mi-sched: Reuse an invalid HazardRecognizer to save compile time.
[oota-llvm.git] / lib / CodeGen / MachineScheduler.cpp
1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "misched"
16
17 #include "llvm/CodeGen/MachineScheduler.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegisterClassInfo.h"
27 #include "llvm/CodeGen/ScheduleDFS.h"
28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GraphWriter.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include <queue>
36
37 using namespace llvm;
38
39 namespace llvm {
40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
41                            cl::desc("Force top-down list scheduling"));
42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
43                             cl::desc("Force bottom-up list scheduling"));
44 }
45
46 #ifndef NDEBUG
47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
48   cl::desc("Pop up a window to show MISched dags after they are processed"));
49
50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
51   cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
52 #else
53 static bool ViewMISchedDAGs = false;
54 #endif // NDEBUG
55
56 static cl::opt<bool> EnableRegPressure("misched-regpressure", cl::Hidden,
57   cl::desc("Enable register pressure scheduling."), cl::init(true));
58
59 static cl::opt<bool> EnableCyclicPath("misched-cyclicpath", cl::Hidden,
60   cl::desc("Enable cyclic critical path analysis."), cl::init(false));
61
62 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
63   cl::desc("Enable load clustering."), cl::init(true));
64
65 // Experimental heuristics
66 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
67   cl::desc("Enable scheduling for macro fusion."), cl::init(true));
68
69 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
70   cl::desc("Verify machine instrs before and after machine scheduling"));
71
72 // DAG subtrees must have at least this many nodes.
73 static const unsigned MinSubtreeSize = 8;
74
75 //===----------------------------------------------------------------------===//
76 // Machine Instruction Scheduling Pass and Registry
77 //===----------------------------------------------------------------------===//
78
79 MachineSchedContext::MachineSchedContext():
80     MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
81   RegClassInfo = new RegisterClassInfo();
82 }
83
84 MachineSchedContext::~MachineSchedContext() {
85   delete RegClassInfo;
86 }
87
88 namespace {
89 /// MachineScheduler runs after coalescing and before register allocation.
90 class MachineScheduler : public MachineSchedContext,
91                          public MachineFunctionPass {
92 public:
93   MachineScheduler();
94
95   virtual void getAnalysisUsage(AnalysisUsage &AU) const;
96
97   virtual void releaseMemory() {}
98
99   virtual bool runOnMachineFunction(MachineFunction&);
100
101   virtual void print(raw_ostream &O, const Module* = 0) const;
102
103   static char ID; // Class identification, replacement for typeinfo
104 };
105 } // namespace
106
107 char MachineScheduler::ID = 0;
108
109 char &llvm::MachineSchedulerID = MachineScheduler::ID;
110
111 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
112                       "Machine Instruction Scheduler", false, false)
113 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
114 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
115 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
116 INITIALIZE_PASS_END(MachineScheduler, "misched",
117                     "Machine Instruction Scheduler", false, false)
118
119 MachineScheduler::MachineScheduler()
120 : MachineFunctionPass(ID) {
121   initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
122 }
123
124 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
125   AU.setPreservesCFG();
126   AU.addRequiredID(MachineDominatorsID);
127   AU.addRequired<MachineLoopInfo>();
128   AU.addRequired<AliasAnalysis>();
129   AU.addRequired<TargetPassConfig>();
130   AU.addRequired<SlotIndexes>();
131   AU.addPreserved<SlotIndexes>();
132   AU.addRequired<LiveIntervals>();
133   AU.addPreserved<LiveIntervals>();
134   MachineFunctionPass::getAnalysisUsage(AU);
135 }
136
137 MachinePassRegistry MachineSchedRegistry::Registry;
138
139 /// A dummy default scheduler factory indicates whether the scheduler
140 /// is overridden on the command line.
141 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
142   return 0;
143 }
144
145 /// MachineSchedOpt allows command line selection of the scheduler.
146 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
147                RegisterPassParser<MachineSchedRegistry> >
148 MachineSchedOpt("misched",
149                 cl::init(&useDefaultMachineSched), cl::Hidden,
150                 cl::desc("Machine instruction scheduler to use"));
151
152 static MachineSchedRegistry
153 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
154                      useDefaultMachineSched);
155
156 /// Forward declare the standard machine scheduler. This will be used as the
157 /// default scheduler if the target does not set a default.
158 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
159
160
161 /// Decrement this iterator until reaching the top or a non-debug instr.
162 static MachineBasicBlock::const_iterator
163 priorNonDebug(MachineBasicBlock::const_iterator I,
164               MachineBasicBlock::const_iterator Beg) {
165   assert(I != Beg && "reached the top of the region, cannot decrement");
166   while (--I != Beg) {
167     if (!I->isDebugValue())
168       break;
169   }
170   return I;
171 }
172
173 /// Non-const version.
174 static MachineBasicBlock::iterator
175 priorNonDebug(MachineBasicBlock::iterator I,
176               MachineBasicBlock::const_iterator Beg) {
177   return const_cast<MachineInstr*>(
178     &*priorNonDebug(MachineBasicBlock::const_iterator(I), Beg));
179 }
180
181 /// If this iterator is a debug value, increment until reaching the End or a
182 /// non-debug instruction.
183 static MachineBasicBlock::const_iterator
184 nextIfDebug(MachineBasicBlock::const_iterator I,
185             MachineBasicBlock::const_iterator End) {
186   for(; I != End; ++I) {
187     if (!I->isDebugValue())
188       break;
189   }
190   return I;
191 }
192
193 /// Non-const version.
194 static MachineBasicBlock::iterator
195 nextIfDebug(MachineBasicBlock::iterator I,
196             MachineBasicBlock::const_iterator End) {
197   // Cast the return value to nonconst MachineInstr, then cast to an
198   // instr_iterator, which does not check for null, finally return a
199   // bundle_iterator.
200   return MachineBasicBlock::instr_iterator(
201     const_cast<MachineInstr*>(
202       &*nextIfDebug(MachineBasicBlock::const_iterator(I), End)));
203 }
204
205 /// Top-level MachineScheduler pass driver.
206 ///
207 /// Visit blocks in function order. Divide each block into scheduling regions
208 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
209 /// consistent with the DAG builder, which traverses the interior of the
210 /// scheduling regions bottom-up.
211 ///
212 /// This design avoids exposing scheduling boundaries to the DAG builder,
213 /// simplifying the DAG builder's support for "special" target instructions.
214 /// At the same time the design allows target schedulers to operate across
215 /// scheduling boundaries, for example to bundle the boudary instructions
216 /// without reordering them. This creates complexity, because the target
217 /// scheduler must update the RegionBegin and RegionEnd positions cached by
218 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
219 /// design would be to split blocks at scheduling boundaries, but LLVM has a
220 /// general bias against block splitting purely for implementation simplicity.
221 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
222   DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
223
224   // Initialize the context of the pass.
225   MF = &mf;
226   MLI = &getAnalysis<MachineLoopInfo>();
227   MDT = &getAnalysis<MachineDominatorTree>();
228   PassConfig = &getAnalysis<TargetPassConfig>();
229   AA = &getAnalysis<AliasAnalysis>();
230
231   LIS = &getAnalysis<LiveIntervals>();
232   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
233
234   if (VerifyScheduling) {
235     DEBUG(LIS->dump());
236     MF->verify(this, "Before machine scheduling.");
237   }
238   RegClassInfo->runOnMachineFunction(*MF);
239
240   // Select the scheduler, or set the default.
241   MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
242   if (Ctor == useDefaultMachineSched) {
243     // Get the default scheduler set by the target.
244     Ctor = MachineSchedRegistry::getDefault();
245     if (!Ctor) {
246       Ctor = createConvergingSched;
247       MachineSchedRegistry::setDefault(Ctor);
248     }
249   }
250   // Instantiate the selected scheduler.
251   OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
252
253   // Visit all machine basic blocks.
254   //
255   // TODO: Visit blocks in global postorder or postorder within the bottom-up
256   // loop tree. Then we can optionally compute global RegPressure.
257   for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
258        MBB != MBBEnd; ++MBB) {
259
260     Scheduler->startBlock(MBB);
261
262     // Break the block into scheduling regions [I, RegionEnd), and schedule each
263     // region as soon as it is discovered. RegionEnd points the scheduling
264     // boundary at the bottom of the region. The DAG does not include RegionEnd,
265     // but the region does (i.e. the next RegionEnd is above the previous
266     // RegionBegin). If the current block has no terminator then RegionEnd ==
267     // MBB->end() for the bottom region.
268     //
269     // The Scheduler may insert instructions during either schedule() or
270     // exitRegion(), even for empty regions. So the local iterators 'I' and
271     // 'RegionEnd' are invalid across these calls.
272     unsigned RemainingInstrs = MBB->size();
273     for(MachineBasicBlock::iterator RegionEnd = MBB->end();
274         RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
275
276       // Avoid decrementing RegionEnd for blocks with no terminator.
277       if (RegionEnd != MBB->end()
278           || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
279         --RegionEnd;
280         // Count the boundary instruction.
281         --RemainingInstrs;
282       }
283
284       // The next region starts above the previous region. Look backward in the
285       // instruction stream until we find the nearest boundary.
286       unsigned NumRegionInstrs = 0;
287       MachineBasicBlock::iterator I = RegionEnd;
288       for(;I != MBB->begin(); --I, --RemainingInstrs, ++NumRegionInstrs) {
289         if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
290           break;
291       }
292       // Notify the scheduler of the region, even if we may skip scheduling
293       // it. Perhaps it still needs to be bundled.
294       Scheduler->enterRegion(MBB, I, RegionEnd, NumRegionInstrs);
295
296       // Skip empty scheduling regions (0 or 1 schedulable instructions).
297       if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
298         // Close the current region. Bundle the terminator if needed.
299         // This invalidates 'RegionEnd' and 'I'.
300         Scheduler->exitRegion();
301         continue;
302       }
303       DEBUG(dbgs() << "********** MI Scheduling **********\n");
304       DEBUG(dbgs() << MF->getName()
305             << ":BB#" << MBB->getNumber() << " " << MBB->getName()
306             << "\n  From: " << *I << "    To: ";
307             if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
308             else dbgs() << "End";
309             dbgs() << " RegionInstrs: " << NumRegionInstrs
310             << " Remaining: " << RemainingInstrs << "\n");
311
312       // Schedule a region: possibly reorder instructions.
313       // This invalidates 'RegionEnd' and 'I'.
314       Scheduler->schedule();
315
316       // Close the current region.
317       Scheduler->exitRegion();
318
319       // Scheduling has invalidated the current iterator 'I'. Ask the
320       // scheduler for the top of it's scheduled region.
321       RegionEnd = Scheduler->begin();
322     }
323     assert(RemainingInstrs == 0 && "Instruction count mismatch!");
324     Scheduler->finishBlock();
325   }
326   Scheduler->finalizeSchedule();
327   DEBUG(LIS->dump());
328   if (VerifyScheduling)
329     MF->verify(this, "After machine scheduling.");
330   return true;
331 }
332
333 void MachineScheduler::print(raw_ostream &O, const Module* m) const {
334   // unimplemented
335 }
336
337 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
338 void ReadyQueue::dump() {
339   dbgs() << Name << ": ";
340   for (unsigned i = 0, e = Queue.size(); i < e; ++i)
341     dbgs() << Queue[i]->NodeNum << " ";
342   dbgs() << "\n";
343 }
344 #endif
345
346 //===----------------------------------------------------------------------===//
347 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
348 // preservation.
349 //===----------------------------------------------------------------------===//
350
351 ScheduleDAGMI::~ScheduleDAGMI() {
352   delete DFSResult;
353   DeleteContainerPointers(Mutations);
354   delete SchedImpl;
355 }
356
357 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
358   return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
359 }
360
361 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
362   if (SuccSU != &ExitSU) {
363     // Do not use WillCreateCycle, it assumes SD scheduling.
364     // If Pred is reachable from Succ, then the edge creates a cycle.
365     if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
366       return false;
367     Topo.AddPred(SuccSU, PredDep.getSUnit());
368   }
369   SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
370   // Return true regardless of whether a new edge needed to be inserted.
371   return true;
372 }
373
374 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
375 /// NumPredsLeft reaches zero, release the successor node.
376 ///
377 /// FIXME: Adjust SuccSU height based on MinLatency.
378 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
379   SUnit *SuccSU = SuccEdge->getSUnit();
380
381   if (SuccEdge->isWeak()) {
382     --SuccSU->WeakPredsLeft;
383     if (SuccEdge->isCluster())
384       NextClusterSucc = SuccSU;
385     return;
386   }
387 #ifndef NDEBUG
388   if (SuccSU->NumPredsLeft == 0) {
389     dbgs() << "*** Scheduling failed! ***\n";
390     SuccSU->dump(this);
391     dbgs() << " has been released too many times!\n";
392     llvm_unreachable(0);
393   }
394 #endif
395   --SuccSU->NumPredsLeft;
396   if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
397     SchedImpl->releaseTopNode(SuccSU);
398 }
399
400 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
401 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
402   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
403        I != E; ++I) {
404     releaseSucc(SU, &*I);
405   }
406 }
407
408 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
409 /// NumSuccsLeft reaches zero, release the predecessor node.
