Re-sort includes with sort-includes.py and insert raw_ostream.h where it's used.
[oota-llvm.git] / lib / CodeGen / PeepholeOptimizer.cpp
1 //===-- PeepholeOptimizer.cpp - Peephole Optimizations --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Perform peephole optimizations on the machine code:
11 //
12 // - Optimize Extensions
13 //
14 //     Optimization of sign / zero extension instructions. It may be extended to
15 //     handle other instructions with similar properties.
16 //
17 //     On some targets, some instructions, e.g. X86 sign / zero extension, may
18 //     leave the source value in the lower part of the result. This optimization
19 //     will replace some uses of the pre-extension value with uses of the
20 //     sub-register of the results.
21 //
22 // - Optimize Comparisons
23 //
24 //     Optimization of comparison instructions. For instance, in this code:
25 //
26 //       sub r1, 1
27 //       cmp r1, 0
28 //       bz  L1
29 //
30 //     If the "sub" instruction all ready sets (or could be modified to set) the
31 //     same flag that the "cmp" instruction sets and that "bz" uses, then we can
32 //     eliminate the "cmp" instruction.
33 //
34 //     Another instance, in this code:
35 //
36 //       sub r1, r3 | sub r1, imm
37 //       cmp r3, r1 or cmp r1, r3 | cmp r1, imm
38 //       bge L1
39 //
40 //     If the branch instruction can use flag from "sub", then we can replace
41 //     "sub" with "subs" and eliminate the "cmp" instruction.
42 //
43 // - Optimize Loads:
44 //
45 //     Loads that can be folded into a later instruction. A load is foldable
46 //     if it loads to virtual registers and the virtual register defined has 
47 //     a single use.
48 //
49 // - Optimize Copies and Bitcast (more generally, target specific copies):
50 //
51 //     Rewrite copies and bitcasts to avoid cross register bank copies
52 //     when possible.
53 //     E.g., Consider the following example, where capital and lower
54 //     letters denote different register file:
55 //     b = copy A <-- cross-bank copy
56 //     C = copy b <-- cross-bank copy
57 //   =>
58 //     b = copy A <-- cross-bank copy
59 //     C = copy A <-- same-bank copy
60 //
61 //     E.g., for bitcast:
62 //     b = bitcast A <-- cross-bank copy
63 //     C = bitcast b <-- cross-bank copy
64 //   =>
65 //     b = bitcast A <-- cross-bank copy
66 //     C = copy A    <-- same-bank copy
67 //===----------------------------------------------------------------------===//
68
69 #include "llvm/CodeGen/Passes.h"
70 #include "llvm/ADT/DenseMap.h"
71 #include "llvm/ADT/SmallPtrSet.h"
72 #include "llvm/ADT/SmallSet.h"
73 #include "llvm/ADT/Statistic.h"
74 #include "llvm/CodeGen/MachineDominators.h"
75 #include "llvm/CodeGen/MachineInstrBuilder.h"
76 #include "llvm/CodeGen/MachineRegisterInfo.h"
77 #include "llvm/Support/CommandLine.h"
78 #include "llvm/Support/Debug.h"
79 #include "llvm/Support/raw_ostream.h"
80 #include "llvm/Target/TargetInstrInfo.h"
81 #include "llvm/Target/TargetRegisterInfo.h"
82 #include "llvm/Target/TargetSubtargetInfo.h"
83 #include <utility>
84 using namespace llvm;
85
86 #define DEBUG_TYPE "peephole-opt"
87
88 // Optimize Extensions
89 static cl::opt<bool>
90 Aggressive("aggressive-ext-opt", cl::Hidden,
91            cl::desc("Aggressive extension optimization"));
92
93 static cl::opt<bool>
94 DisablePeephole("disable-peephole", cl::Hidden, cl::init(false),
95                 cl::desc("Disable the peephole optimizer"));
96
97 static cl::opt<bool>
98 DisableAdvCopyOpt("disable-adv-copy-opt", cl::Hidden, cl::init(false),
99                   cl::desc("Disable advanced copy optimization"));
100
101 STATISTIC(NumReuse,      "Number of extension results reused");
102 STATISTIC(NumCmps,       "Number of compares eliminated");
103 STATISTIC(NumImmFold,    "Number of move immediate folded");
104 STATISTIC(NumLoadFold,   "Number of loads folded");
105 STATISTIC(NumSelects,    "Number of selects optimized");
106 STATISTIC(NumUncoalescableCopies, "Number of uncoalescable copies optimized");
107 STATISTIC(NumRewrittenCopies, "Number of copies rewritten");
108
109 namespace {
110   class PeepholeOptimizer : public MachineFunctionPass {
111     const TargetInstrInfo *TII;
112     const TargetRegisterInfo *TRI;
113     MachineRegisterInfo   *MRI;
114     MachineDominatorTree  *DT;  // Machine dominator tree
115
116   public:
117     static char ID; // Pass identification
118     PeepholeOptimizer() : MachineFunctionPass(ID) {
119       initializePeepholeOptimizerPass(*PassRegistry::getPassRegistry());
120     }
121
122     bool runOnMachineFunction(MachineFunction &MF) override;
123
124     void getAnalysisUsage(AnalysisUsage &AU) const override {
125       AU.setPreservesCFG();
126       MachineFunctionPass::getAnalysisUsage(AU);
127       if (Aggressive) {
128         AU.addRequired<MachineDominatorTree>();
129         AU.addPreserved<MachineDominatorTree>();
130       }
131     }
132
133   private:
134     bool optimizeCmpInstr(MachineInstr *MI, MachineBasicBlock *MBB);
135     bool optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
136                           SmallPtrSetImpl<MachineInstr*> &LocalMIs);
137     bool optimizeSelect(MachineInstr *MI,
138                         SmallPtrSetImpl<MachineInstr *> &LocalMIs);
139     bool optimizeCondBranch(MachineInstr *MI);
140     bool optimizeCopyOrBitcast(MachineInstr *MI);
141     bool optimizeCoalescableCopy(MachineInstr *MI);
142     bool optimizeUncoalescableCopy(MachineInstr *MI,
143                                    SmallPtrSetImpl<MachineInstr *> &LocalMIs);
144     bool findNextSource(unsigned &Reg, unsigned &SubReg);
145     bool isMoveImmediate(MachineInstr *MI,
146                          SmallSet<unsigned, 4> &ImmDefRegs,
147                          DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
148     bool foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
149                        SmallSet<unsigned, 4> &ImmDefRegs,
150                        DenseMap<unsigned, MachineInstr*> &ImmDefMIs);
151     bool isLoadFoldable(MachineInstr *MI,
152                         SmallSet<unsigned, 16> &FoldAsLoadDefCandidates);
153
154     /// \brief Check whether \p MI is understood by the register coalescer
155     /// but may require some rewriting.
156     bool isCoalescableCopy(const MachineInstr &MI) {
157       // SubregToRegs are not interesting, because they are already register
158       // coalescer friendly.
159       return MI.isCopy() || (!DisableAdvCopyOpt &&
160                              (MI.isRegSequence() || MI.isInsertSubreg() ||
161                               MI.isExtractSubreg()));
162     }
163
164     /// \brief Check whether \p MI is a copy like instruction that is
165     /// not recognized by the register coalescer.
166     bool isUncoalescableCopy(const MachineInstr &MI) {
167       return MI.isBitcast() ||
168              (!DisableAdvCopyOpt &&
169               (MI.isRegSequenceLike() || MI.isInsertSubregLike() ||
170                MI.isExtractSubregLike()));
171     }
172   };
173
174   /// \brief Helper class to track the possible sources of a value defined by
175   /// a (chain of) copy related instructions.
176   /// Given a definition (instruction and definition index), this class
177   /// follows the use-def chain to find successive suitable sources.
178   /// The given source can be used to rewrite the definition into
179   /// def = COPY src.
180   ///
181   /// For instance, let us consider the following snippet:
182   /// v0 =
183   /// v2 = INSERT_SUBREG v1, v0, sub0
184   /// def = COPY v2.sub0
185   ///
186   /// Using a ValueTracker for def = COPY v2.sub0 will give the following
187   /// suitable sources:
188   /// v2.sub0 and v0.
