Allow tied uses and defs in different orders.
[oota-llvm.git] / lib / CodeGen / MachineInstr.cpp
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/DebugInfo.h"
17 #include "llvm/Function.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/LLVMContext.h"
20 #include "llvm/Metadata.h"
21 #include "llvm/Module.h"
22 #include "llvm/Type.h"
23 #include "llvm/Value.h"
24 #include "llvm/Assembly/Writer.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineMemOperand.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineRegisterInfo.h"
30 #include "llvm/CodeGen/PseudoSourceValue.h"
31 #include "llvm/MC/MCInstrDesc.h"
32 #include "llvm/MC/MCSymbol.h"
33 #include "llvm/Target/TargetMachine.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include "llvm/Target/TargetRegisterInfo.h"
36 #include "llvm/Analysis/AliasAnalysis.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/Hashing.h"
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // MachineOperand Implementation
48 //===----------------------------------------------------------------------===//
49
50 void MachineOperand::setReg(unsigned Reg) {
51   if (getReg() == Reg) return; // No change.
52
53   // Otherwise, we have to change the register.  If this operand is embedded
54   // into a machine function, we need to update the old and new register's
55   // use/def lists.
56   if (MachineInstr *MI = getParent())
57     if (MachineBasicBlock *MBB = MI->getParent())
58       if (MachineFunction *MF = MBB->getParent()) {
59         MachineRegisterInfo &MRI = MF->getRegInfo();
60         MRI.removeRegOperandFromUseList(this);
61         SmallContents.RegNo = Reg;
62         MRI.addRegOperandToUseList(this);
63         return;
64       }
65
66   // Otherwise, just change the register, no problem.  :)
67   SmallContents.RegNo = Reg;
68 }
69
70 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
71                                   const TargetRegisterInfo &TRI) {
72   assert(TargetRegisterInfo::isVirtualRegister(Reg));
73   if (SubIdx && getSubReg())
74     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
75   setReg(Reg);
76   if (SubIdx)
77     setSubReg(SubIdx);
78 }
79
80 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
81   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
82   if (getSubReg()) {
83     Reg = TRI.getSubReg(Reg, getSubReg());
84     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
85     // That won't happen in legal code.
86     setSubReg(0);
87   }
88   setReg(Reg);
89 }
90
91 /// Change a def to a use, or a use to a def.
92 void MachineOperand::setIsDef(bool Val) {
93   assert(isReg() && "Wrong MachineOperand accessor");
94   assert((!Val || !isDebug()) && "Marking a debug operation as def");
95   if (IsDef == Val)
96     return;
97   // MRI may keep uses and defs in different list positions.
98   if (MachineInstr *MI = getParent())
99     if (MachineBasicBlock *MBB = MI->getParent())
100       if (MachineFunction *MF = MBB->getParent()) {
101         MachineRegisterInfo &MRI = MF->getRegInfo();
102         MRI.removeRegOperandFromUseList(this);
103         IsDef = Val;
104         MRI.addRegOperandToUseList(this);
105         return;
106       }
107   IsDef = Val;
108 }
109
110 /// ChangeToImmediate - Replace this operand with a new immediate operand of
111 /// the specified value.  If an operand is known to be an immediate already,
112 /// the setImm method should be used.
113 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
114   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
115   // If this operand is currently a register operand, and if this is in a
116   // function, deregister the operand from the register's use/def list.
117   if (isReg() && isOnRegUseList())
118     if (MachineInstr *MI = getParent())
119       if (MachineBasicBlock *MBB = MI->getParent())
120         if (MachineFunction *MF = MBB->getParent())
121           MF->getRegInfo().removeRegOperandFromUseList(this);
122
123   OpKind = MO_Immediate;
124   Contents.ImmVal = ImmVal;
125 }
126
127 /// ChangeToRegister - Replace this operand with a new register operand of
128 /// the specified value.  If an operand is known to be an register already,
129 /// the setReg method should be used.
130 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
131                                       bool isKill, bool isDead, bool isUndef,
132                                       bool isDebug) {
133   MachineRegisterInfo *RegInfo = 0;
134   if (MachineInstr *MI = getParent())
135     if (MachineBasicBlock *MBB = MI->getParent())
136       if (MachineFunction *MF = MBB->getParent())
137         RegInfo = &MF->getRegInfo();
138   // If this operand is already a register operand, remove it from the
139   // register's use/def lists.