410 ///
411 /// FIXME: Adjust PredSU height based on MinLatency.
412 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
413   SUnit *PredSU = PredEdge->getSUnit();
414
415   if (PredEdge->isWeak()) {
416     --PredSU->WeakSuccsLeft;
417     if (PredEdge->isCluster())
418       NextClusterPred = PredSU;
419     return;
420   }
421 #ifndef NDEBUG
422   if (PredSU->NumSuccsLeft == 0) {
423     dbgs() << "*** Scheduling failed! ***\n";
424     PredSU->dump(this);
425     dbgs() << " has been released too many times!\n";
426     llvm_unreachable(0);
427   }
428 #endif
429   --PredSU->NumSuccsLeft;
430   if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
431     SchedImpl->releaseBottomNode(PredSU);
432 }
433
434 /// releasePredecessors - Call releasePred on each of SU's predecessors.
435 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
436   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
437        I != E; ++I) {
438     releasePred(SU, &*I);
439   }
440 }
441
442 /// This is normally called from the main scheduler loop but may also be invoked
443 /// by the scheduling strategy to perform additional code motion.
444 void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
445                                     MachineBasicBlock::iterator InsertPos) {
446   // Advance RegionBegin if the first instruction moves down.
447   if (&*RegionBegin == MI)
448     ++RegionBegin;
449
450   // Update the instruction stream.
451   BB->splice(InsertPos, BB, MI);
452
453   // Update LiveIntervals
454   LIS->handleMove(MI, /*UpdateFlags=*/true);
455
456   // Recede RegionBegin if an instruction moves above the first.
457   if (RegionBegin == InsertPos)
458     RegionBegin = MI;
459 }
460
461 bool ScheduleDAGMI::checkSchedLimit() {
462 #ifndef NDEBUG
463   if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
464     CurrentTop = CurrentBottom;
465     return false;
466   }
467   ++NumInstrsScheduled;
468 #endif
469   return true;
470 }
471
472 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
473 /// crossing a scheduling boundary. [begin, end) includes all instructions in
474 /// the region, including the boundary itself and single-instruction regions
475 /// that don't get scheduled.
476 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
477                                 MachineBasicBlock::iterator begin,
478                                 MachineBasicBlock::iterator end,
479                                 unsigned regioninstrs)
480 {
481   ScheduleDAGInstrs::enterRegion(bb, begin, end, regioninstrs);
482
483   ShouldTrackPressure = EnableRegPressure;
484
485   // For convenience remember the end of the liveness region.
486   LiveRegionEnd =
487     (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
488 }
489
490 // Setup the register pressure trackers for the top scheduled top and bottom
491 // scheduled regions.
492 void ScheduleDAGMI::initRegPressure() {
493   TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
494   BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
495
496   // Close the RPTracker to finalize live ins.
497   RPTracker.closeRegion();
498
499   DEBUG(RPTracker.dump());
500
501   // Initialize the live ins and live outs.
502   TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
503   BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
504
505   // Close one end of the tracker so we can call
506   // getMaxUpward/DownwardPressureDelta before advancing across any
507   // instructions. This converts currently live regs into live ins/outs.
508   TopRPTracker.closeTop();
509   BotRPTracker.closeBottom();
510
511   BotRPTracker.initLiveThru(RPTracker);
512   if (!BotRPTracker.getLiveThru().empty()) {
513     TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
514     DEBUG(dbgs() << "Live Thru: ";
515           dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
516   };
517
518   // For each live out vreg reduce the pressure change associated with other
519   // uses of the same vreg below the live-out reaching def.
520   updatePressureDiffs(RPTracker.getPressure().LiveOutRegs);
521
522   // Account for liveness generated by the region boundary.
523   if (LiveRegionEnd != RegionEnd) {
524     SmallVector<unsigned, 8> LiveUses;
525     BotRPTracker.recede(&LiveUses);
526     updatePressureDiffs(LiveUses);
527   }
528
529   assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
530
531   // Cache the list of excess pressure sets in this region. This will also track
532   // the max pressure in the scheduled code for these sets.
533   RegionCriticalPSets.clear();
534   const std::vector<unsigned> &RegionPressure =
535     RPTracker.getPressure().MaxSetPressure;
536   for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
537     unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
538     if (RegionPressure[i] > Limit) {
539       DEBUG(dbgs() << TRI->getRegPressureSetName(i)
540             << " Limit " << Limit
541             << " Actual " << RegionPressure[i] << "\n");
542       RegionCriticalPSets.push_back(PressureChange(i));
543     }
544   }
545   DEBUG(dbgs() << "Excess PSets: ";
546         for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
547           dbgs() << TRI->getRegPressureSetName(
548             RegionCriticalPSets[i].getPSet()) << " ";
549         dbgs() << "\n");
550 }
551
552 // FIXME: When the pressure tracker deals in pressure differences then we won't
553 // iterate over all RegionCriticalPSets[i].
554 void ScheduleDAGMI::
555 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
556   for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
557     unsigned ID = RegionCriticalPSets[i].getPSet();
558     if ((int)NewMaxPressure[ID] > RegionCriticalPSets[i].getUnitInc()
559         && NewMaxPressure[ID] <= INT16_MAX)
560       RegionCriticalPSets[i].setUnitInc(NewMaxPressure[ID]);
561   }
562   DEBUG(
563     for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
564       unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
565       if (NewMaxPressure[i] > Limit ) {
566         dbgs() << "  " << TRI->getRegPressureSetName(i) << ": "
567                << NewMaxPressure[i] << " > " << Limit << "\n";
568       }
569     });
570 }
571
572 /// Update the PressureDiff array for liveness after scheduling this
573 /// instruction.
574 void ScheduleDAGMI::updatePressureDiffs(ArrayRef<unsigned> LiveUses) {
575   for (unsigned LUIdx = 0, LUEnd = LiveUses.size(); LUIdx != LUEnd; ++LUIdx) {
576     /// FIXME: Currently assuming single-use physregs.
577     unsigned Reg = LiveUses[LUIdx];
578     if (!TRI->isVirtualRegister(Reg))
579       continue;
580     // This may be called before CurrentBottom has been initialized. However,
581     // BotRPTracker must have a valid position. We want the value live into the
582     // instruction or live out of the block, so ask for the previous
583     // instruction's live-out.
584     const LiveInterval &LI = LIS->getInterval(Reg);
585     VNInfo *VNI;
586     MachineBasicBlock::const_iterator I =
587       nextIfDebug(BotRPTracker.getPos(), BB->end());
588     if (I == BB->end())
589       VNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
590     else {
591       LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(I));
592       VNI = LRQ.valueIn();
593     }
594     // RegisterPressureTracker guarantees that readsReg is true for LiveUses.
595     assert(VNI && "No live value at use.");
596     for (VReg2UseMap::iterator
597            UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
598       SUnit *SU = UI->SU;
599       // If this use comes before the reaching def, it cannot be a last use, so
600       // descrease its pressure change.
601       if (!SU->isScheduled && SU != &ExitSU) {
602         LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(SU->getInstr()));
603         if (LRQ.valueIn() == VNI)
604           getPressureDiff(SU).addPressureChange(Reg, true, &MRI);
605       }
606     }
607   }
608 }
609
610 /// schedule - Called back from MachineScheduler::runOnMachineFunction
611 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
612 /// only includes instructions that have DAG nodes, not scheduling boundaries.
613 ///
614 /// This is a skeletal driver, with all the functionality pushed into helpers,
615 /// so that it can be easilly extended by experimental schedulers. Generally,
616 /// implementing MachineSchedStrategy should be sufficient to implement a new
617 /// scheduling algorithm. However, if a scheduler further subclasses
618 /// ScheduleDAGMI then it will want to override this virtual method in order to
619 /// update any specialized state.
620 void ScheduleDAGMI::schedule() {
621   buildDAGWithRegPressure();
622
623   Topo.InitDAGTopologicalSorting();
624
625   postprocessDAG();
626
627   SmallVector<SUnit*, 8> TopRoots, BotRoots;
628   findRootsAndBiasEdges(TopRoots, BotRoots);
629
630   // Initialize the strategy before modifying the DAG.
631   // This may initialize a DFSResult to be used for queue priority.
632   SchedImpl->initialize(this);
633
634   DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
635           SUnits[su].dumpAll(this));
636   if (ViewMISchedDAGs) viewGraph();
637
638   // Initialize ready queues now that the DAG and priority data are finalized.
639   initQueues(TopRoots, BotRoots);
640
641   bool IsTopNode = false;
642   while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
643     assert(!SU->isScheduled && "Node already scheduled");
644     if (!checkSchedLimit())
645       break;
646
647     scheduleMI(SU, IsTopNode);
648
649     updateQueues(SU, IsTopNode);
650   }
651   assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
652
653   placeDebugValues();
654
655   DEBUG({
656       unsigned BBNum = begin()->getParent()->getNumber();
657       dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
658       dumpSchedule();
659       dbgs() << '\n';
660     });
661 }
662
663 /// Build the DAG and setup three register pressure trackers.
664 void ScheduleDAGMI::buildDAGWithRegPressure() {
665   if (!ShouldTrackPressure) {
666     RPTracker.reset();
667     RegionCriticalPSets.clear();
668     buildSchedGraph(AA);
669     return;
670   }
671
672   // Initialize the register pressure tracker used by buildSchedGraph.
673   RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
674                  /*TrackUntiedDefs=*/true);
675
676   // Account for liveness generate by the region boundary.
677   if (LiveRegionEnd != RegionEnd)
678     RPTracker.recede();
679
680   // Build the DAG, and compute current register pressure.
681   buildSchedGraph(AA, &RPTracker, &SUPressureDiffs);
682
683   // Initialize top/bottom trackers after computing region pressure.
684   initRegPressure();
685 }
686
687 /// Apply each ScheduleDAGMutation step in order.
688 void ScheduleDAGMI::postprocessDAG() {
689   for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
690     Mutations[i]->apply(this);
691   }
692 }
693
694 void ScheduleDAGMI::computeDFSResult() {
695   if (!DFSResult)
696     DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
697   DFSResult->clear();
698   ScheduledTrees.clear();
699   DFSResult->resize(SUnits.size());
700   DFSResult->compute(SUnits);
701   ScheduledTrees.resize(DFSResult->getNumSubtrees());
702 }
703
704 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
705                                           SmallVectorImpl<SUnit*> &BotRoots) {
706   for (std::vector<SUnit>::iterator
707          I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
708     SUnit *SU = &(*I);
709     assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
710
711     // Order predecessors so DFSResult follows the critical path.
712     SU->biasCriticalPath();
713
714     // A SUnit is ready to top schedule if it has no predecessors.
715     if (!I->NumPredsLeft)
716       TopRoots.push_back(SU);
717     // A SUnit is ready to bottom schedule if it has no successors.
718     if (!I->NumSuccsLeft)
719       BotRoots.push_back(SU);
720   }
721   ExitSU.biasCriticalPath();
722 }
723
724 /// Compute the max cyclic critical path through the DAG. The scheduling DAG
725 /// only provides the critical path for single block loops. To handle loops that
726 /// span blocks, we could use the vreg path latencies provided by
727 /// MachineTraceMetrics instead. However, MachineTraceMetrics is not currently
728 /// available for use in the scheduler.
729 ///
730 /// The cyclic path estimation identifies a def-use pair that crosses the back
731 /// edge and considers the depth and height of the nodes. For example, consider
732 /// the following instruction sequence where each instruction has unit latency
733 /// and defines an epomymous virtual register:
734 ///
735 /// a->b(a,c)->c(b)->d(c)->exit
736 ///
737 /// The cyclic critical path is a two cycles: b->c->b
738 /// The acyclic critical path is four cycles: a->b->c->d->exit
739 /// LiveOutHeight = height(c) = len(c->d->exit) = 2
740 /// LiveOutDepth = depth(c) + 1 = len(a->b->c) + 1 = 3
741 /// LiveInHeight = height(b) + 1 = len(b->c->d->exit) + 1 = 4
742 /// LiveInDepth = depth(b) = len(a->b) = 1
743 ///
744 /// LiveOutDepth - LiveInDepth = 3 - 1 = 2
745 /// LiveInHeight - LiveOutHeight = 4 - 2 = 2
746 /// CyclicCriticalPath = min(2, 2) = 2
747 unsigned ScheduleDAGMI::computeCyclicCriticalPath() {
748   // This only applies to single block loop.
749   if (!BB->isSuccessor(BB))
750     return 0;
751
752   unsigned MaxCyclicLatency = 0;
753   // Visit each live out vreg def to find def/use pairs that cross iterations.
754   ArrayRef<unsigned> LiveOuts = RPTracker.getPressure().LiveOutRegs;
755   for (ArrayRef<unsigned>::iterator RI = LiveOuts.begin(), RE = LiveOuts.end();
756        RI != RE; ++RI) {
757     unsigned Reg = *RI;
758     if (!TRI->isVirtualRegister(Reg))
759         continue;
760     const LiveInterval &LI = LIS->getInterval(Reg);
761     const VNInfo *DefVNI = LI.getVNInfoBefore(LIS->getMBBEndIdx(BB));
762     if (!DefVNI)
763       continue;
764
765     MachineInstr *DefMI = LIS->getInstructionFromIndex(DefVNI->def);
766     const SUnit *DefSU = getSUnit(DefMI);
767     if (!DefSU)
768       continue;
769
770     unsigned LiveOutHeight = DefSU->getHeight();
771     unsigned LiveOutDepth = DefSU->getDepth() + DefSU->Latency;
772     // Visit all local users of the vreg def.