189   /// Then, def can be rewritten into def = COPY v0.
190   class ValueTracker {
191   private:
192     /// The current point into the use-def chain.
193     const MachineInstr *Def;
194     /// The index of the definition in Def.
195     unsigned DefIdx;
196     /// The sub register index of the definition.
197     unsigned DefSubReg;
198     /// The register where the value can be found.
199     unsigned Reg;
200     /// Specifiy whether or not the value tracking looks through
201     /// complex instructions. When this is false, the value tracker
202     /// bails on everything that is not a copy or a bitcast.
203     ///
204     /// Note: This could have been implemented as a specialized version of
205     /// the ValueTracker class but that would have complicated the code of
206     /// the users of this class.
207     bool UseAdvancedTracking;
208     /// MachineRegisterInfo used to perform tracking.
209     const MachineRegisterInfo &MRI;
210     /// Optional TargetInstrInfo used to perform some complex
211     /// tracking.
212     const TargetInstrInfo *TII;
213
214     /// \brief Dispatcher to the right underlying implementation of
215     /// getNextSource.
216     bool getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg);
217     /// \brief Specialized version of getNextSource for Copy instructions.
218     bool getNextSourceFromCopy(unsigned &SrcReg, unsigned &SrcSubReg);
219     /// \brief Specialized version of getNextSource for Bitcast instructions.
220     bool getNextSourceFromBitcast(unsigned &SrcReg, unsigned &SrcSubReg);
221     /// \brief Specialized version of getNextSource for RegSequence
222     /// instructions.
223     bool getNextSourceFromRegSequence(unsigned &SrcReg, unsigned &SrcSubReg);
224     /// \brief Specialized version of getNextSource for InsertSubreg
225     /// instructions.
226     bool getNextSourceFromInsertSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
227     /// \brief Specialized version of getNextSource for ExtractSubreg
228     /// instructions.
229     bool getNextSourceFromExtractSubreg(unsigned &SrcReg, unsigned &SrcSubReg);
230     /// \brief Specialized version of getNextSource for SubregToReg
231     /// instructions.
232     bool getNextSourceFromSubregToReg(unsigned &SrcReg, unsigned &SrcSubReg);
233
234   public:
235     /// \brief Create a ValueTracker instance for the value defined by \p Reg.
236     /// \p DefSubReg represents the sub register index the value tracker will
237     /// track. It does not need to match the sub register index used in the
238     /// definition of \p Reg.
239     /// \p UseAdvancedTracking specifies whether or not the value tracker looks
240     /// through complex instructions. By default (false), it handles only copy
241     /// and bitcast instructions.
242     /// If \p Reg is a physical register, a value tracker constructed with
243     /// this constructor will not find any alternative source.
244     /// Indeed, when \p Reg is a physical register that constructor does not
245     /// know which definition of \p Reg it should track.
246     /// Use the next constructor to track a physical register.
247     ValueTracker(unsigned Reg, unsigned DefSubReg,
248                  const MachineRegisterInfo &MRI,
249                  bool UseAdvancedTracking = false,
250                  const TargetInstrInfo *TII = nullptr)
251         : Def(nullptr), DefIdx(0), DefSubReg(DefSubReg), Reg(Reg),
252           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
253       if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
254         Def = MRI.getVRegDef(Reg);
255         DefIdx = MRI.def_begin(Reg).getOperandNo();
256       }
257     }
258
259     /// \brief Create a ValueTracker instance for the value defined by
260     /// the pair \p MI, \p DefIdx.
261     /// Unlike the other constructor, the value tracker produced by this one
262     /// may be able to find a new source when the definition is a physical
263     /// register.
264     /// This could be useful to rewrite target specific instructions into
265     /// generic copy instructions.
266     ValueTracker(const MachineInstr &MI, unsigned DefIdx, unsigned DefSubReg,
267                  const MachineRegisterInfo &MRI,
268                  bool UseAdvancedTracking = false,
269                  const TargetInstrInfo *TII = nullptr)
270         : Def(&MI), DefIdx(DefIdx), DefSubReg(DefSubReg),
271           UseAdvancedTracking(UseAdvancedTracking), MRI(MRI), TII(TII) {
272       assert(DefIdx < Def->getDesc().getNumDefs() &&
273              Def->getOperand(DefIdx).isReg() && "Invalid definition");
274       Reg = Def->getOperand(DefIdx).getReg();
275     }
276
277     /// \brief Following the use-def chain, get the next available source
278     /// for the tracked value.
279     /// When the returned value is not nullptr, \p SrcReg gives the register
280     /// that contain the tracked value.
281     /// \note The sub register index returned in \p SrcSubReg must be used
282     /// on \p SrcReg to access the actual value.
283     /// \return Unless the returned value is nullptr (i.e., no source found),
284     /// \p SrcReg gives the register of the next source used in the returned
285     /// instruction and \p SrcSubReg the sub-register index to be used on that
286     /// source to get the tracked value. When nullptr is returned, no
287     /// alternative source has been found.
288     const MachineInstr *getNextSource(unsigned &SrcReg, unsigned &SrcSubReg);
289
290     /// \brief Get the last register where the initial value can be found.
291     /// Initially this is the register of the definition.
292     /// Then, after each successful call to getNextSource, this is the
293     /// register of the last source.
294     unsigned getReg() const { return Reg; }
295   };
296 }
297
298 char PeepholeOptimizer::ID = 0;
299 char &llvm::PeepholeOptimizerID = PeepholeOptimizer::ID;
300 INITIALIZE_PASS_BEGIN(PeepholeOptimizer, "peephole-opts",
301                 "Peephole Optimizations", false, false)
302 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
303 INITIALIZE_PASS_END(PeepholeOptimizer, "peephole-opts",
304                 "Peephole Optimizations", false, false)
305
306 /// optimizeExtInstr - If instruction is a copy-like instruction, i.e. it reads
307 /// a single register and writes a single register and it does not modify the
308 /// source, and if the source value is preserved as a sub-register of the
309 /// result, then replace all reachable uses of the source with the subreg of the
310 /// result.
311 ///
312 /// Do not generate an EXTRACT that is used only in a debug use, as this changes
313 /// the code. Since this code does not currently share EXTRACTs, just ignore all
314 /// debug uses.
315 bool PeepholeOptimizer::
316 optimizeExtInstr(MachineInstr *MI, MachineBasicBlock *MBB,
317                  SmallPtrSetImpl<MachineInstr*> &LocalMIs) {
318   unsigned SrcReg, DstReg, SubIdx;
319   if (!TII->isCoalescableExtInstr(*MI, SrcReg, DstReg, SubIdx))
320     return false;
321
322   if (TargetRegisterInfo::isPhysicalRegister(DstReg) ||
323       TargetRegisterInfo::isPhysicalRegister(SrcReg))
324     return false;
325
326   if (MRI->hasOneNonDBGUse(SrcReg))
327     // No other uses.
328     return false;
329
330   // Ensure DstReg can get a register class that actually supports
331   // sub-registers. Don't change the class until we commit.
332   const TargetRegisterClass *DstRC = MRI->getRegClass(DstReg);
333   DstRC = TRI->getSubClassWithSubReg(DstRC, SubIdx);
334   if (!DstRC)
335     return false;
336
337   // The ext instr may be operating on a sub-register of SrcReg as well.
338   // PPC::EXTSW is a 32 -> 64-bit sign extension, but it reads a 64-bit
339   // register.
340   // If UseSrcSubIdx is Set, SubIdx also applies to SrcReg, and only uses of
341   // SrcReg:SubIdx should be replaced.
342   bool UseSrcSubIdx =
343       TRI->getSubClassWithSubReg(MRI->getRegClass(SrcReg), SubIdx) != nullptr;
344
345   // The source has other uses. See if we can replace the other uses with use of
346   // the result of the extension.
347   SmallPtrSet<MachineBasicBlock*, 4> ReachedBBs;
348   for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
349     ReachedBBs.insert(UI.getParent());
350
351   // Uses that are in the same BB of uses of the result of the instruction.
352   SmallVector<MachineOperand*, 8> Uses;
353
354   // Uses that the result of the instruction can reach.
