Removing dependency on third party library for Intel JIT event support.
[oota-llvm.git] / lib / CodeGen / MachineRegisterInfo.cpp
1 //===-- lib/Codegen/MachineRegisterInfo.cpp -------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Implementation of the MachineRegisterInfo class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineRegisterInfo.h"
15 #include "llvm/CodeGen/MachineInstrBuilder.h"
16 #include "llvm/Target/TargetInstrInfo.h"
17 #include "llvm/Target/TargetMachine.h"
18 using namespace llvm;
19
20 MachineRegisterInfo::MachineRegisterInfo(const TargetRegisterInfo &TRI)
21   : TRI(&TRI), IsSSA(true), TracksLiveness(true) {
22   VRegInfo.reserve(256);
23   RegAllocHints.reserve(256);
24   UsedPhysRegs.resize(TRI.getNumRegs());
25   UsedPhysRegMask.resize(TRI.getNumRegs());
26
27   // Create the physreg use/def lists.
28   PhysRegUseDefLists = new MachineOperand*[TRI.getNumRegs()];
29   memset(PhysRegUseDefLists, 0, sizeof(MachineOperand*)*TRI.getNumRegs());
30 }
31
32 MachineRegisterInfo::~MachineRegisterInfo() {
33 #ifndef NDEBUG
34   clearVirtRegs();
35   for (unsigned i = 0, e = UsedPhysRegs.size(); i != e; ++i)
36     assert(!PhysRegUseDefLists[i] &&
37            "PhysRegUseDefLists has entries after all instructions are deleted");
38 #endif
39   delete [] PhysRegUseDefLists;
40 }
41
42 /// setRegClass - Set the register class of the specified virtual register.
43 ///
44 void
45 MachineRegisterInfo::setRegClass(unsigned Reg, const TargetRegisterClass *RC) {
46   VRegInfo[Reg].first = RC;
47 }
48
49 const TargetRegisterClass *
50 MachineRegisterInfo::constrainRegClass(unsigned Reg,
51                                        const TargetRegisterClass *RC,
52                                        unsigned MinNumRegs) {
53   const TargetRegisterClass *OldRC = getRegClass(Reg);
54   if (OldRC == RC)
55     return RC;
56   const TargetRegisterClass *NewRC = TRI->getCommonSubClass(OldRC, RC);
57   if (!NewRC || NewRC == OldRC)
58     return NewRC;
59   if (NewRC->getNumRegs() < MinNumRegs)
60     return 0;
61   setRegClass(Reg, NewRC);
62   return NewRC;
63 }
64
65 bool
66 MachineRegisterInfo::recomputeRegClass(unsigned Reg, const TargetMachine &TM) {
67   const TargetInstrInfo *TII = TM.getInstrInfo();
68   const TargetRegisterClass *OldRC = getRegClass(Reg);
69   const TargetRegisterClass *NewRC = TRI->getLargestLegalSuperClass(OldRC);
70
71   // Stop early if there is no room to grow.
72   if (NewRC == OldRC)
73     return false;
74
75   // Accumulate constraints from all uses.
76   for (reg_nodbg_iterator I = reg_nodbg_begin(Reg), E = reg_nodbg_end(); I != E;
77        ++I) {
78     const TargetRegisterClass *OpRC =
79       I->getRegClassConstraint(I.getOperandNo(), TII, TRI);
80     if (unsigned SubIdx = I.getOperand().getSubReg()) {
81       if (OpRC)
82         NewRC = TRI->getMatchingSuperRegClass(NewRC, OpRC, SubIdx);
83       else
84         NewRC = TRI->getSubClassWithSubReg(NewRC, SubIdx);
85     } else if (OpRC)
86       NewRC = TRI->getCommonSubClass(NewRC, OpRC);
87     if (!NewRC || NewRC == OldRC)
88       return false;
89   }
90   setRegClass(Reg, NewRC);
91   return true;
92 }
93
94 /// createVirtualRegister - Create and return a new virtual register in the
95 /// function with the specified register class.
96 ///
97 unsigned
98 MachineRegisterInfo::createVirtualRegister(const TargetRegisterClass *RegClass){
99   assert(RegClass && "Cannot create register without RegClass!");
100   assert(RegClass->isAllocatable() &&
101          "Virtual register RegClass must be allocatable.");
102
103   // New virtual register number.
104   unsigned Reg = TargetRegisterInfo::index2VirtReg(getNumVirtRegs());
105   VRegInfo.grow(Reg);
106   VRegInfo[Reg].first = RegClass;
107   RegAllocHints.grow(Reg);
108   return Reg;
109 }
110
111 /// clearVirtRegs - Remove all virtual registers (after physreg assignment).