773     for (VReg2UseMap::iterator
774            UI = VRegUses.find(Reg); UI != VRegUses.end(); ++UI) {
775       if (UI->SU == &ExitSU)
776         continue;
777
778       // Only consider uses of the phi.
779       LiveRangeQuery LRQ(LI, LIS->getInstructionIndex(UI->SU->getInstr()));
780       if (!LRQ.valueIn()->isPHIDef())
781         continue;
782
783       // Assume that a path spanning two iterations is a cycle, which could
784       // overestimate in strange cases. This allows cyclic latency to be
785       // estimated as the minimum slack of the vreg's depth or height.
786       unsigned CyclicLatency = 0;
787       if (LiveOutDepth > UI->SU->getDepth())
788         CyclicLatency = LiveOutDepth - UI->SU->getDepth();
789
790       unsigned LiveInHeight = UI->SU->getHeight() + DefSU->Latency;
791       if (LiveInHeight > LiveOutHeight) {
792         if (LiveInHeight - LiveOutHeight < CyclicLatency)
793           CyclicLatency = LiveInHeight - LiveOutHeight;
794       }
795       else
796         CyclicLatency = 0;
797
798       DEBUG(dbgs() << "Cyclic Path: SU(" << DefSU->NodeNum << ") -> SU("
799             << UI->SU->NodeNum << ") = " << CyclicLatency << "c\n");
800       if (CyclicLatency > MaxCyclicLatency)
801         MaxCyclicLatency = CyclicLatency;
802     }
803   }
804   DEBUG(dbgs() << "Cyclic Critical Path: " << MaxCyclicLatency << "c\n");
805   return MaxCyclicLatency;
806 }
807
808 /// Identify DAG roots and setup scheduler queues.
809 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
810                                ArrayRef<SUnit*> BotRoots) {
811   NextClusterSucc = NULL;
812   NextClusterPred = NULL;
813
814   // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
815   //
816   // Nodes with unreleased weak edges can still be roots.
817   // Release top roots in forward order.
818   for (SmallVectorImpl<SUnit*>::const_iterator
819          I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
820     SchedImpl->releaseTopNode(*I);
821   }
822   // Release bottom roots in reverse order so the higher priority nodes appear
823   // first. This is more natural and slightly more efficient.
824   for (SmallVectorImpl<SUnit*>::const_reverse_iterator
825          I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
826     SchedImpl->releaseBottomNode(*I);
827   }
828
829   releaseSuccessors(&EntrySU);
830   releasePredecessors(&ExitSU);
831
832   SchedImpl->registerRoots();
833
834   // Advance past initial DebugValues.
835   CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
836   CurrentBottom = RegionEnd;
837
838   if (ShouldTrackPressure) {
839     assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
840     TopRPTracker.setPos(CurrentTop);
841   }
842 }
843
844 /// Move an instruction and update register pressure.
845 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
846   // Move the instruction to its new location in the instruction stream.
847   MachineInstr *MI = SU->getInstr();
848
849   if (IsTopNode) {
850     assert(SU->isTopReady() && "node still has unscheduled dependencies");
851     if (&*CurrentTop == MI)
852       CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
853     else {
854       moveInstruction(MI, CurrentTop);
855       TopRPTracker.setPos(MI);
856     }
857
858     if (ShouldTrackPressure) {
859       // Update top scheduled pressure.
860       TopRPTracker.advance();
861       assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
862       updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
863     }
864   }
865   else {
866     assert(SU->isBottomReady() && "node still has unscheduled dependencies");
867     MachineBasicBlock::iterator priorII =
868       priorNonDebug(CurrentBottom, CurrentTop);
869     if (&*priorII == MI)
870       CurrentBottom = priorII;
871     else {
872       if (&*CurrentTop == MI) {
873         CurrentTop = nextIfDebug(++CurrentTop, priorII);
874         TopRPTracker.setPos(CurrentTop);
875       }
876       moveInstruction(MI, CurrentBottom);
877       CurrentBottom = MI;
878     }
879     if (ShouldTrackPressure) {
880       // Update bottom scheduled pressure.
881       SmallVector<unsigned, 8> LiveUses;
882       BotRPTracker.recede(&LiveUses);
883       assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
884       updatePressureDiffs(LiveUses);
885       updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
886     }
887   }
888 }
889
890 /// Update scheduler queues after scheduling an instruction.
891 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
892   // Release dependent instructions for scheduling.
893   if (IsTopNode)
894     releaseSuccessors(SU);
895   else
896     releasePredecessors(SU);
897
898   SU->isScheduled = true;
899
900   if (DFSResult) {
901     unsigned SubtreeID = DFSResult->getSubtreeID(SU);
902     if (!ScheduledTrees.test(SubtreeID)) {
903       ScheduledTrees.set(SubtreeID);
904       DFSResult->scheduleTree(SubtreeID);
905       SchedImpl->scheduleTree(SubtreeID);
906     }
907   }
908
909   // Notify the scheduling strategy after updating the DAG.
910   SchedImpl->schedNode(SU, IsTopNode);
911 }
912
913 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
914 void ScheduleDAGMI::placeDebugValues() {
915   // If first instruction was a DBG_VALUE then put it back.
916   if (FirstDbgValue) {
917     BB->splice(RegionBegin, BB, FirstDbgValue);
918     RegionBegin = FirstDbgValue;
919   }
920
921   for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
922          DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
923     std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
924     MachineInstr *DbgValue = P.first;
925     MachineBasicBlock::iterator OrigPrevMI = P.second;
926     if (&*RegionBegin == DbgValue)
927       ++RegionBegin;
928     BB->splice(++OrigPrevMI, BB, DbgValue);
929     if (OrigPrevMI == llvm::prior(RegionEnd))
930       RegionEnd = DbgValue;
931   }
932   DbgValues.clear();
933   FirstDbgValue = NULL;
934 }
935
936 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
937 void ScheduleDAGMI::dumpSchedule() const {
938   for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
939     if (SUnit *SU = getSUnit(&(*MI)))
940       SU->dump(this);
941     else
942       dbgs() << "Missing SUnit\n";
943   }
944 }
945 #endif
946
947 //===----------------------------------------------------------------------===//
948 // LoadClusterMutation - DAG post-processing to cluster loads.
949 //===----------------------------------------------------------------------===//
950
951 namespace {
952 /// \brief Post-process the DAG to create cluster edges between neighboring
953 /// loads.
954 class LoadClusterMutation : public ScheduleDAGMutation {
955   struct LoadInfo {
956     SUnit *SU;
957     unsigned BaseReg;
958     unsigned Offset;
959     LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
960       : SU(su), BaseReg(reg), Offset(ofs) {}
961   };
962   static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
963                            const LoadClusterMutation::LoadInfo &RHS);
964
965   const TargetInstrInfo *TII;
966   const TargetRegisterInfo *TRI;
967 public:
968   LoadClusterMutation(const TargetInstrInfo *tii,
969                       const TargetRegisterInfo *tri)
970     : TII(tii), TRI(tri) {}
971
972   virtual void apply(ScheduleDAGMI *DAG);
973 protected:
974   void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
975 };
976 } // anonymous
977
978 bool LoadClusterMutation::LoadInfoLess(
979   const LoadClusterMutation::LoadInfo &LHS,
980   const LoadClusterMutation::LoadInfo &RHS) {
981   if (LHS.BaseReg != RHS.BaseReg)
982     return LHS.BaseReg < RHS.BaseReg;
983   return LHS.Offset < RHS.Offset;
984 }
985
986 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
987                                                   ScheduleDAGMI *DAG) {
988   SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
989   for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
990     SUnit *SU = Loads[Idx];
991     unsigned BaseReg;
992     unsigned Offset;
993     if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
994       LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
995   }
996   if (LoadRecords.size() < 2)
997     return;
998   std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
999   unsigned ClusterLength = 1;
1000   for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
1001     if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
1002       ClusterLength = 1;
1003       continue;
1004     }
1005
1006     SUnit *SUa = LoadRecords[Idx].SU;
1007     SUnit *SUb = LoadRecords[Idx+1].SU;
1008     if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
1009         && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
1010
1011       DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
1012             << SUb->NodeNum << ")\n");
1013       // Copy successor edges from SUa to SUb. Interleaving computation
1014       // dependent on SUa can prevent load combining due to register reuse.
1015       // Predecessor edges do not need to be copied from SUb to SUa since nearby
1016       // loads should have effectively the same inputs.
1017       for (SUnit::const_succ_iterator
1018              SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
1019         if (SI->getSUnit() == SUb)
1020           continue;
1021         DEBUG(dbgs() << "  Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
1022         DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
1023       }
1024       ++ClusterLength;
1025     }
1026     else
1027       ClusterLength = 1;
1028   }
1029 }
1030
1031 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
1032 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
1033   // Map DAG NodeNum to store chain ID.
1034   DenseMap<unsigned, unsigned> StoreChainIDs;
1035   // Map each store chain to a set of dependent loads.
1036   SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
1037   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1038     SUnit *SU = &DAG->SUnits[Idx];
1039     if (!SU->getInstr()->mayLoad())
1040       continue;
1041     unsigned ChainPredID = DAG->SUnits.size();
1042     for (SUnit::const_pred_iterator
1043            PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
1044       if (PI->isCtrl()) {
1045         ChainPredID = PI->getSUnit()->NodeNum;
1046         break;
1047       }
1048     }
1049     // Check if this chain-like pred has been seen
1050     // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
1051     unsigned NumChains = StoreChainDependents.size();
1052     std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
1053       StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
1054     if (Result.second)
1055       StoreChainDependents.resize(NumChains + 1);
1056     StoreChainDependents[Result.first->second].push_back(SU);
1057   }
1058   // Iterate over the store chains.
1059   for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
1060     clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
1061 }
1062
1063 //===----------------------------------------------------------------------===//
1064 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
1065 //===----------------------------------------------------------------------===//
1066
1067 namespace {
1068 /// \brief Post-process the DAG to create cluster edges between instructions
1069 /// that may be fused by the processor into a single operation.
1070 class MacroFusion : public ScheduleDAGMutation {
1071   const TargetInstrInfo *TII;
1072 public:
1073   MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
1074
1075   virtual void apply(ScheduleDAGMI *DAG);
1076 };
1077 } // anonymous
1078
1079 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
1080 /// fused operations.
1081 void MacroFusion::apply(ScheduleDAGMI *DAG) {
1082   // For now, assume targets can only fuse with the branch.
1083   MachineInstr *Branch = DAG->ExitSU.getInstr();
1084   if (!Branch)
1085     return;
1086
1087   for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
1088     SUnit *SU = &DAG->SUnits[--Idx];
1089     if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
1090       continue;
1091
1092     // Create a single weak edge from SU to ExitSU. The only effect is to cause
1093     // bottom-up scheduling to heavily prioritize the clustered SU.  There is no
1094     // need to copy predecessor edges from ExitSU to SU, since top-down
1095     // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
1096     // of SU, we could create an artificial edge from the deepest root, but it
1097     // hasn't been needed yet.
1098     bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
1099     (void)Success;
1100     assert(Success && "No DAG nodes should be reachable from ExitSU");
1101
1102     DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
1103     break;
1104   }
1105 }
1106
1107 //===----------------------------------------------------------------------===//
1108 // CopyConstrain - DAG post-processing to encourage copy elimination.
1109 //===----------------------------------------------------------------------===//
1110
1111 namespace {
1112 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
1113 /// the one use that defines the copy's source vreg, most likely an induction
1114 /// variable increment.
1115 class CopyConstrain : public ScheduleDAGMutation {
1116   // Transient state.
1117   SlotIndex RegionBeginIdx;
1118   // RegionEndIdx is the slot index of the last non-debug instruction in the
1119   // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
1120   SlotIndex RegionEndIdx;
1121 public:
1122   CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
1123
1124   virtual void apply(ScheduleDAGMI *DAG);
1125
1126 protected:
1127   void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
1128 };
1129 } // anonymous
1130
1131 /// constrainLocalCopy handles two possibilities:
1132 /// 1) Local src:
1133 /// I0:     = dst
1134 /// I1: src = ...
1135 /// I2:     = dst
1136 /// I3: dst = src (copy)
1137 /// (create pred->succ edges I0->I1, I2->I1)
1138 ///
1139 /// 2) Local copy:
1140 /// I0: dst = src (copy)
1141 /// I1:     = dst
1142 /// I2: src = ...
1143 /// I3:     = dst
1144 /// (create pred->succ edges I1->I2, I3->I2)
1145 ///
1146 /// Although the MachineScheduler is currently constrained to single blocks,
1147 /// this algorithm should handle extended blocks. An EBB is a set of
1148 /// contiguously numbered blocks such that the previous block in the EBB is
1149 /// always the single predecessor.
1150 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
1151   LiveIntervals *LIS = DAG->getLIS();
1152   MachineInstr *Copy = CopySU->getInstr();
1153
1154   // Check for pure vreg copies.