355   SmallVector<MachineOperand*, 8> ExtendedUses;
356
357   bool ExtendLife = true;
358   for (MachineOperand &UseMO : MRI->use_nodbg_operands(SrcReg)) {
359     MachineInstr *UseMI = UseMO.getParent();
360     if (UseMI == MI)
361       continue;
362
363     if (UseMI->isPHI()) {
364       ExtendLife = false;
365       continue;
366     }
367
368     // Only accept uses of SrcReg:SubIdx.
369     if (UseSrcSubIdx && UseMO.getSubReg() != SubIdx)
370       continue;
371
372     // It's an error to translate this:
373     //
374     //    %reg1025 = <sext> %reg1024
375     //     ...
376     //    %reg1026 = SUBREG_TO_REG 0, %reg1024, 4
377     //
378     // into this:
379     //
380     //    %reg1025 = <sext> %reg1024
381     //     ...
382     //    %reg1027 = COPY %reg1025:4
383     //    %reg1026 = SUBREG_TO_REG 0, %reg1027, 4
384     //
385     // The problem here is that SUBREG_TO_REG is there to assert that an
386     // implicit zext occurs. It doesn't insert a zext instruction. If we allow
387     // the COPY here, it will give us the value after the <sext>, not the
388     // original value of %reg1024 before <sext>.
389     if (UseMI->getOpcode() == TargetOpcode::SUBREG_TO_REG)
390       continue;
391
392     MachineBasicBlock *UseMBB = UseMI->getParent();
393     if (UseMBB == MBB) {
394       // Local uses that come after the extension.
395       if (!LocalMIs.count(UseMI))
396         Uses.push_back(&UseMO);
397     } else if (ReachedBBs.count(UseMBB)) {
398       // Non-local uses where the result of the extension is used. Always
399       // replace these unless it's a PHI.
400       Uses.push_back(&UseMO);
401     } else if (Aggressive && DT->dominates(MBB, UseMBB)) {
402       // We may want to extend the live range of the extension result in order
403       // to replace these uses.
404       ExtendedUses.push_back(&UseMO);
405     } else {
406       // Both will be live out of the def MBB anyway. Don't extend live range of
407       // the extension result.
408       ExtendLife = false;
409       break;
410     }
411   }
412
413   if (ExtendLife && !ExtendedUses.empty())
414     // Extend the liveness of the extension result.
415     Uses.append(ExtendedUses.begin(), ExtendedUses.end());
416
417   // Now replace all uses.
418   bool Changed = false;
419   if (!Uses.empty()) {
420     SmallPtrSet<MachineBasicBlock*, 4> PHIBBs;
421
422     // Look for PHI uses of the extended result, we don't want to extend the
423     // liveness of a PHI input. It breaks all kinds of assumptions down
424     // stream. A PHI use is expected to be the kill of its source values.
425     for (MachineInstr &UI : MRI->use_nodbg_instructions(DstReg))
426       if (UI.isPHI())
427         PHIBBs.insert(UI.getParent());
428
429     const TargetRegisterClass *RC = MRI->getRegClass(SrcReg);
430     for (unsigned i = 0, e = Uses.size(); i != e; ++i) {
431       MachineOperand *UseMO = Uses[i];
432       MachineInstr *UseMI = UseMO->getParent();
433       MachineBasicBlock *UseMBB = UseMI->getParent();
434       if (PHIBBs.count(UseMBB))
435         continue;
436
437       // About to add uses of DstReg, clear DstReg's kill flags.
438       if (!Changed) {
439         MRI->clearKillFlags(DstReg);
440         MRI->constrainRegClass(DstReg, DstRC);
441       }
442
443       unsigned NewVR = MRI->createVirtualRegister(RC);
444       MachineInstr *Copy = BuildMI(*UseMBB, UseMI, UseMI->getDebugLoc(),
445                                    TII->get(TargetOpcode::COPY), NewVR)
446         .addReg(DstReg, 0, SubIdx);
447       // SubIdx applies to both SrcReg and DstReg when UseSrcSubIdx is set.
448       if (UseSrcSubIdx) {
449         Copy->getOperand(0).setSubReg(SubIdx);
450         Copy->getOperand(0).setIsUndef();
451       }
452       UseMO->setReg(NewVR);
453       ++NumReuse;
454       Changed = true;
455     }
456   }
457
458   return Changed;
459 }
460
461 /// optimizeCmpInstr - If the instruction is a compare and the previous
462 /// instruction it's comparing against all ready sets (or could be modified to
463 /// set) the same flag as the compare, then we can remove the comparison and use
464 /// the flag from the previous instruction.
465 bool PeepholeOptimizer::optimizeCmpInstr(MachineInstr *MI,
466                                          MachineBasicBlock *MBB) {
467   // If this instruction is a comparison against zero and isn't comparing a
468   // physical register, we can try to optimize it.
469   unsigned SrcReg, SrcReg2;
470   int CmpMask, CmpValue;
471   if (!TII->analyzeCompare(MI, SrcReg, SrcReg2, CmpMask, CmpValue) ||
472       TargetRegisterInfo::isPhysicalRegister(SrcReg) ||
473       (SrcReg2 != 0 && TargetRegisterInfo::isPhysicalRegister(SrcReg2)))
474     return false;
475
476   // Attempt to optimize the comparison instruction.
477   if (TII->optimizeCompareInstr(MI, SrcReg, SrcReg2, CmpMask, CmpValue, MRI)) {
478     ++NumCmps;
479     return true;
480   }
481
482   return false;
483 }
484
485 /// Optimize a select instruction.
486 bool PeepholeOptimizer::optimizeSelect(MachineInstr *MI,
487                             SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
488   unsigned TrueOp = 0;
489   unsigned FalseOp = 0;
490   bool Optimizable = false;
491   SmallVector<MachineOperand, 4> Cond;
492   if (TII->analyzeSelect(MI, Cond, TrueOp, FalseOp, Optimizable))
493     return false;
494   if (!Optimizable)
495     return false;
496   if (!TII->optimizeSelect(MI, LocalMIs))
497     return false;
498   MI->eraseFromParent();
499   ++NumSelects;
500   return true;
501 }
502
503 /// \brief Check if a simpler conditional branch can be
504 // generated
505 bool PeepholeOptimizer::optimizeCondBranch(MachineInstr *MI) {
506   return TII->optimizeCondBranch(MI);
507 }
508
509 /// \brief Check if the registers defined by the pair (RegisterClass, SubReg)
510 /// share the same register file.
511 static bool shareSameRegisterFile(const TargetRegisterInfo &TRI,
512                                   const TargetRegisterClass *DefRC,
513                                   unsigned DefSubReg,
514                                   const TargetRegisterClass *SrcRC,
515                                   unsigned SrcSubReg) {
516   // Same register class.
517   if (DefRC == SrcRC)
518     return true;
519
520   // Both operands are sub registers. Check if they share a register class.
521   unsigned SrcIdx, DefIdx;
522   if (SrcSubReg && DefSubReg)
523     return TRI.getCommonSuperRegClass(SrcRC, SrcSubReg, DefRC, DefSubReg,
524                                       SrcIdx, DefIdx) != nullptr;
525   // At most one of the register is a sub register, make it Src to avoid
526   // duplicating the test.
527   if (!SrcSubReg) {
528     std::swap(DefSubReg, SrcSubReg);
529     std::swap(DefRC, SrcRC);
530   }
531
532   // One of the register is a sub register, check if we can get a superclass.
533   if (SrcSubReg)
534     return TRI.getMatchingSuperRegClass(SrcRC, DefRC, SrcSubReg) != nullptr;
535   // Plain copy.
536   return TRI.getCommonSubClass(DefRC, SrcRC) != nullptr;
537 }
538
539 /// \brief Try to find the next source that share the same register file
540 /// for the value defined by \p Reg and \p SubReg.
541 /// When true is returned, \p Reg and \p SubReg are updated with the
542 /// register number and sub-register index of the new source.
543 /// \return False if no alternative sources are available. True otherwise.
544 bool PeepholeOptimizer::findNextSource(unsigned &Reg, unsigned &SubReg) {
545   // Do not try to find a new source for a physical register.