140   bool WasReg = isReg();
141   if (RegInfo && WasReg)
142     RegInfo->removeRegOperandFromUseList(this);
143
144   // Change this to a register and set the reg#.
145   OpKind = MO_Register;
146   SmallContents.RegNo = Reg;
147   SubReg = 0;
148   IsDef = isDef;
149   IsImp = isImp;
150   IsKill = isKill;
151   IsDead = isDead;
152   IsUndef = isUndef;
153   IsInternalRead = false;
154   IsEarlyClobber = false;
155   IsDebug = isDebug;
156   // Ensure isOnRegUseList() returns false.
157   Contents.Reg.Prev = 0;
158   // Preserve the tie when the operand was already a register.
159   if (!WasReg)
160     TiedTo = 0;
161
162   // If this operand is embedded in a function, add the operand to the
163   // register's use/def list.
164   if (RegInfo)
165     RegInfo->addRegOperandToUseList(this);
166 }
167
168 /// isIdenticalTo - Return true if this operand is identical to the specified
169 /// operand. Note that this should stay in sync with the hash_value overload
170 /// below.
171 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
172   if (getType() != Other.getType() ||
173       getTargetFlags() != Other.getTargetFlags())
174     return false;
175
176   switch (getType()) {
177   case MachineOperand::MO_Register:
178     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
179            getSubReg() == Other.getSubReg();
180   case MachineOperand::MO_Immediate:
181     return getImm() == Other.getImm();
182   case MachineOperand::MO_CImmediate:
183     return getCImm() == Other.getCImm();
184   case MachineOperand::MO_FPImmediate:
185     return getFPImm() == Other.getFPImm();
186   case MachineOperand::MO_MachineBasicBlock:
187     return getMBB() == Other.getMBB();
188   case MachineOperand::MO_FrameIndex:
189     return getIndex() == Other.getIndex();
190   case MachineOperand::MO_ConstantPoolIndex:
191   case MachineOperand::MO_TargetIndex:
192     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
193   case MachineOperand::MO_JumpTableIndex:
194     return getIndex() == Other.getIndex();
195   case MachineOperand::MO_GlobalAddress:
196     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
197   case MachineOperand::MO_ExternalSymbol:
198     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
199            getOffset() == Other.getOffset();
200   case MachineOperand::MO_BlockAddress:
201     return getBlockAddress() == Other.getBlockAddress();
202   case MO_RegisterMask:
203     return getRegMask() == Other.getRegMask();
204   case MachineOperand::MO_MCSymbol:
205     return getMCSymbol() == Other.getMCSymbol();
206   case MachineOperand::MO_Metadata:
207     return getMetadata() == Other.getMetadata();
208   }
209   llvm_unreachable("Invalid machine operand type");
210 }
211
212 // Note: this must stay exactly in sync with isIdenticalTo above.
213 hash_code llvm::hash_value(const MachineOperand &MO) {
214   switch (MO.getType()) {
215   case MachineOperand::MO_Register:
216     // Register operands don't have target flags.
217     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
218   case MachineOperand::MO_Immediate:
219     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
220   case MachineOperand::MO_CImmediate:
221     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
222   case MachineOperand::MO_FPImmediate:
223     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
224   case MachineOperand::MO_MachineBasicBlock:
225     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
226   case MachineOperand::MO_FrameIndex:
227     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
228   case MachineOperand::MO_ConstantPoolIndex:
229   case MachineOperand::MO_TargetIndex:
230     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
231                         MO.getOffset());
232   case MachineOperand::MO_JumpTableIndex:
233     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
234   case MachineOperand::MO_ExternalSymbol:
235     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
236                         MO.getSymbolName());
237   case MachineOperand::MO_GlobalAddress:
238     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
239                         MO.getOffset());
240   case MachineOperand::MO_BlockAddress:
241     return hash_combine(MO.getType(), MO.getTargetFlags(),
242                         MO.getBlockAddress());
243   case MachineOperand::MO_RegisterMask:
244     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
245   case MachineOperand::MO_Metadata:
246     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
247   case MachineOperand::MO_MCSymbol:
248     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
249   }
250   llvm_unreachable("Invalid machine operand type");
251 }
252
253 /// print - Print the specified machine operand.
254 ///
255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
256   // If the instruction is embedded into a basic block, we can find the
257   // target info for the instruction.