1155   unsigned SrcReg = Copy->getOperand(1).getReg();
1156   if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
1157     return;
1158
1159   unsigned DstReg = Copy->getOperand(0).getReg();
1160   if (!TargetRegisterInfo::isVirtualRegister(DstReg))
1161     return;
1162
1163   // Check if either the dest or source is local. If it's live across a back
1164   // edge, it's not local. Note that if both vregs are live across the back
1165   // edge, we cannot successfully contrain the copy without cyclic scheduling.
1166   unsigned LocalReg = DstReg;
1167   unsigned GlobalReg = SrcReg;
1168   LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
1169   if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
1170     LocalReg = SrcReg;
1171     GlobalReg = DstReg;
1172     LocalLI = &LIS->getInterval(LocalReg);
1173     if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
1174       return;
1175   }
1176   LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1177
1178   // Find the global segment after the start of the local LI.
1179   LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1180   // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1181   // local live range. We could create edges from other global uses to the local
1182   // start, but the coalescer should have already eliminated these cases, so
1183   // don't bother dealing with it.
1184   if (GlobalSegment == GlobalLI->end())
1185     return;
1186
1187   // If GlobalSegment is killed at the LocalLI->start, the call to find()
1188   // returned the next global segment. But if GlobalSegment overlaps with
1189   // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1190   // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1191   if (GlobalSegment->contains(LocalLI->beginIndex()))
1192     ++GlobalSegment;
1193
1194   if (GlobalSegment == GlobalLI->end())
1195     return;
1196
1197   // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1198   if (GlobalSegment != GlobalLI->begin()) {
1199     // Two address defs have no hole.
1200     if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
1201                                GlobalSegment->start)) {
1202       return;
1203     }
1204     // If the prior global segment may be defined by the same two-address
1205     // instruction that also defines LocalLI, then can't make a hole here.
1206     if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start,
1207                                LocalLI->beginIndex())) {
1208       return;
1209     }
1210     // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1211     // it would be a disconnected component in the live range.
1212     assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
1213            "Disconnected LRG within the scheduling region.");
1214   }
1215   MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1216   if (!GlobalDef)
1217     return;
1218
1219   SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1220   if (!GlobalSU)
1221     return;
1222
1223   // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1224   // constraining the uses of the last local def to precede GlobalDef.
1225   SmallVector<SUnit*,8> LocalUses;
1226   const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1227   MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1228   SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1229   for (SUnit::const_succ_iterator
1230          I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1231        I != E; ++I) {
1232     if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1233       continue;
1234     if (I->getSUnit() == GlobalSU)
1235       continue;
1236     if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1237       return;
1238     LocalUses.push_back(I->getSUnit());
1239   }
1240   // Open the top of the GlobalLI hole by constraining any earlier global uses
1241   // to precede the start of LocalLI.
1242   SmallVector<SUnit*,8> GlobalUses;
1243   MachineInstr *FirstLocalDef =
1244     LIS->getInstructionFromIndex(LocalLI->beginIndex());
1245   SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1246   for (SUnit::const_pred_iterator
1247          I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1248     if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1249       continue;
1250     if (I->getSUnit() == FirstLocalSU)
1251       continue;
1252     if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1253       return;
1254     GlobalUses.push_back(I->getSUnit());
1255   }
1256   DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1257   // Add the weak edges.
1258   for (SmallVectorImpl<SUnit*>::const_iterator
1259          I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1260     DEBUG(dbgs() << "  Local use SU(" << (*I)->NodeNum << ") -> SU("
1261           << GlobalSU->NodeNum << ")\n");
1262     DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1263   }
1264   for (SmallVectorImpl<SUnit*>::const_iterator
1265          I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1266     DEBUG(dbgs() << "  Global use SU(" << (*I)->NodeNum << ") -> SU("
1267           << FirstLocalSU->NodeNum << ")\n");
1268     DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1269   }
1270 }
1271
1272 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1273 /// copy elimination.
1274 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1275   MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1276   if (FirstPos == DAG->end())
1277     return;
1278   RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1279   RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1280     &*priorNonDebug(DAG->end(), DAG->begin()));
1281
1282   for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1283     SUnit *SU = &DAG->SUnits[Idx];
1284     if (!SU->getInstr()->isCopy())
1285       continue;
1286
1287     constrainLocalCopy(SU, DAG);
1288   }
1289 }
1290
1291 //===----------------------------------------------------------------------===//
1292 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
1293 //===----------------------------------------------------------------------===//
1294
1295 namespace {
1296 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
1297 /// the schedule.
1298 class ConvergingScheduler : public MachineSchedStrategy {
1299 public:
1300   /// Represent the type of SchedCandidate found within a single queue.
1301   /// pickNodeBidirectional depends on these listed by decreasing priority.
1302   enum CandReason {
1303     NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
1304     ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
1305     TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
1306
1307 #ifndef NDEBUG
1308   static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
1309 #endif
1310
1311   /// Policy for scheduling the next instruction in the candidate's zone.
1312   struct CandPolicy {
1313     bool ReduceLatency;
1314     unsigned ReduceResIdx;
1315     unsigned DemandResIdx;
1316
1317     CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
1318   };
1319
1320   /// Status of an instruction's critical resource consumption.
1321   struct SchedResourceDelta {
1322     // Count critical resources in the scheduled region required by SU.
1323     unsigned CritResources;
1324
1325     // Count critical resources from another region consumed by SU.
1326     unsigned DemandedResources;
1327
1328     SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
1329
1330     bool operator==(const SchedResourceDelta &RHS) const {
1331       return CritResources == RHS.CritResources
1332         && DemandedResources == RHS.DemandedResources;
1333     }
1334     bool operator!=(const SchedResourceDelta &RHS) const {
1335       return !operator==(RHS);
1336     }
1337   };
1338
1339   /// Store the state used by ConvergingScheduler heuristics, required for the
1340   /// lifetime of one invocation of pickNode().
1341   struct SchedCandidate {
1342     CandPolicy Policy;
1343
1344     // The best SUnit candidate.
1345     SUnit *SU;
1346
1347     // The reason for this candidate.
1348     CandReason Reason;
1349
1350     // Set of reasons that apply to multiple candidates.
1351     uint32_t RepeatReasonSet;
1352
1353     // Register pressure values for the best candidate.
1354     RegPressureDelta RPDelta;
1355
1356     // Critical resource consumption of the best candidate.
1357     SchedResourceDelta ResDelta;
1358
1359     SchedCandidate(const CandPolicy &policy)
1360       : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
1361
1362     bool isValid() const { return SU; }
1363
1364     // Copy the status of another candidate without changing policy.
1365     void setBest(SchedCandidate &Best) {
1366       assert(Best.Reason != NoCand && "uninitialized Sched candidate");
1367       SU = Best.SU;
1368       Reason = Best.Reason;
1369       RPDelta = Best.RPDelta;
1370       ResDelta = Best.ResDelta;
1371     }
1372
1373     bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
1374     void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
1375
1376     void initResourceDelta(const ScheduleDAGMI *DAG,
1377                            const TargetSchedModel *SchedModel);
1378   };
1379
1380   /// Summarize the unscheduled region.
1381   struct SchedRemainder {
1382     // Critical path through the DAG in expected latency.
1383     unsigned CriticalPath;
1384     unsigned CyclicCritPath;
1385
1386     // Scaled count of micro-ops left to schedule.
1387     unsigned RemIssueCount;
1388
1389     bool IsAcyclicLatencyLimited;
1390
1391     // Unscheduled resources
1392     SmallVector<unsigned, 16> RemainingCounts;
1393
1394     void reset() {
1395       CriticalPath = 0;
1396       CyclicCritPath = 0;
1397       RemIssueCount = 0;
1398       IsAcyclicLatencyLimited = false;
1399       RemainingCounts.clear();
1400     }
1401
1402     SchedRemainder() { reset(); }
1403
1404     void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1405   };
1406
1407   /// Each Scheduling boundary is associated with ready queues. It tracks the
1408   /// current cycle in the direction of movement, and maintains the state
1409   /// of "hazards" and other interlocks at the current cycle.
1410   struct SchedBoundary {
1411     ScheduleDAGMI *DAG;
1412     const TargetSchedModel *SchedModel;
1413     SchedRemainder *Rem;
1414
1415     ReadyQueue Available;
1416     ReadyQueue Pending;
1417     bool CheckPending;
1418
1419     // For heuristics, keep a list of the nodes that immediately depend on the
1420     // most recently scheduled node.
1421     SmallPtrSet<const SUnit*, 8> NextSUs;
1422
1423     ScheduleHazardRecognizer *HazardRec;
1424
1425     /// Number of cycles it takes to issue the instructions scheduled in this
1426     /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
1427     /// See getStalls().
1428     unsigned CurrCycle;
1429
1430     /// Micro-ops issued in the current cycle
1431     unsigned CurrMOps;
1432
1433     /// MinReadyCycle - Cycle of the soonest available instruction.
1434     unsigned MinReadyCycle;
1435
1436     // The expected latency of the critical path in this scheduled zone.
1437     unsigned ExpectedLatency;
1438
1439     // The latency of dependence chains leading into this zone.
1440     // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
1441     // For each cycle scheduled: DLat -= 1.
1442     unsigned DependentLatency;
1443
1444     /// Count the scheduled (issued) micro-ops that can be retired by
1445     /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
1446     unsigned RetiredMOps;
1447
1448     // Count scheduled resources that have been executed. Resources are
1449     // considered executed if they become ready in the time that it takes to
1450     // saturate any resource including the one in question. Counts are scaled
1451     // for direct comparison with other resources. Counts can be compared with
1452     // MOps * getMicroOpFactor and Latency * getLatencyFactor.
1453     SmallVector<unsigned, 16> ExecutedResCounts;
1454
1455     /// Cache the max count for a single resource.
1456     unsigned MaxExecutedResCount;
1457
1458     // Cache the critical resources ID in this scheduled zone.
1459     unsigned ZoneCritResIdx;
1460
1461     // Is the scheduled region resource limited vs. latency limited.
1462     bool IsResourceLimited;
1463
1464 #ifndef NDEBUG
1465     // Remember the greatest operand latency as an upper bound on the number of
1466     // times we should retry the pending queue because of a hazard.
1467     unsigned MaxObservedLatency;
1468 #endif
1469
1470     void reset() {
1471       // A new HazardRec is created for each DAG and owned by SchedBoundary.
1472       // Detroying and reconstructing it is very expensive though. So keep
1473       // invalid, placeholder HazardRecs.
1474       if (HazardRec && HazardRec->isEnabled()) {
1475         delete HazardRec;
1476         HazardRec = 0;
1477       }
1478       Available.clear();
1479       Pending.clear();
1480       CheckPending = false;
1481       NextSUs.clear();
1482       CurrCycle = 0;
1483       CurrMOps = 0;
1484       MinReadyCycle = UINT_MAX;
1485       ExpectedLatency = 0;
1486       DependentLatency = 0;
1487       RetiredMOps = 0;
1488       MaxExecutedResCount = 0;
1489       ZoneCritResIdx = 0;
1490       IsResourceLimited = false;
1491 #ifndef NDEBUG
1492       MaxObservedLatency = 0;
1493 #endif
1494       // Reserve a zero-count for invalid CritResIdx.
1495       ExecutedResCounts.resize(1);
1496       assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1497     }
1498
1499     /// Pending queues extend the ready queues with the same ID and the
1500     /// PendingFlag set.
1501     SchedBoundary(unsigned ID, const Twine &Name):
1502       DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1503       Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1504       HazardRec(0) {
1505       reset();
1506     }
1507
1508     ~SchedBoundary() { delete HazardRec; }
1509
1510     void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1511               SchedRemainder *rem);
1512
1513     bool isTop() const {
1514       return Available.getID() == ConvergingScheduler::TopQID;
1515     }
1516
1517 #ifndef NDEBUG
1518     const char *getResourceName(unsigned PIdx) {
1519       if (!PIdx)
1520         return "MOps";
1521       return SchedModel->getProcResource(PIdx)->Name;
1522     }
1523 #endif
1524
1525     /// Get the number of latency cycles "covered" by the scheduled
1526     /// instructions. This is the larger of the critical path within the zone
1527     /// and the number of cycles required to issue the instructions.
1528     unsigned getScheduledLatency() const {
1529       return std::max(ExpectedLatency, CurrCycle);
1530     }
1531
1532     unsigned getUnscheduledLatency(SUnit *SU) const {
1533       return isTop() ? SU->getHeight() : SU->getDepth();
1534     }
1535
1536     unsigned getResourceCount(unsigned ResIdx) const {
1537       return ExecutedResCounts[ResIdx];
1538     }
1539
1540     /// Get the scaled count of scheduled micro-ops and resources, including
1541     /// executed resources.
1542     unsigned getCriticalCount() const {
1543       if (!ZoneCritResIdx)
1544         return RetiredMOps * SchedModel->getMicroOpFactor();
1545       return getResourceCount(ZoneCritResIdx);
1546     }
1547
1548     /// Get a scaled count for the minimum execution time of the scheduled
1549     /// micro-ops that are ready to execute by getExecutedCount. Notice the
1550     /// feedback loop.