546   // So far we do not have any motivating example for doing that.
547   // Thus, instead of maintaining untested code, we will revisit that if
548   // that changes at some point.
549   if (TargetRegisterInfo::isPhysicalRegister(Reg))
550     return false;
551
552   const TargetRegisterClass *DefRC = MRI->getRegClass(Reg);
553   unsigned DefSubReg = SubReg;
554
555   unsigned Src;
556   unsigned SrcSubReg;
557   bool ShouldRewrite = false;
558
559   // Follow the chain of copies until we reach the top of the use-def chain
560   // or find a more suitable source.
561   ValueTracker ValTracker(Reg, DefSubReg, *MRI, !DisableAdvCopyOpt, TII);
562   do {
563     unsigned CopySrcReg, CopySrcSubReg;
564     if (!ValTracker.getNextSource(CopySrcReg, CopySrcSubReg))
565       break;
566     Src = CopySrcReg;
567     SrcSubReg = CopySrcSubReg;
568
569     // Do not extend the live-ranges of physical registers as they add
570     // constraints to the register allocator.
571     // Moreover, if we want to extend the live-range of a physical register,
572     // unlike SSA virtual register, we will have to check that they are not
573     // redefine before the related use.
574     if (TargetRegisterInfo::isPhysicalRegister(Src))
575       break;
576
577     const TargetRegisterClass *SrcRC = MRI->getRegClass(Src);
578
579     // If this source does not incur a cross register bank copy, use it.
580     ShouldRewrite = shareSameRegisterFile(*TRI, DefRC, DefSubReg, SrcRC,
581                                           SrcSubReg);
582   } while (!ShouldRewrite);
583
584   // If we did not find a more suitable source, there is nothing to optimize.
585   if (!ShouldRewrite || Src == Reg)
586     return false;
587
588   Reg = Src;
589   SubReg = SrcSubReg;
590   return true;
591 }
592
593 namespace {
594 /// \brief Helper class to rewrite the arguments of a copy-like instruction.
595 class CopyRewriter {
596 protected:
597   /// The copy-like instruction.
598   MachineInstr &CopyLike;
599   /// The index of the source being rewritten.
600   unsigned CurrentSrcIdx;
601
602 public:
603   CopyRewriter(MachineInstr &MI) : CopyLike(MI), CurrentSrcIdx(0) {}
604
605   virtual ~CopyRewriter() {}
606
607   /// \brief Get the next rewritable source (SrcReg, SrcSubReg) and
608   /// the related value that it affects (TrackReg, TrackSubReg).
609   /// A source is considered rewritable if its register class and the
610   /// register class of the related TrackReg may not be register
611   /// coalescer friendly. In other words, given a copy-like instruction
612   /// not all the arguments may be returned at rewritable source, since
613   /// some arguments are none to be register coalescer friendly.
614   ///
615   /// Each call of this method moves the current source to the next
616   /// rewritable source.
617   /// For instance, let CopyLike be the instruction to rewrite.
618   /// CopyLike has one definition and one source:
619   /// dst.dstSubIdx = CopyLike src.srcSubIdx.
620   ///
621   /// The first call will give the first rewritable source, i.e.,
622   /// the only source this instruction has:
623   /// (SrcReg, SrcSubReg) = (src, srcSubIdx).
624   /// This source defines the whole definition, i.e.,
625   /// (TrackReg, TrackSubReg) = (dst, dstSubIdx).
626   ///
627   /// The second and subsequent calls will return false, has there is only one
628   /// rewritable source.
629   ///
630   /// \return True if a rewritable source has been found, false otherwise.
631   /// The output arguments are valid if and only if true is returned.
632   virtual bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
633                                        unsigned &TrackReg,
634                                        unsigned &TrackSubReg) {
635     // If CurrentSrcIdx == 1, this means this function has already been
636     // called once. CopyLike has one defintiion and one argument, thus,
637     // there is nothing else to rewrite.
638     if (!CopyLike.isCopy() || CurrentSrcIdx == 1)
639       return false;
640     // This is the first call to getNextRewritableSource.
641     // Move the CurrentSrcIdx to remember that we made that call.
642     CurrentSrcIdx = 1;
643     // The rewritable source is the argument.
644     const MachineOperand &MOSrc = CopyLike.getOperand(1);
645     SrcReg = MOSrc.getReg();
646     SrcSubReg = MOSrc.getSubReg();
647     // What we track are the alternative sources of the definition.
648     const MachineOperand &MODef = CopyLike.getOperand(0);
649     TrackReg = MODef.getReg();
650     TrackSubReg = MODef.getSubReg();
651     return true;
652   }
653
654   /// \brief Rewrite the current source with \p NewReg and \p NewSubReg
655   /// if possible.
656   /// \return True if the rewritting was possible, false otherwise.
657   virtual bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) {
658     if (!CopyLike.isCopy() || CurrentSrcIdx != 1)
659       return false;
660     MachineOperand &MOSrc = CopyLike.getOperand(CurrentSrcIdx);
661     MOSrc.setReg(NewReg);
662     MOSrc.setSubReg(NewSubReg);
663     return true;
664   }
665 };
666
667 /// \brief Specialized rewriter for INSERT_SUBREG instruction.
668 class InsertSubregRewriter : public CopyRewriter {
669 public:
670   InsertSubregRewriter(MachineInstr &MI) : CopyRewriter(MI) {
671     assert(MI.isInsertSubreg() && "Invalid instruction");
672   }
673
674   /// \brief See CopyRewriter::getNextRewritableSource.
675   /// Here CopyLike has the following form:
676   /// dst = INSERT_SUBREG Src1, Src2.src2SubIdx, subIdx.
677   /// Src1 has the same register class has dst, hence, there is
678   /// nothing to rewrite.
679   /// Src2.src2SubIdx, may not be register coalescer friendly.
680   /// Therefore, the first call to this method returns:
681   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
682   /// (TrackReg, TrackSubReg) = (dst, subIdx).
683   ///
684   /// Subsequence calls will return false.
685   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
686                                unsigned &TrackReg,
687                                unsigned &TrackSubReg) override {
688     // If we already get the only source we can rewrite, return false.
689     if (CurrentSrcIdx == 2)
690       return false;
691     // We are looking at v2 = INSERT_SUBREG v0, v1, sub0.
692     CurrentSrcIdx = 2;
693     const MachineOperand &MOInsertedReg = CopyLike.getOperand(2);
694     SrcReg = MOInsertedReg.getReg();
695     SrcSubReg = MOInsertedReg.getSubReg();
696     const MachineOperand &MODef = CopyLike.getOperand(0);
697
698     // We want to track something that is compatible with the
699     // partial definition.
700     TrackReg = MODef.getReg();
701     if (MODef.getSubReg())
702       // Bails if we have to compose sub-register indices.
703       return false;
704     TrackSubReg = (unsigned)CopyLike.getOperand(3).getImm();
705     return true;
706   }
707   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
708     if (CurrentSrcIdx != 2)
709       return false;
710     // We are rewriting the inserted reg.
711     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
712     MO.setReg(NewReg);
713     MO.setSubReg(NewSubReg);
714     return true;
715   }
716 };
717
718 /// \brief Specialized rewriter for EXTRACT_SUBREG instruction.
719 class ExtractSubregRewriter : public CopyRewriter {
720   const TargetInstrInfo &TII;
721
722 public:
723   ExtractSubregRewriter(MachineInstr &MI, const TargetInstrInfo &TII)
724       : CopyRewriter(MI), TII(TII) {
725     assert(MI.isExtractSubreg() && "Invalid instruction");
726   }
727
728   /// \brief See CopyRewriter::getNextRewritableSource.
729   /// Here CopyLike has the following form:
730   /// dst.dstSubIdx = EXTRACT_SUBREG Src, subIdx.
731   /// There is only one rewritable source: Src.subIdx,
732   /// which defines dst.dstSubIdx.
733   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
734                                unsigned &TrackReg,
735                                unsigned &TrackSubReg) override {
736     // If we already get the only source we can rewrite, return false.