112 void MachineRegisterInfo::clearVirtRegs() {
113 #ifndef NDEBUG
114   for (unsigned i = 0, e = getNumVirtRegs(); i != e; ++i)
115     assert(VRegInfo[TargetRegisterInfo::index2VirtReg(i)].second == 0 &&
116            "Vreg use list non-empty still?");
117 #endif
118   VRegInfo.clear();
119 }
120
121 /// Add MO to the linked list of operands for its register.
122 void MachineRegisterInfo::addRegOperandToUseList(MachineOperand *MO) {
123   assert(!MO->isOnRegUseList() && "Already on list");
124   MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
125   MachineOperand *const Head = HeadRef;
126
127   // Head points to the first list element.
128   // Next is NULL on the last list element.
129   // Prev pointers are circular, so Head->Prev == Last.
130
131   // Head is NULL for an empty list.
132   if (!Head) {
133     MO->Contents.Reg.Prev = MO;
134     MO->Contents.Reg.Next = 0;
135     HeadRef = MO;
136     return;
137   }
138   assert(MO->getReg() == Head->getReg() && "Different regs on the same list!");
139
140   // Insert MO between Last and Head in the circular Prev chain.
141   MachineOperand *Last = Head->Contents.Reg.Prev;
142   assert(Last && "Inconsistent use list");
143   assert(MO->getReg() == Last->getReg() && "Different regs on the same list!");
144   Head->Contents.Reg.Prev = MO;
145   MO->Contents.Reg.Prev = Last;
146
147   // Def operands always precede uses. This allows def_iterator to stop early.
148   // Insert def operands at the front, and use operands at the back.
149   if (MO->isDef()) {
150     // Insert def at the front.
151     MO->Contents.Reg.Next = Head;
152     HeadRef = MO;
153   } else {
154     // Insert use at the end.
155     MO->Contents.Reg.Next = 0;
156     Last->Contents.Reg.Next = MO;
157   }
158 }
159
160 /// Remove MO from its use-def list.
161 void MachineRegisterInfo::removeRegOperandFromUseList(MachineOperand *MO) {
162   assert(MO->isOnRegUseList() && "Operand not on use list");
163   MachineOperand *&HeadRef = getRegUseDefListHead(MO->getReg());
164   MachineOperand *const Head = HeadRef;
165   assert(Head && "List already empty");
166
167   // Unlink this from the doubly linked list of operands.
168   MachineOperand *Next = MO->Contents.Reg.Next;
169   MachineOperand *Prev = MO->Contents.Reg.Prev;
170
171   // Prev links are circular, next link is NULL instead of looping back to Head.
172   if (MO == Head)
173     HeadRef = Next;
174   else
175     Prev->Contents.Reg.Next = Next;
176
177   (Next ? Next : Head)->Contents.Reg.Prev = Prev;
178
179   MO->Contents.Reg.Prev = 0;
180   MO->Contents.Reg.Next = 0;
181 }
182
183 /// replaceRegWith - Replace all instances of FromReg with ToReg in the
184 /// machine function.  This is like llvm-level X->replaceAllUsesWith(Y),
185 /// except that it also changes any definitions of the register as well.
186 void MachineRegisterInfo::replaceRegWith(unsigned FromReg, unsigned ToReg) {
187   assert(FromReg != ToReg && "Cannot replace a reg with itself");
188
189   // TODO: This could be more efficient by bulk changing the operands.
190   for (reg_iterator I = reg_begin(FromReg), E = reg_end(); I != E; ) {
191     MachineOperand &O = I.getOperand();
192     ++I;
193     O.setReg(ToReg);
194   }
195 }
196
197
198 /// getVRegDef - Return the machine instr that defines the specified virtual
199 /// register or null if none is found.  This assumes that the code is in SSA
200 /// form, so there should only be one definition.
201 MachineInstr *MachineRegisterInfo::getVRegDef(unsigned Reg) const {
202   // Since we are in SSA form, we can use the first definition.
203   def_iterator I = def_begin(Reg);
204   assert((I.atEnd() || llvm::next(I) == def_end()) &&
205          "getVRegDef assumes a single definition or no definition");
206   return !I.atEnd() ? &*I : 0;
207 }
208
209 /// getUniqueVRegDef - Return the unique machine instr that defines the
210 /// specified virtual register or null if none is found.  If there are
211 /// multiple definitions or no definition, return null.