1551     unsigned getExecutedCount() const {
1552       return std::max(CurrCycle * SchedModel->getLatencyFactor(),
1553                       MaxExecutedResCount);
1554     }
1555
1556     bool checkHazard(SUnit *SU);
1557
1558     unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
1559
1560     unsigned getOtherResourceCount(unsigned &OtherCritIdx);
1561
1562     void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
1563
1564     void releaseNode(SUnit *SU, unsigned ReadyCycle);
1565
1566     void bumpCycle(unsigned NextCycle);
1567
1568     void incExecutedResources(unsigned PIdx, unsigned Count);
1569
1570     unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
1571
1572     void bumpNode(SUnit *SU);
1573
1574     void releasePending();
1575
1576     void removeReady(SUnit *SU);
1577
1578     SUnit *pickOnlyChoice();
1579
1580 #ifndef NDEBUG
1581     void dumpScheduledState();
1582 #endif
1583   };
1584
1585 private:
1586   ScheduleDAGMI *DAG;
1587   const TargetSchedModel *SchedModel;
1588   const TargetRegisterInfo *TRI;
1589
1590   // State of the top and bottom scheduled instruction boundaries.
1591   SchedRemainder Rem;
1592   SchedBoundary Top;
1593   SchedBoundary Bot;
1594
1595 public:
1596   /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1597   enum {
1598     TopQID = 1,
1599     BotQID = 2,
1600     LogMaxQID = 2
1601   };
1602
1603   ConvergingScheduler():
1604     DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1605
1606   virtual void initialize(ScheduleDAGMI *dag);
1607
1608   virtual SUnit *pickNode(bool &IsTopNode);
1609
1610   virtual void schedNode(SUnit *SU, bool IsTopNode);
1611
1612   virtual void releaseTopNode(SUnit *SU);
1613
1614   virtual void releaseBottomNode(SUnit *SU);
1615
1616   virtual void registerRoots();
1617
1618 protected:
1619   void checkAcyclicLatency();
1620
1621   void tryCandidate(SchedCandidate &Cand,
1622                     SchedCandidate &TryCand,
1623                     SchedBoundary &Zone,
1624                     const RegPressureTracker &RPTracker,
1625                     RegPressureTracker &TempTracker);
1626
1627   SUnit *pickNodeBidirectional(bool &IsTopNode);
1628
1629   void pickNodeFromQueue(SchedBoundary &Zone,
1630                          const RegPressureTracker &RPTracker,
1631                          SchedCandidate &Candidate);
1632
1633   void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1634
1635 #ifndef NDEBUG
1636   void traceCandidate(const SchedCandidate &Cand);
1637 #endif
1638 };
1639 } // namespace
1640
1641 void ConvergingScheduler::SchedRemainder::
1642 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1643   reset();
1644   if (!SchedModel->hasInstrSchedModel())
1645     return;
1646   RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1647   for (std::vector<SUnit>::iterator
1648          I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1649     const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1650     RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1651       * SchedModel->getMicroOpFactor();
1652     for (TargetSchedModel::ProcResIter
1653            PI = SchedModel->getWriteProcResBegin(SC),
1654            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1655       unsigned PIdx = PI->ProcResourceIdx;
1656       unsigned Factor = SchedModel->getResourceFactor(PIdx);
1657       RemainingCounts[PIdx] += (Factor * PI->Cycles);
1658     }
1659   }
1660 }
1661
1662 void ConvergingScheduler::SchedBoundary::
1663 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1664   reset();
1665   DAG = dag;
1666   SchedModel = smodel;
1667   Rem = rem;
1668   if (SchedModel->hasInstrSchedModel())
1669     ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1670 }
1671
1672 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1673   DAG = dag;
1674   SchedModel = DAG->getSchedModel();
1675   TRI = DAG->TRI;
1676
1677   Rem.init(DAG, SchedModel);
1678   Top.init(DAG, SchedModel, &Rem);
1679   Bot.init(DAG, SchedModel, &Rem);
1680
1681   // Initialize resource counts.
1682
1683   // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1684   // are disabled, then these HazardRecs will be disabled.
1685   const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1686   const TargetMachine &TM = DAG->MF.getTarget();
1687   if (!Top.HazardRec) {
1688     Top.HazardRec =
1689       TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1690   }
1691   if (!Bot.HazardRec) {
1692     Bot.HazardRec =
1693       TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1694   }
1695   assert((!ForceTopDown || !ForceBottomUp) &&
1696          "-misched-topdown incompatible with -misched-bottomup");
1697 }
1698
1699 void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1700   if (SU->isScheduled)
1701     return;
1702
1703   for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1704        I != E; ++I) {
1705     if (I->isWeak())
1706       continue;
1707     unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1708     unsigned Latency = I->getLatency();
1709 #ifndef NDEBUG
1710     Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
1711 #endif
1712     if (SU->TopReadyCycle < PredReadyCycle + Latency)
1713       SU->TopReadyCycle = PredReadyCycle + Latency;
1714   }
1715   Top.releaseNode(SU, SU->TopReadyCycle);
1716 }
1717
1718 void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1719   if (SU->isScheduled)
1720     return;
1721
1722   assert(SU->getInstr() && "Scheduled SUnit must have instr");
1723
1724   for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1725        I != E; ++I) {
1726     if (I->isWeak())
1727       continue;
1728     unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1729     unsigned Latency = I->getLatency();
1730 #ifndef NDEBUG
1731     Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
1732 #endif
1733     if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1734       SU->BotReadyCycle = SuccReadyCycle + Latency;
1735   }
1736   Bot.releaseNode(SU, SU->BotReadyCycle);
1737 }
1738
1739 /// Set IsAcyclicLatencyLimited if the acyclic path is longer than the cyclic
1740 /// critical path by more cycles than it takes to drain the instruction buffer.
1741 /// We estimate an upper bounds on in-flight instructions as:
1742 ///
1743 /// CyclesPerIteration = max( CyclicPath, Loop-Resource-Height )
1744 /// InFlightIterations = AcyclicPath / CyclesPerIteration
1745 /// InFlightResources = InFlightIterations * LoopResources
1746 ///
1747 /// TODO: Check execution resources in addition to IssueCount.
1748 void ConvergingScheduler::checkAcyclicLatency() {
1749   if (Rem.CyclicCritPath == 0 || Rem.CyclicCritPath >= Rem.CriticalPath)
1750     return;
1751
1752   // Scaled number of cycles per loop iteration.
1753   unsigned IterCount =
1754     std::max(Rem.CyclicCritPath * SchedModel->getLatencyFactor(),
1755              Rem.RemIssueCount);
1756   // Scaled acyclic critical path.
1757   unsigned AcyclicCount = Rem.CriticalPath * SchedModel->getLatencyFactor();
1758   // InFlightCount = (AcyclicPath / IterCycles) * InstrPerLoop
1759   unsigned InFlightCount =
1760     (AcyclicCount * Rem.RemIssueCount + IterCount-1) / IterCount;
1761   unsigned BufferLimit =
1762     SchedModel->getMicroOpBufferSize() * SchedModel->getMicroOpFactor();
1763
1764   Rem.IsAcyclicLatencyLimited = InFlightCount > BufferLimit;
1765
1766   DEBUG(dbgs() << "IssueCycles="
1767         << Rem.RemIssueCount / SchedModel->getLatencyFactor() << "c "
1768         << "IterCycles=" << IterCount / SchedModel->getLatencyFactor()
1769         << "c NumIters=" << (AcyclicCount + IterCount-1) / IterCount
1770         << " InFlight=" << InFlightCount / SchedModel->getMicroOpFactor()
1771         << "m BufferLim=" << SchedModel->getMicroOpBufferSize() << "m\n";
1772         if (Rem.IsAcyclicLatencyLimited)
1773           dbgs() << "  ACYCLIC LATENCY LIMIT\n");
1774 }
1775
1776 void ConvergingScheduler::registerRoots() {
1777   Rem.CriticalPath = DAG->ExitSU.getDepth();
1778
1779   // Some roots may not feed into ExitSU. Check all of them in case.
1780   for (std::vector<SUnit*>::const_iterator
1781          I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1782     if ((*I)->getDepth() > Rem.CriticalPath)
1783       Rem.CriticalPath = (*I)->getDepth();
1784   }
1785   DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1786
1787   if (EnableCyclicPath) {
1788     Rem.CyclicCritPath = DAG->computeCyclicCriticalPath();
1789     checkAcyclicLatency();
1790   }
1791 }
1792
1793 /// Does this SU have a hazard within the current instruction group.
1794 ///
1795 /// The scheduler supports two modes of hazard recognition. The first is the
1796 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1797 /// supports highly complicated in-order reservation tables
1798 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1799 ///
1800 /// The second is a streamlined mechanism that checks for hazards based on
1801 /// simple counters that the scheduler itself maintains. It explicitly checks
1802 /// for instruction dispatch limitations, including the number of micro-ops that
1803 /// can dispatch per cycle.
1804 ///
1805 /// TODO: Also check whether the SU must start a new group.
1806 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1807   if (HazardRec->isEnabled())
1808     return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1809
1810   unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1811   if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1812     DEBUG(dbgs() << "  SU(" << SU->NodeNum << ") uops="
1813           << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1814     return true;
1815   }
1816   return false;
1817 }
1818
1819 // Find the unscheduled node in ReadySUs with the highest latency.
1820 unsigned ConvergingScheduler::SchedBoundary::
1821 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1822   SUnit *LateSU = 0;
1823   unsigned RemLatency = 0;
1824   for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1825        I != E; ++I) {
1826     unsigned L = getUnscheduledLatency(*I);
1827     if (L > RemLatency) {
1828       RemLatency = L;
1829       LateSU = *I;
1830     }
1831   }
1832   if (LateSU) {
1833     DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1834           << LateSU->NodeNum << ") " << RemLatency << "c\n");
1835   }
1836   return RemLatency;
1837 }
1838
1839 // Count resources in this zone and the remaining unscheduled
1840 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1841 // resource index, or zero if the zone is issue limited.
1842 unsigned ConvergingScheduler::SchedBoundary::
1843 getOtherResourceCount(unsigned &OtherCritIdx) {
1844   OtherCritIdx = 0;
1845   if (!SchedModel->hasInstrSchedModel())
1846     return 0;
1847
1848   unsigned OtherCritCount = Rem->RemIssueCount
1849     + (RetiredMOps * SchedModel->getMicroOpFactor());
1850   DEBUG(dbgs() << "  " << Available.getName() << " + Remain MOps: "
1851         << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1852   for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1853        PIdx != PEnd; ++PIdx) {
1854     unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1855     if (OtherCount > OtherCritCount) {
1856       OtherCritCount = OtherCount;
1857       OtherCritIdx = PIdx;
1858     }
1859   }
1860   if (OtherCritIdx) {
1861     DEBUG(dbgs() << "  " << Available.getName() << " + Remain CritRes: "
1862           << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1863           << " " << getResourceName(OtherCritIdx) << "\n");
1864   }
1865   return OtherCritCount;
1866 }
1867
1868 /// Set the CandPolicy for this zone given the current resources and latencies
1869 /// inside and outside the zone.
1870 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
1871                                                    SchedBoundary &OtherZone) {
1872   // Now that potential stalls have been considered, apply preemptive heuristics
1873   // based on the the total latency and resources inside and outside this
1874   // zone.
1875
1876   // Compute remaining latency. We need this both to determine whether the
1877   // overall schedule has become latency-limited and whether the instructions
1878   // outside this zone are resource or latency limited.
1879   //
1880   // The "dependent" latency is updated incrementally during scheduling as the
1881   // max height/depth of scheduled nodes minus the cycles since it was
1882   // scheduled:
1883   //   DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
1884   //
1885   // The "independent" latency is the max ready queue depth:
1886   //   ILat = max N.depth for N in Available|Pending
1887   //
1888   // RemainingLatency is the greater of independent and dependent latency.
1889   unsigned RemLatency = DependentLatency;
1890   RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
1891   RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
1892
1893   // Compute the critical resource outside the zone.
1894   unsigned OtherCritIdx;
1895   unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
1896
1897   bool OtherResLimited = false;
1898   if (SchedModel->hasInstrSchedModel()) {
1899     unsigned LFactor = SchedModel->getLatencyFactor();
1900     OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
1901   }
1902   if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
1903     Policy.ReduceLatency |= true;
1904     DEBUG(dbgs() << "  " << Available.getName() << " RemainingLatency "
1905           << RemLatency << " + " << CurrCycle << "c > CritPath "
1906           << Rem->CriticalPath << "\n");
1907   }
1908   // If the same resource is limiting inside and outside the zone, do nothing.
1909   if (ZoneCritResIdx == OtherCritIdx)
1910     return;
1911
1912   DEBUG(
1913     if (IsResourceLimited) {
1914       dbgs() << "  " << Available.getName() << " ResourceLimited: "
1915              << getResourceName(ZoneCritResIdx) << "\n";
1916     }
1917     if (OtherResLimited)
1918       dbgs() << "  RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
1919     if (!IsResourceLimited && !OtherResLimited)
1920       dbgs() << "  Latency limited both directions.\n");
1921
1922   if (IsResourceLimited && !Policy.ReduceResIdx)
1923     Policy.ReduceResIdx = ZoneCritResIdx;
1924
1925   if (OtherResLimited)
1926     Policy.DemandResIdx = OtherCritIdx;
1927 }
1928
1929 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1930                                                      unsigned ReadyCycle) {
1931   if (ReadyCycle < MinReadyCycle)
1932     MinReadyCycle = ReadyCycle;
1933
1934   // Check for interlocks first. For the purpose of other heuristics, an
1935   // instruction that cannot issue appears as if it's not in the ReadyQueue.