737     if (CurrentSrcIdx == 1)
738       return false;
739     // We are looking at v1 = EXTRACT_SUBREG v0, sub0.
740     CurrentSrcIdx = 1;
741     const MachineOperand &MOExtractedReg = CopyLike.getOperand(1);
742     SrcReg = MOExtractedReg.getReg();
743     // If we have to compose sub-register indices, bails out.
744     if (MOExtractedReg.getSubReg())
745       return false;
746
747     SrcSubReg = CopyLike.getOperand(2).getImm();
748
749     // We want to track something that is compatible with the definition.
750     const MachineOperand &MODef = CopyLike.getOperand(0);
751     TrackReg = MODef.getReg();
752     TrackSubReg = MODef.getSubReg();
753     return true;
754   }
755
756   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
757     // The only source we can rewrite is the input register.
758     if (CurrentSrcIdx != 1)
759       return false;
760
761     CopyLike.getOperand(CurrentSrcIdx).setReg(NewReg);
762
763     // If we find a source that does not require to extract something,
764     // rewrite the operation with a copy.
765     if (!NewSubReg) {
766       // Move the current index to an invalid position.
767       // We do not want another call to this method to be able
768       // to do any change.
769       CurrentSrcIdx = -1;
770       // Rewrite the operation as a COPY.
771       // Get rid of the sub-register index.
772       CopyLike.RemoveOperand(2);
773       // Morph the operation into a COPY.
774       CopyLike.setDesc(TII.get(TargetOpcode::COPY));
775       return true;
776     }
777     CopyLike.getOperand(CurrentSrcIdx + 1).setImm(NewSubReg);
778     return true;
779   }
780 };
781
782 /// \brief Specialized rewriter for REG_SEQUENCE instruction.
783 class RegSequenceRewriter : public CopyRewriter {
784 public:
785   RegSequenceRewriter(MachineInstr &MI) : CopyRewriter(MI) {
786     assert(MI.isRegSequence() && "Invalid instruction");
787   }
788
789   /// \brief See CopyRewriter::getNextRewritableSource.
790   /// Here CopyLike has the following form:
791   /// dst = REG_SEQUENCE Src1.src1SubIdx, subIdx1, Src2.src2SubIdx, subIdx2.
792   /// Each call will return a different source, walking all the available
793   /// source.
794   ///
795   /// The first call returns:
796   /// (SrcReg, SrcSubReg) = (Src1, src1SubIdx).
797   /// (TrackReg, TrackSubReg) = (dst, subIdx1).
798   ///
799   /// The second call returns:
800   /// (SrcReg, SrcSubReg) = (Src2, src2SubIdx).
801   /// (TrackReg, TrackSubReg) = (dst, subIdx2).
802   ///
803   /// And so on, until all the sources have been traversed, then
804   /// it returns false.
805   bool getNextRewritableSource(unsigned &SrcReg, unsigned &SrcSubReg,
806                                unsigned &TrackReg,
807                                unsigned &TrackSubReg) override {
808     // We are looking at v0 = REG_SEQUENCE v1, sub1, v2, sub2, etc.
809
810     // If this is the first call, move to the first argument.
811     if (CurrentSrcIdx == 0) {
812       CurrentSrcIdx = 1;
813     } else {
814       // Otherwise, move to the next argument and check that it is valid.
815       CurrentSrcIdx += 2;
816       if (CurrentSrcIdx >= CopyLike.getNumOperands())
817         return false;
818     }
819     const MachineOperand &MOInsertedReg = CopyLike.getOperand(CurrentSrcIdx);
820     SrcReg = MOInsertedReg.getReg();
821     // If we have to compose sub-register indices, bails out.
822     if ((SrcSubReg = MOInsertedReg.getSubReg()))
823       return false;
824
825     // We want to track something that is compatible with the related
826     // partial definition.
827     TrackSubReg = CopyLike.getOperand(CurrentSrcIdx + 1).getImm();
828
829     const MachineOperand &MODef = CopyLike.getOperand(0);
830     TrackReg = MODef.getReg();
831     // If we have to compose sub-registers, bails.
832     return MODef.getSubReg() == 0;
833   }
834
835   bool RewriteCurrentSource(unsigned NewReg, unsigned NewSubReg) override {
836     // We cannot rewrite out of bound operands.
837     // Moreover, rewritable sources are at odd positions.
838     if ((CurrentSrcIdx & 1) != 1 || CurrentSrcIdx > CopyLike.getNumOperands())
839       return false;
840
841     MachineOperand &MO = CopyLike.getOperand(CurrentSrcIdx);
842     MO.setReg(NewReg);
843     MO.setSubReg(NewSubReg);
844     return true;
845   }
846 };
847 } // End namespace.
848
849 /// \brief Get the appropriated CopyRewriter for \p MI.
850 /// \return A pointer to a dynamically allocated CopyRewriter or nullptr
851 /// if no rewriter works for \p MI.
852 static CopyRewriter *getCopyRewriter(MachineInstr &MI,
853                                      const TargetInstrInfo &TII) {
854   switch (MI.getOpcode()) {
855   default:
856     return nullptr;
857   case TargetOpcode::COPY:
858     return new CopyRewriter(MI);
859   case TargetOpcode::INSERT_SUBREG:
860     return new InsertSubregRewriter(MI);
861   case TargetOpcode::EXTRACT_SUBREG:
862     return new ExtractSubregRewriter(MI, TII);
863   case TargetOpcode::REG_SEQUENCE:
864     return new RegSequenceRewriter(MI);
865   }
866   llvm_unreachable(nullptr);
867 }
868
869 /// \brief Optimize generic copy instructions to avoid cross
870 /// register bank copy. The optimization looks through a chain of
871 /// copies and tries to find a source that has a compatible register
872 /// class.
873 /// Two register classes are considered to be compatible if they share
874 /// the same register bank.
875 /// New copies issued by this optimization are register allocator
876 /// friendly. This optimization does not remove any copy as it may
877 /// overconstraint the register allocator, but replaces some operands
878 /// when possible.
879 /// \pre isCoalescableCopy(*MI) is true.
880 /// \return True, when \p MI has been rewritten. False otherwise.
881 bool PeepholeOptimizer::optimizeCoalescableCopy(MachineInstr *MI) {
882   assert(MI && isCoalescableCopy(*MI) && "Invalid argument");
883   assert(MI->getDesc().getNumDefs() == 1 &&
884          "Coalescer can understand multiple defs?!");
885   const MachineOperand &MODef = MI->getOperand(0);
886   // Do not rewrite physical definitions.
887   if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
888     return false;
889
890   bool Changed = false;
891   // Get the right rewriter for the current copy.
892   std::unique_ptr<CopyRewriter> CpyRewriter(getCopyRewriter(*MI, *TII));
893   // If none exists, bails out.
894   if (!CpyRewriter)
895     return false;
896   // Rewrite each rewritable source.
897   unsigned SrcReg, SrcSubReg, TrackReg, TrackSubReg;
898   while (CpyRewriter->getNextRewritableSource(SrcReg, SrcSubReg, TrackReg,
899                                               TrackSubReg)) {
900     unsigned NewSrc = TrackReg;
901     unsigned NewSubReg = TrackSubReg;
902     // Try to find a more suitable source.
903     // If we failed to do so, or get the actual source,
904     // move to the next source.
905     if (!findNextSource(NewSrc, NewSubReg) || SrcReg == NewSrc)
906       continue;
907     // Rewrite source.
908     if (CpyRewriter->RewriteCurrentSource(NewSrc, NewSubReg)) {
909       // We may have extended the live-range of NewSrc, account for that.
910       MRI->clearKillFlags(NewSrc);
911       Changed = true;
912     }
913   }
914   // TODO: We could have a clean-up method to tidy the instruction.
915   // E.g., v0 = INSERT_SUBREG v1, v1.sub0, sub0
916   // => v0 = COPY v1
917   // Currently we haven't seen motivating example for that and we
918   // want to avoid untested code.
919   NumRewrittenCopies += Changed;
920   return Changed;
921 }
922
923 /// \brief Optimize copy-like instructions to create
924 /// register coalescer friendly instruction.