212 MachineInstr *MachineRegisterInfo::getUniqueVRegDef(unsigned Reg) const {
213   if (def_empty(Reg)) return 0;
214   def_iterator I = def_begin(Reg);
215   if (llvm::next(I) != def_end())
216     return 0;
217   return &*I;
218 }
219
220 bool MachineRegisterInfo::hasOneNonDBGUse(unsigned RegNo) const {
221   use_nodbg_iterator UI = use_nodbg_begin(RegNo);
222   if (UI == use_nodbg_end())
223     return false;
224   return ++UI == use_nodbg_end();
225 }
226
227 /// clearKillFlags - Iterate over all the uses of the given register and
228 /// clear the kill flag from the MachineOperand. This function is used by
229 /// optimization passes which extend register lifetimes and need only
230 /// preserve conservative kill flag information.
231 void MachineRegisterInfo::clearKillFlags(unsigned Reg) const {
232   for (use_iterator UI = use_begin(Reg), UE = use_end(); UI != UE; ++UI)
233     UI.getOperand().setIsKill(false);
234 }
235
236 bool MachineRegisterInfo::isLiveIn(unsigned Reg) const {
237   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
238     if (I->first == Reg || I->second == Reg)
239       return true;
240   return false;
241 }
242
243 bool MachineRegisterInfo::isLiveOut(unsigned Reg) const {
244   for (liveout_iterator I = liveout_begin(), E = liveout_end(); I != E; ++I)
245     if (*I == Reg)
246       return true;
247   return false;
248 }
249
250 /// getLiveInPhysReg - If VReg is a live-in virtual register, return the
251 /// corresponding live-in physical register.
252 unsigned MachineRegisterInfo::getLiveInPhysReg(unsigned VReg) const {
253   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
254     if (I->second == VReg)
255       return I->first;
256   return 0;
257 }
258
259 /// getLiveInVirtReg - If PReg is a live-in physical register, return the
260 /// corresponding live-in physical register.
261 unsigned MachineRegisterInfo::getLiveInVirtReg(unsigned PReg) const {
262   for (livein_iterator I = livein_begin(), E = livein_end(); I != E; ++I)
263     if (I->first == PReg)
264       return I->second;
265   return 0;
266 }
267
268 /// EmitLiveInCopies - Emit copies to initialize livein virtual registers
269 /// into the given entry block.
270 void
271 MachineRegisterInfo::EmitLiveInCopies(MachineBasicBlock *EntryMBB,
272                                       const TargetRegisterInfo &TRI,
273                                       const TargetInstrInfo &TII) {
274   // Emit the copies into the top of the block.
275   for (unsigned i = 0, e = LiveIns.size(); i != e; ++i)
276     if (LiveIns[i].second) {
277       if (use_empty(LiveIns[i].second)) {
278         // The livein has no uses. Drop it.
279         //
280         // It would be preferable to have isel avoid creating live-in
281         // records for unused arguments in the first place, but it's
282         // complicated by the debug info code for arguments.
283         LiveIns.erase(LiveIns.begin() + i);
284         --i; --e;
285       } else {
286         // Emit a copy.
287         BuildMI(*EntryMBB, EntryMBB->begin(), DebugLoc(),
288                 TII.get(TargetOpcode::COPY), LiveIns[i].second)
289           .addReg(LiveIns[i].first);
290
291         // Add the register to the entry block live-in set.
292         EntryMBB->addLiveIn(LiveIns[i].first);
293       }
294     } else {
295       // Add the register to the entry block live-in set.
296       EntryMBB->addLiveIn(LiveIns[i].first);
297     }
298 }
299
300 #ifndef NDEBUG
301 void MachineRegisterInfo::dumpUses(unsigned Reg) const {
302   for (use_iterator I = use_begin(Reg), E = use_end(); I != E; ++I)
303     I.getOperand().getParent()->dump();
304 }
305 #endif
306
307 void MachineRegisterInfo::freezeReservedRegs(const MachineFunction &MF) {
308   ReservedRegs = TRI->getReservedRegs(MF);
309 }
310
311 bool MachineRegisterInfo::isConstantPhysReg(unsigned PhysReg,
312                                             const MachineFunction &MF) const {
313   assert(TargetRegisterInfo::isPhysicalRegister(PhysReg));
314
315   // Check if any overlapping register is modified.
316   for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI)
317     if (!def_empty(*AI))
318       return false;
319
320   // Check if any overlapping register is allocatable so it may be used later.
321   if (AllocatableRegs.empty())
322     AllocatableRegs = TRI->getAllocatableSet(MF);
323   for (MCRegAliasIterator AI(PhysReg, TRI, true); AI.isValid(); ++AI)
324     if (AllocatableRegs.test(*AI))
325       return false;
326   return true;
327 }