1936   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1937   if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1938     Pending.push(SU);
1939   else
1940     Available.push(SU);
1941
1942   // Record this node as an immediate dependent of the scheduled node.
1943   NextSUs.insert(SU);
1944 }
1945
1946 /// Move the boundary of scheduled code by one cycle.
1947 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
1948   if (SchedModel->getMicroOpBufferSize() == 0) {
1949     assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1950     if (MinReadyCycle > NextCycle)
1951       NextCycle = MinReadyCycle;
1952   }
1953   // Update the current micro-ops, which will issue in the next cycle.
1954   unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1955   CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1956
1957   // Decrement DependentLatency based on the next cycle.
1958   if ((NextCycle - CurrCycle) > DependentLatency)
1959     DependentLatency = 0;
1960   else
1961     DependentLatency -= (NextCycle - CurrCycle);
1962
1963   if (!HazardRec->isEnabled()) {
1964     // Bypass HazardRec virtual calls.
1965     CurrCycle = NextCycle;
1966   }
1967   else {
1968     // Bypass getHazardType calls in case of long latency.
1969     for (; CurrCycle != NextCycle; ++CurrCycle) {
1970       if (isTop())
1971         HazardRec->AdvanceCycle();
1972       else
1973         HazardRec->RecedeCycle();
1974     }
1975   }
1976   CheckPending = true;
1977   unsigned LFactor = SchedModel->getLatencyFactor();
1978   IsResourceLimited =
1979     (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1980     > (int)LFactor;
1981
1982   DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1983 }
1984
1985 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
1986                                                               unsigned Count) {
1987   ExecutedResCounts[PIdx] += Count;
1988   if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1989     MaxExecutedResCount = ExecutedResCounts[PIdx];
1990 }
1991
1992 /// Add the given processor resource to this scheduled zone.
1993 ///
1994 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1995 /// during which this resource is consumed.
1996 ///
1997 /// \return the next cycle at which the instruction may execute without
1998 /// oversubscribing resources.
1999 unsigned ConvergingScheduler::SchedBoundary::
2000 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
2001   unsigned Factor = SchedModel->getResourceFactor(PIdx);
2002   unsigned Count = Factor * Cycles;
2003   DEBUG(dbgs() << "  " << getResourceName(PIdx)
2004         << " +" << Cycles << "x" << Factor << "u\n");
2005
2006   // Update Executed resources counts.
2007   incExecutedResources(PIdx, Count);
2008   assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
2009   Rem->RemainingCounts[PIdx] -= Count;
2010
2011   // Check if this resource exceeds the current critical resource. If so, it
2012   // becomes the critical resource.
2013   if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
2014     ZoneCritResIdx = PIdx;
2015     DEBUG(dbgs() << "  *** Critical resource "
2016           << getResourceName(PIdx) << ": "
2017           << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
2018   }
2019   // TODO: We don't yet model reserved resources. It's not hard though.
2020   return CurrCycle;
2021 }
2022
2023 /// Move the boundary of scheduled code by one SUnit.
2024 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
2025   // Update the reservation table.
2026   if (HazardRec->isEnabled()) {
2027     if (!isTop() && SU->isCall) {
2028       // Calls are scheduled with their preceding instructions. For bottom-up
2029       // scheduling, clear the pipeline state before emitting.
2030       HazardRec->Reset();
2031     }
2032     HazardRec->EmitInstruction(SU);
2033   }
2034   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2035   unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
2036   CurrMOps += IncMOps;
2037   // checkHazard prevents scheduling multiple instructions per cycle that exceed
2038   // issue width. However, we commonly reach the maximum. In this case
2039   // opportunistically bump the cycle to avoid uselessly checking everything in
2040   // the readyQ. Furthermore, a single instruction may produce more than one
2041   // cycle's worth of micro-ops.
2042   //
2043   // TODO: Also check if this SU must end a dispatch group.
2044   unsigned NextCycle = CurrCycle;
2045   if (CurrMOps >= SchedModel->getIssueWidth()) {
2046     ++NextCycle;
2047     DEBUG(dbgs() << "  *** Max MOps " << CurrMOps
2048           << " at cycle " << CurrCycle << '\n');
2049   }
2050   unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
2051   DEBUG(dbgs() << "  Ready @" << ReadyCycle << "c\n");
2052
2053   switch (SchedModel->getMicroOpBufferSize()) {
2054   case 0:
2055     assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
2056     break;
2057   case 1:
2058     if (ReadyCycle > NextCycle) {
2059       NextCycle = ReadyCycle;
2060       DEBUG(dbgs() << "  *** Stall until: " << ReadyCycle << "\n");
2061     }
2062     break;
2063   default:
2064     // We don't currently model the OOO reorder buffer, so consider all
2065     // scheduled MOps to be "retired".
2066     break;
2067   }
2068   RetiredMOps += IncMOps;
2069
2070   // Update resource counts and critical resource.
2071   if (SchedModel->hasInstrSchedModel()) {
2072     unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
2073     assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
2074     Rem->RemIssueCount -= DecRemIssue;
2075     if (ZoneCritResIdx) {
2076       // Scale scheduled micro-ops for comparing with the critical resource.
2077       unsigned ScaledMOps =
2078         RetiredMOps * SchedModel->getMicroOpFactor();
2079
2080       // If scaled micro-ops are now more than the previous critical resource by
2081       // a full cycle, then micro-ops issue becomes critical.
2082       if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
2083           >= (int)SchedModel->getLatencyFactor()) {
2084         ZoneCritResIdx = 0;
2085         DEBUG(dbgs() << "  *** Critical resource NumMicroOps: "
2086               << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
2087       }
2088     }
2089     for (TargetSchedModel::ProcResIter
2090            PI = SchedModel->getWriteProcResBegin(SC),
2091            PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2092       unsigned RCycle =
2093         countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
2094       if (RCycle > NextCycle)
2095         NextCycle = RCycle;
2096     }
2097   }
2098   // Update ExpectedLatency and DependentLatency.
2099   unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
2100   unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
2101   if (SU->getDepth() > TopLatency) {
2102     TopLatency = SU->getDepth();
2103     DEBUG(dbgs() << "  " << Available.getName()
2104           << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
2105   }
2106   if (SU->getHeight() > BotLatency) {
2107     BotLatency = SU->getHeight();
2108     DEBUG(dbgs() << "  " << Available.getName()
2109           << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
2110   }
2111   // If we stall for any reason, bump the cycle.
2112   if (NextCycle > CurrCycle) {
2113     bumpCycle(NextCycle);
2114   }
2115   else {
2116     // After updating ZoneCritResIdx and ExpectedLatency, check if we're
2117     // resource limited. If a stall occured, bumpCycle does this.
2118     unsigned LFactor = SchedModel->getLatencyFactor();
2119     IsResourceLimited =
2120       (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
2121       > (int)LFactor;
2122   }
2123   DEBUG(dumpScheduledState());
2124 }
2125
2126 /// Release pending ready nodes in to the available queue. This makes them
2127 /// visible to heuristics.
2128 void ConvergingScheduler::SchedBoundary::releasePending() {
2129   // If the available queue is empty, it is safe to reset MinReadyCycle.
2130   if (Available.empty())
2131     MinReadyCycle = UINT_MAX;
2132
2133   // Check to see if any of the pending instructions are ready to issue.  If
2134   // so, add them to the available queue.
2135   bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
2136   for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
2137     SUnit *SU = *(Pending.begin()+i);
2138     unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
2139
2140     if (ReadyCycle < MinReadyCycle)
2141       MinReadyCycle = ReadyCycle;
2142
2143     if (!IsBuffered && ReadyCycle > CurrCycle)
2144       continue;
2145
2146     if (checkHazard(SU))
2147       continue;
2148
2149     Available.push(SU);
2150     Pending.remove(Pending.begin()+i);
2151     --i; --e;
2152   }
2153   DEBUG(if (!Pending.empty()) Pending.dump());
2154   CheckPending = false;
2155 }
2156
2157 /// Remove SU from the ready set for this boundary.
2158 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
2159   if (Available.isInQueue(SU))
2160     Available.remove(Available.find(SU));
2161   else {
2162     assert(Pending.isInQueue(SU) && "bad ready count");
2163     Pending.remove(Pending.find(SU));
2164   }
2165 }
2166
2167 /// If this queue only has one ready candidate, return it. As a side effect,
2168 /// defer any nodes that now hit a hazard, and advance the cycle until at least
2169 /// one node is ready. If multiple instructions are ready, return NULL.
2170 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
2171   if (CheckPending)
2172     releasePending();
2173
2174   if (CurrMOps > 0) {
2175     // Defer any ready instrs that now have a hazard.
2176     for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
2177       if (checkHazard(*I)) {
2178         Pending.push(*I);
2179         I = Available.remove(I);
2180         continue;
2181       }
2182       ++I;
2183     }
2184   }
2185   for (unsigned i = 0; Available.empty(); ++i) {
2186     assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
2187            "permanent hazard"); (void)i;
2188     bumpCycle(CurrCycle + 1);
2189     releasePending();
2190   }
2191   if (Available.size() == 1)
2192     return *Available.begin();
2193   return NULL;
2194 }
2195
2196 #ifndef NDEBUG
2197 // This is useful information to dump after bumpNode.
2198 // Note that the Queue contents are more useful before pickNodeFromQueue.
2199 void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
2200   unsigned ResFactor;
2201   unsigned ResCount;
2202   if (ZoneCritResIdx) {
2203     ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
2204     ResCount = getResourceCount(ZoneCritResIdx);
2205   }
2206   else {
2207     ResFactor = SchedModel->getMicroOpFactor();
2208     ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
2209   }
2210   unsigned LFactor = SchedModel->getLatencyFactor();
2211   dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
2212          << "  Retired: " << RetiredMOps;
2213   dbgs() << "\n  Executed: " << getExecutedCount() / LFactor << "c";
2214   dbgs() << "\n  Critical: " << ResCount / LFactor << "c, "
2215          << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
2216          << "\n  ExpectedLatency: " << ExpectedLatency << "c\n"
2217          << (IsResourceLimited ? "  - Resource" : "  - Latency")
2218          << " limited.\n";
2219 }
2220 #endif
2221
2222 void ConvergingScheduler::SchedCandidate::
2223 initResourceDelta(const ScheduleDAGMI *DAG,
2224                   const TargetSchedModel *SchedModel) {
2225   if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
2226     return;
2227
2228   const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
2229   for (TargetSchedModel::ProcResIter
2230          PI = SchedModel->getWriteProcResBegin(SC),
2231          PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
2232     if (PI->ProcResourceIdx == Policy.ReduceResIdx)
2233       ResDelta.CritResources += PI->Cycles;
2234     if (PI->ProcResourceIdx == Policy.DemandResIdx)
2235       ResDelta.DemandedResources += PI->Cycles;
2236   }
2237 }
2238
2239
2240 /// Return true if this heuristic determines order.
2241 static bool tryLess(int TryVal, int CandVal,
2242                     ConvergingScheduler::SchedCandidate &TryCand,
2243                     ConvergingScheduler::SchedCandidate &Cand,
2244                     ConvergingScheduler::CandReason Reason) {
2245   if (TryVal < CandVal) {
2246     TryCand.Reason = Reason;
2247     return true;
2248   }
2249   if (TryVal > CandVal) {
2250     if (Cand.Reason > Reason)
2251       Cand.Reason = Reason;
2252     return true;
2253   }
2254   Cand.setRepeat(Reason);
2255   return false;
2256 }
2257
2258 static bool tryGreater(int TryVal, int CandVal,
2259                        ConvergingScheduler::SchedCandidate &TryCand,
2260                        ConvergingScheduler::SchedCandidate &Cand,
2261                        ConvergingScheduler::CandReason Reason) {
2262   if (TryVal > CandVal) {
2263     TryCand.Reason = Reason;
2264     return true;
2265   }
2266   if (TryVal < CandVal) {
2267     if (Cand.Reason > Reason)
2268       Cand.Reason = Reason;
2269     return true;
2270   }
2271   Cand.setRepeat(Reason);
2272   return false;
2273 }
2274
2275 static bool tryPressure(const PressureChange &TryP,
2276                         const PressureChange &CandP,
2277                         ConvergingScheduler::SchedCandidate &TryCand,
2278                         ConvergingScheduler::SchedCandidate &Cand,
2279                         ConvergingScheduler::CandReason Reason) {
2280   int TryRank = TryP.getPSetOrMax();
2281   int CandRank = CandP.getPSetOrMax();
2282   // If both candidates affect the same set, go with the smallest increase.
2283   if (TryRank == CandRank) {
2284     return tryLess(TryP.getUnitInc(), CandP.getUnitInc(), TryCand, Cand,
2285                    Reason);
2286   }
2287   // If one candidate decreases and the other increases, go with it.
2288   // Invalid candidates have UnitInc==0.
2289   if (tryLess(TryP.getUnitInc() < 0, CandP.getUnitInc() < 0, TryCand, Cand,
2290               Reason)) {
2291     return true;
2292   }
2293   // If the candidates are decreasing pressure, reverse priority.