925 /// The optimization tries to kill-off the \p MI by looking
926 /// through a chain of copies to find a source that has a compatible
927 /// register class.
928 /// If such a source is found, it replace \p MI by a generic COPY
929 /// operation.
930 /// \pre isUncoalescableCopy(*MI) is true.
931 /// \return True, when \p MI has been optimized. In that case, \p MI has
932 /// been removed from its parent.
933 /// All COPY instructions created, are inserted in \p LocalMIs.
934 bool PeepholeOptimizer::optimizeUncoalescableCopy(
935     MachineInstr *MI, SmallPtrSetImpl<MachineInstr *> &LocalMIs) {
936   assert(MI && isUncoalescableCopy(*MI) && "Invalid argument");
937
938   // Check if we can rewrite all the values defined by this instruction.
939   SmallVector<
940       std::pair<TargetInstrInfo::RegSubRegPair, TargetInstrInfo::RegSubRegPair>,
941       4> RewritePairs;
942   for (const MachineOperand &MODef : MI->defs()) {
943     if (MODef.isDead())
944       // We can ignore those.
945       continue;
946
947     // If a physical register is here, this is probably for a good reason.
948     // Do not rewrite that.
949     if (TargetRegisterInfo::isPhysicalRegister(MODef.getReg()))
950       return false;
951
952     // If we do not know how to rewrite this definition, there is no point
953     // in trying to kill this instruction.
954     TargetInstrInfo::RegSubRegPair Def(MODef.getReg(), MODef.getSubReg());
955     TargetInstrInfo::RegSubRegPair Src = Def;
956     if (!findNextSource(Src.Reg, Src.SubReg))
957       return false;
958     RewritePairs.push_back(std::make_pair(Def, Src));
959   }
960   // The change is possible for all defs, do it.
961   for (const auto &PairDefSrc : RewritePairs) {
962     const auto &Def = PairDefSrc.first;
963     const auto &Src = PairDefSrc.second;
964     // Rewrite the "copy" in a way the register coalescer understands.
965     assert(!TargetRegisterInfo::isPhysicalRegister(Def.Reg) &&
966            "We do not rewrite physical registers");
967     const TargetRegisterClass *DefRC = MRI->getRegClass(Def.Reg);
968     unsigned NewVR = MRI->createVirtualRegister(DefRC);
969     MachineInstr *NewCopy = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(),
970                                     TII->get(TargetOpcode::COPY),
971                                     NewVR).addReg(Src.Reg, 0, Src.SubReg);
972     NewCopy->getOperand(0).setSubReg(Def.SubReg);
973     if (Def.SubReg)
974       NewCopy->getOperand(0).setIsUndef();
975     LocalMIs.insert(NewCopy);
976     MRI->replaceRegWith(Def.Reg, NewVR);
977     MRI->clearKillFlags(NewVR);
978     // We extended the lifetime of Src.
979     // Clear the kill flags to account for that.
980     MRI->clearKillFlags(Src.Reg);
981   }
982   // MI is now dead.
983   MI->eraseFromParent();
984   ++NumUncoalescableCopies;
985   return true;
986 }
987
988 /// isLoadFoldable - Check whether MI is a candidate for folding into a later
989 /// instruction. We only fold loads to virtual registers and the virtual
990 /// register defined has a single use.
991 bool PeepholeOptimizer::isLoadFoldable(
992                               MachineInstr *MI,
993                               SmallSet<unsigned, 16> &FoldAsLoadDefCandidates) {
994   if (!MI->canFoldAsLoad() || !MI->mayLoad())
995     return false;
996   const MCInstrDesc &MCID = MI->getDesc();
997   if (MCID.getNumDefs() != 1)
998     return false;
999
1000   unsigned Reg = MI->getOperand(0).getReg();
1001   // To reduce compilation time, we check MRI->hasOneNonDBGUse when inserting
1002   // loads. It should be checked when processing uses of the load, since
1003   // uses can be removed during peephole.
1004   if (!MI->getOperand(0).getSubReg() &&
1005       TargetRegisterInfo::isVirtualRegister(Reg) &&
1006       MRI->hasOneNonDBGUse(Reg)) {
1007     FoldAsLoadDefCandidates.insert(Reg);
1008     return true;
1009   }
1010   return false;
1011 }
1012
1013 bool PeepholeOptimizer::isMoveImmediate(MachineInstr *MI,
1014                                         SmallSet<unsigned, 4> &ImmDefRegs,
1015                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
1016   const MCInstrDesc &MCID = MI->getDesc();
1017   if (!MI->isMoveImmediate())
1018     return false;
1019   if (MCID.getNumDefs() != 1)
1020     return false;
1021   unsigned Reg = MI->getOperand(0).getReg();
1022   if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1023     ImmDefMIs.insert(std::make_pair(Reg, MI));
1024     ImmDefRegs.insert(Reg);
1025     return true;
1026   }
1027
1028   return false;
1029 }
1030
1031 /// foldImmediate - Try folding register operands that are defined by move
1032 /// immediate instructions, i.e. a trivial constant folding optimization, if
1033 /// and only if the def and use are in the same BB.
1034 bool PeepholeOptimizer::foldImmediate(MachineInstr *MI, MachineBasicBlock *MBB,
1035                                       SmallSet<unsigned, 4> &ImmDefRegs,
1036                                  DenseMap<unsigned, MachineInstr*> &ImmDefMIs) {
1037   for (unsigned i = 0, e = MI->getDesc().getNumOperands(); i != e; ++i) {
1038     MachineOperand &MO = MI->getOperand(i);
1039     if (!MO.isReg() || MO.isDef())
1040       continue;
1041     unsigned Reg = MO.getReg();
1042     if (!TargetRegisterInfo::isVirtualRegister(Reg))
1043       continue;
1044     if (ImmDefRegs.count(Reg) == 0)
1045       continue;
1046     DenseMap<unsigned, MachineInstr*>::iterator II = ImmDefMIs.find(Reg);
1047     assert(II != ImmDefMIs.end());
1048     if (TII->FoldImmediate(MI, II->second, Reg, MRI)) {
1049       ++NumImmFold;
1050       return true;
1051     }
1052   }
1053   return false;
1054 }
1055
1056 bool PeepholeOptimizer::runOnMachineFunction(MachineFunction &MF) {
1057   if (skipOptnoneFunction(*MF.getFunction()))
1058     return false;
1059
1060   DEBUG(dbgs() << "********** PEEPHOLE OPTIMIZER **********\n");
1061   DEBUG(dbgs() << "********** Function: " << MF.getName() << '\n');
1062
1063   if (DisablePeephole)
1064     return false;
1065
1066   TII = MF.getSubtarget().getInstrInfo();
1067   TRI = MF.getSubtarget().getRegisterInfo();
1068   MRI = &MF.getRegInfo();
1069   DT  = Aggressive ? &getAnalysis<MachineDominatorTree>() : nullptr;
1070
1071   bool Changed = false;
1072
1073   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I) {
1074     MachineBasicBlock *MBB = &*I;
1075
1076     bool SeenMoveImm = false;
1077
1078     // During this forward scan, at some point it needs to answer the question
1079     // "given a pointer to an MI in the current BB, is it located before or
1080     // after the current instruction".
1081     // To perform this, the following set keeps track of the MIs already seen
1082     // during the scan, if a MI is not in the set, it is assumed to be located
1083     // after. Newly created MIs have to be inserted in the set as well.
1084     SmallPtrSet<MachineInstr*, 16> LocalMIs;
1085     SmallSet<unsigned, 4> ImmDefRegs;
1086     DenseMap<unsigned, MachineInstr*> ImmDefMIs;
1087     SmallSet<unsigned, 16> FoldAsLoadDefCandidates;
1088
1089     for (MachineBasicBlock::iterator
1090            MII = I->begin(), MIE = I->end(); MII != MIE; ) {
1091       MachineInstr *MI = &*MII;
1092       // We may be erasing MI below, increment MII now.
1093       ++MII;
1094       LocalMIs.insert(MI);
1095
1096       // Skip debug values. They should not affect this peephole optimization.
1097       if (MI->isDebugValue())
1098           continue;
1099
1100       // If there exists an instruction which belongs to the following
1101       // categories, we will discard the load candidates.
