhysReg(MI, i, PhysReg))
985           killVirtReg(LRI);
986       }
987     }
988
989     // Track registers defined by instruction - early clobbers and tied uses at
990     // this point.
991     UsedInInstr.clear();
992     if (hasEarlyClobbers) {
993       for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
994         MachineOperand &MO = MI->getOperand(i);
995         if (!MO.isReg()) continue;
996         unsigned Reg = MO.getReg();
997         if (!Reg || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
998         // Look for physreg defs and tied uses.
999         if (!MO.isDef() && !MI->isRegTiedToDefOperand(i)) continue;
1000         markRegUsedInInstr(Reg);
1001       }
1002     }
1003
1004     unsigned DefOpEnd = MI->getNumOperands();
1005     if (MI->isCall()) {
1006       // Spill all virtregs before a call. This serves two purposes: 1. If an
1007       // exception is thrown, the landing pad is going to expect to find
1008       // registers in their spill slots, and 2. we don't have to wade through
1009       // all the <imp-def> operands on the call instruction.
1010       DefOpEnd = VirtOpEnd;
1011       DEBUG(dbgs() << "  Spilling remaining registers before call.\n");
1012       spillAll(MI);
1013
1014       // The imp-defs are skipped below, but we still need to mark those
1015       // registers as used by the function.
1016       SkippedInstrs.insert(&MCID);
1017     }
1018
1019     // Third scan.
1020     // Allocate defs and collect dead defs.
1021     for (unsigned i = 0; i != DefOpEnd; ++i) {
1022       MachineOperand &MO = MI->getOperand(i);
1023       if (!MO.isReg() || !MO.isDef() || !MO.getReg() || MO.isEarlyClobber())
1024         continue;
1025       unsigned Reg = MO.getReg();
1026
1027       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1028         if (!MRI->isAllocatable(Reg)) continue;
1029         definePhysReg(MI, Reg, MO.isDead() ? regFree : regReserved);
1030         continue;
1031       }
1032       LiveRegMap::iterator LRI = defineVirtReg(MI, i, Reg, CopySrc);
1033       unsigned PhysReg = LRI->PhysReg;
1034       if (setPhysReg(MI, i, PhysReg)) {
1035         VirtDead.push_back(Reg);
1036         CopyDst = 0; // cancel coalescing;
1037       } else
1038         CopyDst = (CopyDst == Reg || CopyDst == PhysReg) ? PhysReg : 0;
1039     }
1040
1041     // Kill dead defs after the scan to ensure that multiple defs of the same
1042     // register are allocated identically. We didn't need to do this for uses
1043     // because we are crerating our own kill flags, and they are always at the
1044     // last use.
1045     for (unsigned i = 0, e = VirtDead.size(); i != e; ++i)
1046       killVirtReg(VirtDead[i]);
1047     VirtDead.clear();
1048
1049     if (CopyDst && CopyDst == CopySrc && CopyDstSub == CopySrcSub) {
1050       DEBUG(dbgs() << "-- coalescing: " << *MI);
1051       Coalesced.push_back(MI);
1052     } else {
1053       DEBUG(dbgs() << "<< " << *MI);
1054     }
1055   }
1056
1057   // Spill all physical registers holding virtual registers now.
1058   DEBUG(dbgs() << "Spilling live registers at end of block.\n");
1059   spillAll(MBB->getFirstTerminator());
1060
1061   // Erase all the coalesced copies. We are delaying it until now because
1062   // LiveVirtRegs might refer to the instrs.
1063   for (unsigned i = 0, e = Coalesced.size(); i != e; ++i)
1064     MBB->erase(Coalesced[i]);
1065   NumCopies += Coalesced.size();
1066
1067   DEBUG(MBB->dump());
1068 }
1069
1070 /// runOnMachineFunction - Register allocate the whole function
1071 ///
1072 bool RAFast::runOnMachineFunction(MachineFunction &Fn) {
1073   DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n"
1074                << "********** Function: " << Fn.getName() << '\n');
1075   MF = &Fn;
1076   MRI = &MF->getRegInfo();
1077   TRI = MF->getSubtarget().getRegisterInfo();
1078   TII = MF->getSubtarget().getInstrInfo();
1079   MRI->freezeReservedRegs(Fn);
1080   RegClassInfo.runOnMachineFunction(Fn);
1081   UsedInInstr.clear();
1082   UsedInInstr.setUniverse(TRI->getNumRegUnits());
1083
1084   assert(!MRI->isSSA() && "regalloc requires leaving SSA");
1085
1086   // initialize the virtual->physical register map to have a 'null'
1087   // mapping for all virtual registers
1088   StackSlotForVirtReg.resize(MRI->getNumVirtRegs());
1089   LiveVirtRegs.setUniverse(MRI->getNumVirtRegs());
1090
1091   // Loop over all of the basic blocks, eliminating virtual register references
1092   for (MachineFunction::iterator MBBi = Fn.begin(), MBBe = Fn.end();
1093        MBBi != MBBe; ++MBBi) {
1094     MBB = &*MBBi;
1095     AllocateBasicBlock();
1096   }
1097
1098   // All machine operands and other references to virtual registers have been
1099   // replaced. Remove the virtual registers.
1100   MRI->clearVirtRegs();
1101
1102   SkippedInstrs.clear();
1103   StackSlotForVirtReg.clear();
1104   LiveDbgValueMap.clear();
1105   return true;
1106 }
1107
1108 FunctionPass *llvm::createFastRegisterAllocator() {
1109   return new RAFast();
1110 }