258   if (!TM)
259     if (const MachineInstr *MI = getParent())
260       if (const MachineBasicBlock *MBB = MI->getParent())
261         if (const MachineFunction *MF = MBB->getParent())
262           TM = &MF->getTarget();
263   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
264
265   switch (getType()) {
266   case MachineOperand::MO_Register:
267     OS << PrintReg(getReg(), TRI, getSubReg());
268
269     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
270         isInternalRead() || isEarlyClobber() || isTied()) {
271       OS << '<';
272       bool NeedComma = false;
273       if (isDef()) {
274         if (NeedComma) OS << ',';
275         if (isEarlyClobber())
276           OS << "earlyclobber,";
277         if (isImplicit())
278           OS << "imp-";
279         OS << "def";
280         NeedComma = true;
281         // <def,read-undef> only makes sense when getSubReg() is set.
282         // Don't clutter the output otherwise.
283         if (isUndef() && getSubReg())
284           OS << ",read-undef";
285       } else if (isImplicit()) {
286           OS << "imp-use";
287           NeedComma = true;
288       }
289
290       if (isKill()) {
291         if (NeedComma) OS << ',';
292         OS << "kill";
293         NeedComma = true;
294       }
295       if (isDead()) {
296         if (NeedComma) OS << ',';
297         OS << "dead";
298         NeedComma = true;
299       }
300       if (isUndef() && isUse()) {
301         if (NeedComma) OS << ',';
302         OS << "undef";
303         NeedComma = true;
304       }
305       if (isInternalRead()) {
306         if (NeedComma) OS << ',';
307         OS << "internal";
308         NeedComma = true;
309       }
310       if (isTied()) {
311         if (NeedComma) OS << ',';
312         OS << "tied";
313         if (TiedTo != 15)
314           OS << unsigned(TiedTo - 1);
315         NeedComma = true;
316       }
317       OS << '>';
318     }
319     break;
320   case MachineOperand::MO_Immediate:
321     OS << getImm();
322     break;
323   case MachineOperand::MO_CImmediate:
324     getCImm()->getValue().print(OS, false);
325     break;
326   case MachineOperand::MO_FPImmediate:
327     if (getFPImm()->getType()->isFloatTy())
328       OS << getFPImm()->getValueAPF().convertToFloat();
329     else
330       OS << getFPImm()->getValueAPF().convertToDouble();
331     break;
332   case MachineOperand::MO_MachineBasicBlock:
333     OS << "<BB#" << getMBB()->getNumber() << ">";
334     break;
335   case MachineOperand::MO_FrameIndex:
336     OS << "<fi#" << getIndex() << '>';
337     break;
338   case MachineOperand::MO_ConstantPoolIndex:
339     OS << "<cp#" << getIndex();
340     if (getOffset()) OS << "+" << getOffset();
341     OS << '>';
342     break;
343   case MachineOperand::MO_TargetIndex:
344     OS << "<ti#" << getIndex();
345     if (getOffset()) OS << "+" << getOffset();
346     OS << '>';
347     break;
348   case MachineOperand::MO_JumpTableIndex:
349     OS << "<jt#" << getIndex() << '>';
350     break;
351   case MachineOperand::MO_GlobalAddress:
352     OS << "<ga:";
353     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
354     if (getOffset()) OS << "+" << getOffset();
355     OS << '>';
356     break;
357   case MachineOperand::MO_ExternalSymbol:
358     OS << "<es:" << getSymbolName();
359     if (getOffset()) OS << "+" << getOffset();
360     OS << '>';
361     break;
362   case MachineOperand::MO_BlockAddress:
363     OS << '<';
364     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
365     OS << '>';
366     break;
367   case MachineOperand::MO_RegisterMask:
368     OS << "<regmask>";
369     break;
370   case MachineOperand::MO_Metadata:
371     OS << '<';
372     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
373     OS << '>';
374     break;
375   case MachineOperand::MO_MCSymbol:
376     OS << "<MCSym=" << *getMCSymbol() << '>';
377     break;
378   }
379
380   if (unsigned TF = getTargetFlags())
381     OS << "[TF=" << TF << ']';
382 }
383
384 //===----------------------------------------------------------------------===//
385 // MachineMemOperand Implementation
386 //===----------------------------------------------------------------------===//
387
388 /// getAddrSpace - Return the LLVM IR address space number that this pointer
389 /// points into.