1102       if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() ||
1103           MI->isKill() || MI->isInlineAsm() ||
1104           MI->hasUnmodeledSideEffects()) {
1105         FoldAsLoadDefCandidates.clear();
1106         continue;
1107       }
1108       if (MI->mayStore() || MI->isCall())
1109         FoldAsLoadDefCandidates.clear();
1110
1111       if ((isUncoalescableCopy(*MI) &&
1112            optimizeUncoalescableCopy(MI, LocalMIs)) ||
1113           (MI->isCompare() && optimizeCmpInstr(MI, MBB)) ||
1114           (MI->isSelect() && optimizeSelect(MI, LocalMIs))) {
1115         // MI is deleted.
1116         LocalMIs.erase(MI);
1117         Changed = true;
1118         continue;
1119       }
1120
1121       if (MI->isConditionalBranch() && optimizeCondBranch(MI)) {
1122         Changed = true;
1123         continue;
1124       }
1125
1126       if (isCoalescableCopy(*MI) && optimizeCoalescableCopy(MI)) {
1127         // MI is just rewritten.
1128         Changed = true;
1129         continue;
1130       }
1131
1132       if (isMoveImmediate(MI, ImmDefRegs, ImmDefMIs)) {
1133         SeenMoveImm = true;
1134       } else {
1135         Changed |= optimizeExtInstr(MI, MBB, LocalMIs);
1136         // optimizeExtInstr might have created new instructions after MI
1137         // and before the already incremented MII. Adjust MII so that the
1138         // next iteration sees the new instructions.
1139         MII = MI;
1140         ++MII;
1141         if (SeenMoveImm)
1142           Changed |= foldImmediate(MI, MBB, ImmDefRegs, ImmDefMIs);
1143       }
1144
1145       // Check whether MI is a load candidate for folding into a later
1146       // instruction. If MI is not a candidate, check whether we can fold an
1147       // earlier load into MI.
1148       if (!isLoadFoldable(MI, FoldAsLoadDefCandidates) &&
1149           !FoldAsLoadDefCandidates.empty()) {
1150         const MCInstrDesc &MIDesc = MI->getDesc();
1151         for (unsigned i = MIDesc.getNumDefs(); i != MIDesc.getNumOperands();
1152              ++i) {
1153           const MachineOperand &MOp = MI->getOperand(i);
1154           if (!MOp.isReg())
1155             continue;
1156           unsigned FoldAsLoadDefReg = MOp.getReg();
1157           if (FoldAsLoadDefCandidates.count(FoldAsLoadDefReg)) {
1158             // We need to fold load after optimizeCmpInstr, since
1159             // optimizeCmpInstr can enable folding by converting SUB to CMP.
1160             // Save FoldAsLoadDefReg because optimizeLoadInstr() resets it and
1161             // we need it for markUsesInDebugValueAsUndef().
1162             unsigned FoldedReg = FoldAsLoadDefReg;
1163             MachineInstr *DefMI = nullptr;
1164             MachineInstr *FoldMI = TII->optimizeLoadInstr(MI, MRI,
1165                                                           FoldAsLoadDefReg,
1166                                                           DefMI);
1167             if (FoldMI) {
1168               // Update LocalMIs since we replaced MI with FoldMI and deleted
1169               // DefMI.
1170               DEBUG(dbgs() << "Replacing: " << *MI);
1171               DEBUG(dbgs() << "     With: " << *FoldMI);
1172               LocalMIs.erase(MI);
1173               LocalMIs.erase(DefMI);
1174               LocalMIs.insert(FoldMI);
1175               MI->eraseFromParent();
1176               DefMI->eraseFromParent();
1177               MRI->markUsesInDebugValueAsUndef(FoldedReg);
1178               FoldAsLoadDefCandidates.erase(FoldedReg);
1179               ++NumLoadFold;
1180               // MI is replaced with FoldMI.
1181               Changed = true;
1182               break;
1183             }
1184           }
1185         }
1186       }
1187     }
1188   }
1189
1190   return Changed;
1191 }
1192
1193 bool ValueTracker::getNextSourceFromCopy(unsigned &SrcReg,
1194                                          unsigned &SrcSubReg) {
1195   assert(Def->isCopy() && "Invalid definition");
1196   // Copy instruction are supposed to be: Def = Src.
1197   // If someone breaks this assumption, bad things will happen everywhere.
1198   assert(Def->getNumOperands() == 2 && "Invalid number of operands");
1199
1200   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1201     // If we look for a different subreg, it means we want a subreg of src.
1202     // Bails as we do not support composing subreg yet.
1203     return false;
1204   // Otherwise, we want the whole source.
1205   const MachineOperand &Src = Def->getOperand(1);
1206   SrcReg = Src.getReg();
1207   SrcSubReg = Src.getSubReg();
1208   return true;
1209 }
1210
1211 bool ValueTracker::getNextSourceFromBitcast(unsigned &SrcReg,
1212                                             unsigned &SrcSubReg) {
1213   assert(Def->isBitcast() && "Invalid definition");
1214
1215   // Bail if there are effects that a plain copy will not expose.
1216   if (Def->hasUnmodeledSideEffects())
1217     return false;
1218
1219   // Bitcasts with more than one def are not supported.
1220   if (Def->getDesc().getNumDefs() != 1)
1221     return false;
1222   if (Def->getOperand(DefIdx).getSubReg() != DefSubReg)
1223     // If we look for a different subreg, it means we want a subreg of the src.
1224     // Bails as we do not support composing subreg yet.
1225     return false;
1226
1227   unsigned SrcIdx = Def->getNumOperands();
1228   for (unsigned OpIdx = DefIdx + 1, EndOpIdx = SrcIdx; OpIdx != EndOpIdx;
1229        ++OpIdx) {
1230     const MachineOperand &MO = Def->getOperand(OpIdx);
1231     if (!MO.isReg() || !MO.getReg())
1232       continue;
1233     assert(!MO.isDef() && "We should have skipped all the definitions by now");
1234     if (SrcIdx != EndOpIdx)
1235       // Multiple sources?
1236       return false;
1237     SrcIdx = OpIdx;
1238   }
1239   const MachineOperand &Src = Def->getOperand(SrcIdx);
1240   SrcReg = Src.getReg();
1241   SrcSubReg = Src.getSubReg();
1242   return true;
1243 }
1244
1245 bool ValueTracker::getNextSourceFromRegSequence(unsigned &SrcReg,
1246                                                 unsigned &SrcSubReg) {
1247   assert((Def->isRegSequence() || Def->isRegSequenceLike()) &&
1248          "Invalid definition");
1249
1250   if (Def->getOperand(DefIdx).getSubReg())
1251     // If we are composing subreg, bails out.
1252     // The case we are checking is Def.<subreg> = REG_SEQUENCE.
1253     // This should almost never happen as the SSA property is tracked at
1254     // the register level (as opposed to the subreg level).
1255     // I.e.,
1256     // Def.sub0 =
1257     // Def.sub1 =
1258     // is a valid SSA representation for Def.sub0 and Def.sub1, but not for
1259     // Def. Thus, it must not be generated.
1260     // However, some code could theoretically generates a single
1261     // Def.sub0 (i.e, not defining the other subregs) and we would
1262     // have this case.
1263     // If we can ascertain (or force) that this never happens, we could
1264     // turn that into an assertion.
1265     return false;
1266
1267   if (!TII)
1268     // We could handle the REG_SEQUENCE here, but we do not want to
1269     // duplicate the code from the generic TII.
1270     return false;
1271
1272   SmallVector<TargetInstrInfo::RegSubRegPairAndIdx, 8> RegSeqInputRegs;
1273   if (!TII->getRegSequenceInputs(*Def, DefIdx, RegSeqInputRegs))
1274     return false;
1275
1276   // We are looking at:
1277   // Def = REG_SEQUENCE v0, sub0, v1, sub1, ...
1278   // Check if one of the operand defines the subreg we are interested in.
1279   for (auto &RegSeqInput : RegSeqInputRegs) {
1280     if (RegSeqInput.SubIdx == DefSubReg) {
1281       if (RegSeqInput.SubReg)
1282         // Bails if we have to compose sub registers.