2294   if (TryP.getUnitInc() < 0)
2295     std::swap(TryRank, CandRank);
2296   return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2297 }
2298
2299 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2300   return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2301 }
2302
2303 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2304 /// their physreg def/use.
2305 ///
2306 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2307 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2308 /// with the operation that produces or consumes the physreg. We'll do this when
2309 /// regalloc has support for parallel copies.
2310 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2311   const MachineInstr *MI = SU->getInstr();
2312   if (!MI->isCopy())
2313     return 0;
2314
2315   unsigned ScheduledOper = isTop ? 1 : 0;
2316   unsigned UnscheduledOper = isTop ? 0 : 1;
2317   // If we have already scheduled the physreg produce/consumer, immediately
2318   // schedule the copy.
2319   if (TargetRegisterInfo::isPhysicalRegister(
2320         MI->getOperand(ScheduledOper).getReg()))
2321     return 1;
2322   // If the physreg is at the boundary, defer it. Otherwise schedule it
2323   // immediately to free the dependent. We can hoist the copy later.
2324   bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2325   if (TargetRegisterInfo::isPhysicalRegister(
2326         MI->getOperand(UnscheduledOper).getReg()))
2327     return AtBoundary ? -1 : 1;
2328   return 0;
2329 }
2330
2331 static bool tryLatency(ConvergingScheduler::SchedCandidate &TryCand,
2332                        ConvergingScheduler::SchedCandidate &Cand,
2333                        ConvergingScheduler::SchedBoundary &Zone) {
2334   if (Zone.isTop()) {
2335     if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2336       if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2337                   TryCand, Cand, ConvergingScheduler::TopDepthReduce))
2338         return true;
2339     }
2340     if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2341                    TryCand, Cand, ConvergingScheduler::TopPathReduce))
2342       return true;
2343   }
2344   else {
2345     if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2346       if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2347                   TryCand, Cand, ConvergingScheduler::BotHeightReduce))
2348         return true;
2349     }
2350     if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2351                    TryCand, Cand, ConvergingScheduler::BotPathReduce))
2352       return true;
2353   }
2354   return false;
2355 }
2356
2357 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2358 /// hierarchical. This may be more efficient than a graduated cost model because
2359 /// we don't need to evaluate all aspects of the model for each node in the
2360 /// queue. But it's really done to make the heuristics easier to debug and
2361 /// statistically analyze.
2362 ///
2363 /// \param Cand provides the policy and current best candidate.
2364 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2365 /// \param Zone describes the scheduled zone that we are extending.
2366 /// \param RPTracker describes reg pressure within the scheduled zone.
2367 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
2368 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
2369                                        SchedCandidate &TryCand,
2370                                        SchedBoundary &Zone,
2371                                        const RegPressureTracker &RPTracker,
2372                                        RegPressureTracker &TempTracker) {
2373
2374   if (DAG->shouldTrackPressure()) {
2375     // Always initialize TryCand's RPDelta.
2376     if (Zone.isTop()) {
2377       TempTracker.getMaxDownwardPressureDelta(
2378         TryCand.SU->getInstr(),
2379         TryCand.RPDelta,
2380         DAG->getRegionCriticalPSets(),
2381         DAG->getRegPressure().MaxSetPressure);
2382     }
2383     else {
2384       if (VerifyScheduling) {
2385         TempTracker.getMaxUpwardPressureDelta(
2386           TryCand.SU->getInstr(),
2387           &DAG->getPressureDiff(TryCand.SU),
2388           TryCand.RPDelta,
2389           DAG->getRegionCriticalPSets(),
2390           DAG->getRegPressure().MaxSetPressure);
2391       }
2392       else {
2393         RPTracker.getUpwardPressureDelta(
2394           TryCand.SU->getInstr(),
2395           DAG->getPressureDiff(TryCand.SU),
2396           TryCand.RPDelta,
2397           DAG->getRegionCriticalPSets(),
2398           DAG->getRegPressure().MaxSetPressure);
2399       }
2400     }
2401   }
2402
2403   // Initialize the candidate if needed.
2404   if (!Cand.isValid()) {
2405     TryCand.Reason = NodeOrder;
2406     return;
2407   }
2408
2409   if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2410                  biasPhysRegCopy(Cand.SU, Zone.isTop()),
2411                  TryCand, Cand, PhysRegCopy))
2412     return;
2413
2414   // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2415   // invalid; convert it to INT_MAX to give it lowest priority.
2416   if (DAG->shouldTrackPressure() && tryPressure(TryCand.RPDelta.Excess,
2417                                                 Cand.RPDelta.Excess,
2418                                                 TryCand, Cand, RegExcess))
2419     return;
2420
2421   // For loops that are acyclic path limited, aggressively schedule for latency.
2422   if (Rem.IsAcyclicLatencyLimited && tryLatency(TryCand, Cand, Zone))
2423     return;
2424
2425   // Avoid increasing the max critical pressure in the scheduled region.
2426   if (DAG->shouldTrackPressure() && tryPressure(TryCand.RPDelta.CriticalMax,
2427                                                 Cand.RPDelta.CriticalMax,
2428                                                 TryCand, Cand, RegCritical))
2429     return;
2430
2431   // Keep clustered nodes together to encourage downstream peephole
2432   // optimizations which may reduce resource requirements.
2433   //
2434   // This is a best effort to set things up for a post-RA pass. Optimizations
2435   // like generating loads of multiple registers should ideally be done within
2436   // the scheduler pass by combining the loads during DAG postprocessing.
2437   const SUnit *NextClusterSU =
2438     Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2439   if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2440                  TryCand, Cand, Cluster))
2441     return;
2442
2443   // Weak edges are for clustering and other constraints.
2444   if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2445               getWeakLeft(Cand.SU, Zone.isTop()),
2446               TryCand, Cand, Weak)) {
2447     return;
2448   }
2449   // Avoid increasing the max pressure of the entire region.
2450   if (DAG->shouldTrackPressure() && tryPressure(TryCand.RPDelta.CurrentMax,
2451                                                 Cand.RPDelta.CurrentMax,
2452                                                 TryCand, Cand, RegMax))
2453     return;
2454
2455   // Avoid critical resource consumption and balance the schedule.
2456   TryCand.initResourceDelta(DAG, SchedModel);
2457   if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2458               TryCand, Cand, ResourceReduce))
2459     return;
2460   if (tryGreater(TryCand.ResDelta.DemandedResources,
2461                  Cand.ResDelta.DemandedResources,
2462                  TryCand, Cand, ResourceDemand))
2463     return;
2464
2465   // Avoid serializing long latency dependence chains.
2466   // For acyclic path limited loops, latency was already checked above.
2467   if (Cand.Policy.ReduceLatency && !Rem.IsAcyclicLatencyLimited
2468       && tryLatency(TryCand, Cand, Zone)) {
2469     return;
2470   }
2471
2472   // Prefer immediate defs/users of the last scheduled instruction. This is a
2473   // local pressure avoidance strategy that also makes the machine code
2474   // readable.
2475   if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
2476                  TryCand, Cand, NextDefUse))
2477     return;
2478
2479   // Fall through to original instruction order.
2480   if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2481       || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2482     TryCand.Reason = NodeOrder;
2483   }
2484 }
2485
2486 #ifndef NDEBUG
2487 const char *ConvergingScheduler::getReasonStr(
2488   ConvergingScheduler::CandReason Reason) {
2489   switch (Reason) {
2490   case NoCand:         return "NOCAND    ";
2491   case PhysRegCopy:    return "PREG-COPY";
2492   case RegExcess:      return "REG-EXCESS";
2493   case RegCritical:    return "REG-CRIT  ";
2494   case Cluster:        return "CLUSTER   ";
2495   case Weak:           return "WEAK      ";
2496   case RegMax:         return "REG-MAX   ";
2497   case ResourceReduce: return "RES-REDUCE";
2498   case ResourceDemand: return "RES-DEMAND";
2499   case TopDepthReduce: return "TOP-DEPTH ";
2500   case TopPathReduce:  return "TOP-PATH  ";
2501   case BotHeightReduce:return "BOT-HEIGHT";
2502   case BotPathReduce:  return "BOT-PATH  ";
2503   case NextDefUse:     return "DEF-USE   ";
2504   case NodeOrder:      return "ORDER     ";
2505   };
2506   llvm_unreachable("Unknown reason!");
2507 }
2508
2509 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
2510   PressureChange P;
2511   unsigned ResIdx = 0;
2512   unsigned Latency = 0;
2513   switch (Cand.Reason) {
2514   default:
2515     break;
2516   case RegExcess:
2517     P = Cand.RPDelta.Excess;
2518     break;
2519   case RegCritical:
2520     P = Cand.RPDelta.CriticalMax;
2521     break;
2522   case RegMax:
2523     P = Cand.RPDelta.CurrentMax;
2524     break;
2525   case ResourceReduce:
2526     ResIdx = Cand.Policy.ReduceResIdx;
2527     break;
2528   case ResourceDemand:
2529     ResIdx = Cand.Policy.DemandResIdx;
2530     break;
2531   case TopDepthReduce:
2532     Latency = Cand.SU->getDepth();
2533     break;
2534   case TopPathReduce:
2535     Latency = Cand.SU->getHeight();
2536     break;
2537   case BotHeightReduce:
2538     Latency = Cand.SU->getHeight();
2539     break;
2540   case BotPathReduce:
2541     Latency = Cand.SU->getDepth();
2542     break;
2543   }
2544   dbgs() << "  SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2545   if (P.isValid())
2546     dbgs() << " " << TRI->getRegPressureSetName(P.getPSet())
2547            << ":" << P.getUnitInc() << " ";
2548   else
2549     dbgs() << "      ";
2550   if (ResIdx)
2551     dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2552   else
2553     dbgs() << "         ";
2554   if (Latency)
2555     dbgs() << " " << Latency << " cycles ";
2556   else
2557     dbgs() << "          ";
2558   dbgs() << '\n';
2559 }
2560 #endif
2561
2562 /// Pick the best candidate from the top queue.
2563 ///
2564 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2565 /// DAG building. To adjust for the current scheduling location we need to
2566 /// maintain the number of vreg uses remaining to be top-scheduled.
2567 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2568                                             const RegPressureTracker &RPTracker,
2569                                             SchedCandidate &Cand) {
2570   ReadyQueue &Q = Zone.Available;
2571
2572   DEBUG(Q.dump());
2573
2574   // getMaxPressureDelta temporarily modifies the tracker.
2575   RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2576
2577   for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2578
2579     SchedCandidate TryCand(Cand.Policy);
2580     TryCand.SU = *I;
2581     tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2582     if (TryCand.Reason != NoCand) {
2583       // Initialize resource delta if needed in case future heuristics query it.
2584       if (TryCand.ResDelta == SchedResourceDelta())
2585         TryCand.initResourceDelta(DAG, SchedModel);
2586       Cand.setBest(TryCand);
2587       DEBUG(traceCandidate(Cand));
2588     }
2589   }
2590 }
2591
2592 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
2593                       bool IsTop) {
2594   DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2595         << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
2596 }
2597
2598 /// Pick the best candidate node from either the top or bottom queue.
2599 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
2600   // Schedule as far as possible in the direction of no choice. This is most
2601   // efficient, but also provides the best heuristics for CriticalPSets.
2602   if (SUnit *SU = Bot.pickOnlyChoice()) {
2603     IsTopNode = false;
2604     DEBUG(dbgs() << "Pick Bot NOCAND\n");
2605     return SU;
2606   }
2607   if (SUnit *SU = Top.pickOnlyChoice()) {
2608     IsTopNode = true;
2609     DEBUG(dbgs() << "Pick Top NOCAND\n");
2610     return SU;
2611   }
2612   CandPolicy NoPolicy;
2613   SchedCandidate BotCand(NoPolicy);
2614   SchedCandidate TopCand(NoPolicy);
2615   Bot.setPolicy(BotCand.Policy, Top);
2616   Top.setPolicy(TopCand.Policy, Bot);
2617
2618   // Prefer bottom scheduling when heuristics are silent.
2619   pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2620   assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2621
2622   // If either Q has a single candidate that provides the least increase in
2623   // Excess pressure, we can immediately schedule from that Q.
2624   //
2625   // RegionCriticalPSets summarizes the pressure within the scheduled region and
2626   // affects picking from either Q. If scheduling in one direction must
2627   // increase pressure for one of the excess PSets, then schedule in that
2628   // direction first to provide more freedom in the other direction.
2629   if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2630       || (BotCand.Reason == RegCritical
2631           && !BotCand.isRepeat(RegCritical)))
2632   {
2633     IsTopNode = false;
2634     tracePick(BotCand, IsTopNode);
2635     return BotCand.SU;
2636   }
2637   // Check if the top Q has a better candidate.
2638   pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2639   assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2640
2641   // Choose the queue with the most important (lowest enum) reason.
2642   if (TopCand.Reason < BotCand.Reason) {
2643     IsTopNode = true;
2644     tracePick(TopCand, IsTopNode);
2645     return TopCand.SU;
2646   }
2647   // Otherwise prefer the bottom candidate, in node order if all else failed.