390 unsigned MachinePointerInfo::getAddrSpace() const {
391   if (V == 0) return 0;
392   return cast<PointerType>(V->getType())->getAddressSpace();
393 }
394
395 /// getConstantPool - Return a MachinePointerInfo record that refers to the
396 /// constant pool.
397 MachinePointerInfo MachinePointerInfo::getConstantPool() {
398   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
399 }
400
401 /// getFixedStack - Return a MachinePointerInfo record that refers to the
402 /// the specified FrameIndex.
403 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
404   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
405 }
406
407 MachinePointerInfo MachinePointerInfo::getJumpTable() {
408   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
409 }
410
411 MachinePointerInfo MachinePointerInfo::getGOT() {
412   return MachinePointerInfo(PseudoSourceValue::getGOT());
413 }
414
415 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
416   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
417 }
418
419 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
420                                      uint64_t s, unsigned int a,
421                                      const MDNode *TBAAInfo,
422                                      const MDNode *Ranges)
423   : PtrInfo(ptrinfo), Size(s),
424     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
425     TBAAInfo(TBAAInfo), Ranges(Ranges) {
426   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
427          "invalid pointer value");
428   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
429   assert((isLoad() || isStore()) && "Not a load/store!");
430 }
431
432 /// Profile - Gather unique data for the object.
433 ///
434 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
435   ID.AddInteger(getOffset());
436   ID.AddInteger(Size);
437   ID.AddPointer(getValue());
438   ID.AddInteger(Flags);
439 }
440
441 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
442   // The Value and Offset may differ due to CSE. But the flags and size
443   // should be the same.
444   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
445   assert(MMO->getSize() == getSize() && "Size mismatch!");
446
447   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
448     // Update the alignment value.
449     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
450       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
451     // Also update the base and offset, because the new alignment may
452     // not be applicable with the old ones.
453     PtrInfo = MMO->PtrInfo;
454   }
455 }
456
457 /// getAlignment - Return the minimum known alignment in bytes of the
458 /// actual memory reference.
459 uint64_t MachineMemOperand::getAlignment() const {
460   return MinAlign(getBaseAlignment(), getOffset());
461 }
462
463 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
464   assert((MMO.isLoad() || MMO.isStore()) &&
465          "SV has to be a load, store or both.");
466
467   if (MMO.isVolatile())
468     OS << "Volatile ";
469
470   if (MMO.isLoad())
471     OS << "LD";
472   if (MMO.isStore())
473     OS << "ST";
474   OS << MMO.getSize();
475
476   // Print the address information.
477   OS << "[";
478   if (!MMO.getValue())
479     OS << "<unknown>";
480   else
481     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
482
483   // If the alignment of the memory reference itself differs from the alignment
484   // of the base pointer, print the base alignment explicitly, next to the base
485   // pointer.
486   if (MMO.getBaseAlignment() != MMO.getAlignment())
487     OS << "(align=" << MMO.getBaseAlignment() << ")";
488
489   if (MMO.getOffset() != 0)
490     OS << "+" << MMO.getOffset();
491   OS << "]";
492
493   // Print the alignment of the reference.
494   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
495       MMO.getBaseAlignment() != MMO.getSize())
496     OS << "(align=" << MMO.getAlignment() << ")";
497
498   // Print TBAA info.
499   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
500     OS << "(tbaa=";
501     if (TBAAInfo->getNumOperands() > 0)
502       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
503     else
504       OS << "<unknown>";
505     OS << ")";
506   }
507
508   // Print nontemporal info.
509   if (MMO.isNonTemporal())
510     OS << "(nontemporal)";
511
512   return OS;
513 }
514
515 //===----------------------------------------------------------------------===//
516 // MachineInstr Implementation
517 //===----------------------------------------------------------------------===//
518
519 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
520 /// MCID NULL and no operands.
521 MachineInstr::MachineInstr()
522   : MCID(0), Flags(0), AsmPrinterFlags(0),
523     NumMemRefs(0), MemRefs(0),
524     Parent(0) {
525   // Make sure that we get added to a machine basicblock
526   LeakDetector::addGarbageObject(this);
527 }
528
529 void MachineInstr::addImplicitDefUseOperands() {
530   if (MCID->ImplicitDefs)
531     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
532       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
533   if (MCID->ImplicitUses)
534     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
535       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
536 }
537
538 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
539 /// implicit operands. It reserves space for the number of operands specified by
540 /// the MCInstrDesc.