1283         return false;
1284
1285       SrcReg = RegSeqInput.Reg;
1286       SrcSubReg = RegSeqInput.SubReg;
1287       return true;
1288     }
1289   }
1290
1291   // If the subreg we are tracking is super-defined by another subreg,
1292   // we could follow this value. However, this would require to compose
1293   // the subreg and we do not do that for now.
1294   return false;
1295 }
1296
1297 bool ValueTracker::getNextSourceFromInsertSubreg(unsigned &SrcReg,
1298                                                  unsigned &SrcSubReg) {
1299   assert((Def->isInsertSubreg() || Def->isInsertSubregLike()) &&
1300          "Invalid definition");
1301
1302   if (Def->getOperand(DefIdx).getSubReg())
1303     // If we are composing subreg, bails out.
1304     // Same remark as getNextSourceFromRegSequence.
1305     // I.e., this may be turned into an assert.
1306     return false;
1307
1308   if (!TII)
1309     // We could handle the REG_SEQUENCE here, but we do not want to
1310     // duplicate the code from the generic TII.
1311     return false;
1312
1313   TargetInstrInfo::RegSubRegPair BaseReg;
1314   TargetInstrInfo::RegSubRegPairAndIdx InsertedReg;
1315   if (!TII->getInsertSubregInputs(*Def, DefIdx, BaseReg, InsertedReg))
1316     return false;
1317
1318   // We are looking at:
1319   // Def = INSERT_SUBREG v0, v1, sub1
1320   // There are two cases:
1321   // 1. DefSubReg == sub1, get v1.
1322   // 2. DefSubReg != sub1, the value may be available through v0.
1323
1324   // #1 Check if the inserted register matches the required sub index.
1325   if (InsertedReg.SubIdx == DefSubReg) {
1326     SrcReg = InsertedReg.Reg;
1327     SrcSubReg = InsertedReg.SubReg;
1328     return true;
1329   }
1330   // #2 Otherwise, if the sub register we are looking for is not partial
1331   // defined by the inserted element, we can look through the main
1332   // register (v0).
1333   const MachineOperand &MODef = Def->getOperand(DefIdx);
1334   // If the result register (Def) and the base register (v0) do not
1335   // have the same register class or if we have to compose
1336   // subregisters, bails out.
1337   if (MRI.getRegClass(MODef.getReg()) != MRI.getRegClass(BaseReg.Reg) ||
1338       BaseReg.SubReg)
1339     return false;
1340
1341   // Get the TRI and check if the inserted sub-register overlaps with the
1342   // sub-register we are tracking.
1343   const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
1344   if (!TRI ||
1345       (TRI->getSubRegIndexLaneMask(DefSubReg) &
1346        TRI->getSubRegIndexLaneMask(InsertedReg.SubIdx)) != 0)
1347     return false;
1348   // At this point, the value is available in v0 via the same subreg
1349   // we used for Def.
1350   SrcReg = BaseReg.Reg;
1351   SrcSubReg = DefSubReg;
1352   return true;
1353 }
1354
1355 bool ValueTracker::getNextSourceFromExtractSubreg(unsigned &SrcReg,
1356                                                   unsigned &SrcSubReg) {
1357   assert((Def->isExtractSubreg() ||
1358           Def->isExtractSubregLike()) && "Invalid definition");
1359   // We are looking at:
1360   // Def = EXTRACT_SUBREG v0, sub0
1361
1362   // Bails if we have to compose sub registers.
1363   // Indeed, if DefSubReg != 0, we would have to compose it with sub0.
1364   if (DefSubReg)
1365     return false;
1366
1367   if (!TII)
1368     // We could handle the EXTRACT_SUBREG here, but we do not want to
1369     // duplicate the code from the generic TII.
1370     return false;
1371
1372   TargetInstrInfo::RegSubRegPairAndIdx ExtractSubregInputReg;
1373   if (!TII->getExtractSubregInputs(*Def, DefIdx, ExtractSubregInputReg))
1374     return false;
1375
1376   // Bails if we have to compose sub registers.
1377   // Likewise, if v0.subreg != 0, we would have to compose v0.subreg with sub0.
1378   if (ExtractSubregInputReg.SubReg)
1379     return false;
1380   // Otherwise, the value is available in the v0.sub0.
1381   SrcReg = ExtractSubregInputReg.Reg;
1382   SrcSubReg = ExtractSubregInputReg.SubIdx;
1383   return true;
1384 }
1385
1386 bool ValueTracker::getNextSourceFromSubregToReg(unsigned &SrcReg,
1387                                                 unsigned &SrcSubReg) {
1388   assert(Def->isSubregToReg() && "Invalid definition");
1389   // We are looking at:
1390   // Def = SUBREG_TO_REG Imm, v0, sub0
1391
1392   // Bails if we have to compose sub registers.
1393   // If DefSubReg != sub0, we would have to check that all the bits
1394   // we track are included in sub0 and if yes, we would have to
1395   // determine the right subreg in v0.
1396   if (DefSubReg != Def->getOperand(3).getImm())
1397     return false;
1398   // Bails if we have to compose sub registers.
1399   // Likewise, if v0.subreg != 0, we would have to compose it with sub0.
1400   if (Def->getOperand(2).getSubReg())
1401     return false;
1402
1403   SrcReg = Def->getOperand(2).getReg();
1404   SrcSubReg = Def->getOperand(3).getImm();
1405   return true;
1406 }
1407
1408 bool ValueTracker::getNextSourceImpl(unsigned &SrcReg, unsigned &SrcSubReg) {
1409   assert(Def && "This method needs a valid definition");
1410
1411   assert(
1412       (DefIdx < Def->getDesc().getNumDefs() || Def->getDesc().isVariadic()) &&
1413       Def->getOperand(DefIdx).isDef() && "Invalid DefIdx");
1414   if (Def->isCopy())
1415     return getNextSourceFromCopy(SrcReg, SrcSubReg);
1416   if (Def->isBitcast())
1417     return getNextSourceFromBitcast(SrcReg, SrcSubReg);
1418   // All the remaining cases involve "complex" instructions.
1419   // Bails if we did not ask for the advanced tracking.
1420   if (!UseAdvancedTracking)
1421     return false;
1422   if (Def->isRegSequence() || Def->isRegSequenceLike())
1423     return getNextSourceFromRegSequence(SrcReg, SrcSubReg);
1424   if (Def->isInsertSubreg() || Def->isInsertSubregLike())
1425     return getNextSourceFromInsertSubreg(SrcReg, SrcSubReg);
1426   if (Def->isExtractSubreg() || Def->isExtractSubregLike())
1427     return getNextSourceFromExtractSubreg(SrcReg, SrcSubReg);
1428   if (Def->isSubregToReg())
1429     return getNextSourceFromSubregToReg(SrcReg, SrcSubReg);
1430   return false;
1431 }
1432
1433 const MachineInstr *ValueTracker::getNextSource(unsigned &SrcReg,
1434                                                 unsigned &SrcSubReg) {
1435   // If we reach a point where we cannot move up in the use-def chain,
1436   // there is nothing we can get.
1437   if (!Def)
1438     return nullptr;
1439
1440   const MachineInstr *PrevDef = nullptr;
1441   // Try to find the next source.
1442   if (getNextSourceImpl(SrcReg, SrcSubReg)) {
1443     // Update definition, definition index, and subregister for the
1444     // next call of getNextSource.
1445     // Update the current register.
1446     Reg = SrcReg;
1447     // Update the return value before moving up in the use-def chain.
1448     PrevDef = Def;
1449     // If we can still move up in the use-def chain, move to the next
1450     // defintion.
1451     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) {
1452       Def = MRI.getVRegDef(Reg);
1453       DefIdx = MRI.def_begin(Reg).getOperandNo();
1454       DefSubReg = SrcSubReg;
1455       return PrevDef;
1456     }
1457   }
1458   // If we end up here, this means we will not be able to find another source
1459   // for the next iteration.
1460   // Make sure any new call to getNextSource bails out early by cutting the
1461   // use-def chain.
1462   Def = nullptr;
1463   return PrevDef;
1464 }