2648   IsTopNode = false;
2649   tracePick(BotCand, IsTopNode);
2650   return BotCand.SU;
2651 }
2652
2653 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
2654 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2655   if (DAG->top() == DAG->bottom()) {
2656     assert(Top.Available.empty() && Top.Pending.empty() &&
2657            Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2658     return NULL;
2659   }
2660   SUnit *SU;
2661   do {
2662     if (ForceTopDown) {
2663       SU = Top.pickOnlyChoice();
2664       if (!SU) {
2665         CandPolicy NoPolicy;
2666         SchedCandidate TopCand(NoPolicy);
2667         pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2668         assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2669         SU = TopCand.SU;
2670       }
2671       IsTopNode = true;
2672     }
2673     else if (ForceBottomUp) {
2674       SU = Bot.pickOnlyChoice();
2675       if (!SU) {
2676         CandPolicy NoPolicy;
2677         SchedCandidate BotCand(NoPolicy);
2678         pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2679         assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2680         SU = BotCand.SU;
2681       }
2682       IsTopNode = false;
2683     }
2684     else {
2685       SU = pickNodeBidirectional(IsTopNode);
2686     }
2687   } while (SU->isScheduled);
2688
2689   if (SU->isTopReady())
2690     Top.removeReady(SU);
2691   if (SU->isBottomReady())
2692     Bot.removeReady(SU);
2693
2694   DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2695   return SU;
2696 }
2697
2698 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2699
2700   MachineBasicBlock::iterator InsertPos = SU->getInstr();
2701   if (!isTop)
2702     ++InsertPos;
2703   SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2704
2705   // Find already scheduled copies with a single physreg dependence and move
2706   // them just above the scheduled instruction.
2707   for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2708        I != E; ++I) {
2709     if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2710       continue;
2711     SUnit *DepSU = I->getSUnit();
2712     if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2713       continue;
2714     MachineInstr *Copy = DepSU->getInstr();
2715     if (!Copy->isCopy())
2716       continue;
2717     DEBUG(dbgs() << "  Rescheduling physreg copy ";
2718           I->getSUnit()->dump(DAG));
2719     DAG->moveInstruction(Copy, InsertPos);
2720   }
2721 }
2722
2723 /// Update the scheduler's state after scheduling a node. This is the same node
2724 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2725 /// it's state based on the current cycle before MachineSchedStrategy does.
2726 ///
2727 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2728 /// them here. See comments in biasPhysRegCopy.
2729 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2730   if (IsTopNode) {
2731     SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
2732     Top.bumpNode(SU);
2733     if (SU->hasPhysRegUses)
2734       reschedulePhysRegCopies(SU, true);
2735   }
2736   else {
2737     SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
2738     Bot.bumpNode(SU);
2739     if (SU->hasPhysRegDefs)
2740       reschedulePhysRegCopies(SU, false);
2741   }
2742 }
2743
2744 /// Create the standard converging machine scheduler. This will be used as the
2745 /// default scheduler if the target does not set a default.
2746 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2747   assert((!ForceTopDown || !ForceBottomUp) &&
2748          "-misched-topdown incompatible with -misched-bottomup");
2749   ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
2750   // Register DAG post-processors.
2751   //
2752   // FIXME: extend the mutation API to allow earlier mutations to instantiate
2753   // data and pass it to later mutations. Have a single mutation that gathers
2754   // the interesting nodes in one pass.
2755   DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
2756   if (EnableLoadCluster)
2757     DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2758   if (EnableMacroFusion)
2759     DAG->addMutation(new MacroFusion(DAG->TII));
2760   return DAG;
2761 }
2762 static MachineSchedRegistry
2763 ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2764                         createConvergingSched);
2765
2766 //===----------------------------------------------------------------------===//
2767 // ILP Scheduler. Currently for experimental analysis of heuristics.
2768 //===----------------------------------------------------------------------===//
2769
2770 namespace {
2771 /// \brief Order nodes by the ILP metric.
2772 struct ILPOrder {
2773   const SchedDFSResult *DFSResult;
2774   const BitVector *ScheduledTrees;
2775   bool MaximizeILP;
2776
2777   ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2778
2779   /// \brief Apply a less-than relation on node priority.
2780   ///
2781   /// (Return true if A comes after B in the Q.)
2782   bool operator()(const SUnit *A, const SUnit *B) const {
2783     unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2784     unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2785     if (SchedTreeA != SchedTreeB) {
2786       // Unscheduled trees have lower priority.
2787       if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2788         return ScheduledTrees->test(SchedTreeB);
2789
2790       // Trees with shallower connections have have lower priority.
2791       if (DFSResult->getSubtreeLevel(SchedTreeA)
2792           != DFSResult->getSubtreeLevel(SchedTreeB)) {
2793         return DFSResult->getSubtreeLevel(SchedTreeA)
2794           < DFSResult->getSubtreeLevel(SchedTreeB);
2795       }
2796     }
2797     if (MaximizeILP)
2798       return DFSResult->getILP(A) < DFSResult->getILP(B);
2799     else
2800       return DFSResult->getILP(A) > DFSResult->getILP(B);
2801   }
2802 };
2803
2804 /// \brief Schedule based on the ILP metric.
2805 class ILPScheduler : public MachineSchedStrategy {
2806   /// In case all subtrees are eventually connected to a common root through
2807   /// data dependence (e.g. reduction), place an upper limit on their size.
2808   ///
2809   /// FIXME: A subtree limit is generally good, but in the situation commented
2810   /// above, where multiple similar subtrees feed a common root, we should
2811   /// only split at a point where the resulting subtrees will be balanced.
2812   /// (a motivating test case must be found).
2813   static const unsigned SubtreeLimit = 16;
2814
2815   ScheduleDAGMI *DAG;
2816   ILPOrder Cmp;
2817
2818   std::vector<SUnit*> ReadyQ;
2819 public:
2820   ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2821
2822   virtual void initialize(ScheduleDAGMI *dag) {
2823     DAG = dag;
2824     DAG->computeDFSResult();
2825     Cmp.DFSResult = DAG->getDFSResult();
2826     Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2827     ReadyQ.clear();
2828   }
2829
2830   virtual void registerRoots() {
2831     // Restore the heap in ReadyQ with the updated DFS results.
2832     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2833   }
2834
2835   /// Implement MachineSchedStrategy interface.
2836   /// -----------------------------------------
2837
2838   /// Callback to select the highest priority node from the ready Q.
2839   virtual SUnit *pickNode(bool &IsTopNode) {
2840     if (ReadyQ.empty()) return NULL;
2841     std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2842     SUnit *SU = ReadyQ.back();
2843     ReadyQ.pop_back();
2844     IsTopNode = false;
2845     DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
2846           << " ILP: " << DAG->getDFSResult()->getILP(SU)
2847           << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2848           << DAG->getDFSResult()->getSubtreeLevel(
2849             DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
2850           << "Scheduling " << *SU->getInstr());
2851     return SU;
2852   }
2853
2854   /// \brief Scheduler callback to notify that a new subtree is scheduled.
2855   virtual void scheduleTree(unsigned SubtreeID) {
2856     std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2857   }
2858
2859   /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2860   /// DFSResults, and resort the priority Q.
2861   virtual void schedNode(SUnit *SU, bool IsTopNode) {
2862     assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2863   }
2864
2865   virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2866
2867   virtual void releaseBottomNode(SUnit *SU) {
2868     ReadyQ.push_back(SU);
2869     std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2870   }
2871 };
2872 } // namespace
2873
2874 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2875   return new ScheduleDAGMI(C, new ILPScheduler(true));
2876 }
2877 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2878   return new ScheduleDAGMI(C, new ILPScheduler(false));
2879 }
2880 static MachineSchedRegistry ILPMaxRegistry(
2881   "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2882 static MachineSchedRegistry ILPMinRegistry(
2883   "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2884
2885 //===----------------------------------------------------------------------===//
2886 // Machine Instruction Shuffler for Correctness Testing
2887 //===----------------------------------------------------------------------===//
2888
2889 #ifndef NDEBUG
2890 namespace {
2891 /// Apply a less-than relation on the node order, which corresponds to the
2892 /// instruction order prior to scheduling. IsReverse implements greater-than.
2893 template<bool IsReverse>
2894 struct SUnitOrder {
2895   bool operator()(SUnit *A, SUnit *B) const {
2896     if (IsReverse)
2897       return A->NodeNum > B->NodeNum;
2898     else
2899       return A->NodeNum < B->NodeNum;
2900   }
2901 };
2902
2903 /// Reorder instructions as much as possible.
2904 class InstructionShuffler : public MachineSchedStrategy {
2905   bool IsAlternating;
2906   bool IsTopDown;
2907
2908   // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2909   // gives nodes with a higher number higher priority causing the latest
2910   // instructions to be scheduled first.
2911   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2912     TopQ;
2913   // When scheduling bottom-up, use greater-than as the queue priority.
2914   PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2915     BottomQ;
2916 public:
2917   InstructionShuffler(bool alternate, bool topdown)
2918     : IsAlternating(alternate), IsTopDown(topdown) {}
2919
2920   virtual void initialize(ScheduleDAGMI *) {
2921     TopQ.clear();
2922     BottomQ.clear();
2923   }
2924
2925   /// Implement MachineSchedStrategy interface.
2926   /// -----------------------------------------
2927
2928   virtual SUnit *pickNode(bool &IsTopNode) {
2929     SUnit *SU;
2930     if (IsTopDown) {
2931       do {
2932         if (TopQ.empty()) return NULL;
2933         SU = TopQ.top();
2934         TopQ.pop();
2935       } while (SU->isScheduled);
2936       IsTopNode = true;
2937     }
2938     else {
2939       do {
2940         if (BottomQ.empty()) return NULL;
2941         SU = BottomQ.top();
2942         BottomQ.pop();
2943       } while (SU->isScheduled);
2944       IsTopNode = false;
2945     }
2946     if (IsAlternating)
2947       IsTopDown = !IsTopDown;
2948     return SU;
2949   }
2950
2951   virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2952
2953   virtual void releaseTopNode(SUnit *SU) {
2954     TopQ.push(SU);
2955   }
2956   virtual void releaseBottomNode(SUnit *SU) {
2957     BottomQ.push(SU);
2958   }
2959 };
2960 } // namespace
2961
2962 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2963   bool Alternate = !ForceTopDown && !ForceBottomUp;
2964   bool TopDown = !ForceBottomUp;
2965   assert((TopDown || !ForceTopDown) &&
2966          "-misched-topdown incompatible with -misched-bottomup");
2967   return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2968 }
2969 static MachineSchedRegistry ShufflerRegistry(
2970   "shuffle", "Shuffle machine instructions alternating directions",
2971   createInstructionShuffler);
2972 #endif // !NDEBUG
2973
2974 //===----------------------------------------------------------------------===//
2975 // GraphWriter support for ScheduleDAGMI.
2976 //===----------------------------------------------------------------------===//
2977
2978 #ifndef NDEBUG
2979 namespace llvm {
2980
2981 template<> struct GraphTraits<
2982   ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2983
2984 template<>
2985 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2986
2987   DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2988
2989   static std::string getGraphName(const ScheduleDAG *G) {
2990     return G->MF.getName();
2991   }
2992
2993   static bool renderGraphFromBottomUp() {
2994     return true;
2995   }
2996
2997   static bool isNodeHidden(const SUnit *Node) {
2998     return (Node->NumPreds > 10 || Node->NumSuccs > 10);
2999   }
3000
3001   static bool hasNodeAddressLabel(const SUnit *Node,
3002                                   const ScheduleDAG *Graph) {
3003     return false;
3004   }
3005
3006   /// If you want to override the dot attributes printed for a particular
3007   /// edge, override this method.
3008   static std::string getEdgeAttributes(const SUnit *Node,
3009                                        SUnitIterator EI,
3010                                        const ScheduleDAG *Graph) {
3011     if (EI.isArtificialDep())
3012       return "color=cyan,style=dashed";
3013     if (EI.isCtrlDep())
3014       return "color=blue,style=dashed";
3015     return "";
3016   }
3017
3018   static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
3019     std::string Str;
3020     raw_string_ostream SS(Str);
3021     SS << "SU(" << SU->NodeNum << ')';
3022     return SS.str();
3023   }
3024   static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
3025     return G->getGraphNodeLabel(SU);
3026   }
3027
3028   static std::string getNodeAttributes(const SUnit *N,
3029                                        const ScheduleDAG *Graph) {
3030     std::string Str("shape=Mrecord");
3031     const SchedDFSResult *DFS =
3032       static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
3033     if (DFS) {
3034       Str += ",style=filled,fillcolor=\"#";
3035       Str += DOT::getColorString(DFS->getSubtreeID(N));
3036       Str += '"';
3037     }
3038     return Str;
3039   }
3040 };
3041 } // namespace llvm
3042 #endif // NDEBUG
3043
3044 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
3045 /// rendered using 'dot'.
3046 ///
3047 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
3048 #ifndef NDEBUG
3049   ViewGraph(this, Name, false, Title);
3050 #else
3051   errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
3052          << "systems with Graphviz or gv!\n";
3053 #endif  // NDEBUG
3054 }
3055
3056 /// Out-of-line implementation with no arguments is handy for gdb.
3057 void ScheduleDAGMI::viewGraph() {
3058   viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
3059 }