541 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
542   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
543     NumMemRefs(0), MemRefs(0), Parent(0) {
544   unsigned NumImplicitOps = 0;
545   if (!NoImp)
546     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
547   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
548   if (!NoImp)
549     addImplicitDefUseOperands();
550   // Make sure that we get added to a machine basicblock
551   LeakDetector::addGarbageObject(this);
552 }
553
554 /// MachineInstr ctor - As above, but with a DebugLoc.
555 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
556                            bool NoImp)
557   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
558     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
559   unsigned NumImplicitOps = 0;
560   if (!NoImp)
561     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
562   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
563   if (!NoImp)
564     addImplicitDefUseOperands();
565   // Make sure that we get added to a machine basicblock
566   LeakDetector::addGarbageObject(this);
567 }
568
569 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
570 /// that the MachineInstr is created and added to the end of the specified
571 /// basic block.
572 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
573   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
574     NumMemRefs(0), MemRefs(0), Parent(0) {
575   assert(MBB && "Cannot use inserting ctor with null basic block!");
576   unsigned NumImplicitOps =
577     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
578   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
579   addImplicitDefUseOperands();
580   // Make sure that we get added to a machine basicblock
581   LeakDetector::addGarbageObject(this);
582   MBB->push_back(this);  // Add instruction to end of basic block!
583 }
584
585 /// MachineInstr ctor - As above, but with a DebugLoc.
586 ///
587 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
588                            const MCInstrDesc &tid)
589   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
590     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
591   assert(MBB && "Cannot use inserting ctor with null basic block!");
592   unsigned NumImplicitOps =
593     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
594   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
595   addImplicitDefUseOperands();
596   // Make sure that we get added to a machine basicblock
597   LeakDetector::addGarbageObject(this);
598   MBB->push_back(this);  // Add instruction to end of basic block!
599 }
600
601 /// MachineInstr ctor - Copies MachineInstr arg exactly
602 ///
603 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
604   : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
605     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
606     Parent(0), debugLoc(MI.getDebugLoc()) {
607   Operands.reserve(MI.getNumOperands());
608
609   // Add operands
610   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
611     addOperand(MI.getOperand(i));
612
613   // Copy all the flags.
614   Flags = MI.Flags;
615
616   // Set parent to null.
617   Parent = 0;
618
619   LeakDetector::addGarbageObject(this);
620 }
621
622 MachineInstr::~MachineInstr() {
623   LeakDetector::removeGarbageObject(this);
624 #ifndef NDEBUG
625   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
626     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
627     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
628            "Reg operand def/use list corrupted");
629   }
630 #endif
631 }
632
633 /// getRegInfo - If this instruction is embedded into a MachineFunction,
634 /// return the MachineRegisterInfo object for the current function, otherwise
635 /// return null.
636 MachineRegisterInfo *MachineInstr::getRegInfo() {
637   if (MachineBasicBlock *MBB = getParent())
638     return &MBB->getParent()->getRegInfo();
639   return 0;
640 }
641
642 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
643 /// this instruction from their respective use lists.  This requires that the
644 /// operands already be on their use lists.
645 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
646   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
647     if (Operands[i].isReg())
648       MRI.removeRegOperandFromUseList(&Operands[i]);
649 }
650
651 /// AddRegOperandsToUseLists - Add all of the register operands in
652 /// this instruction from their respective use lists.  This requires that the
653 /// operands not be on their use lists yet.
654 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
655   for (unsigned i = 0, e = Operands.size(); i != e; ++i)
656     if (Operands[i].isReg())
657       MRI.addRegOperandToUseList(&Operands[i]);
658 }
659
660 /// addOperand - Add the specified operand to the instruction.  If it is an
661 /// implicit operand, it is added to the end of the operand list.  If it is
662 /// an explicit operand it is added at the end of the explicit operand list
663 /// (before the first implicit operand).
664 void MachineInstr::addOperand(const MachineOperand &Op) {
665   assert(MCID && "Cannot add operands before providing an instr descriptor");
666   bool isImpReg = Op.isReg() && Op.isImplicit();
667   MachineRegisterInfo *RegInfo = getRegInfo();
668
669   // If the Operands backing store is reallocated, all register operands must
670   // be removed and re-added to RegInfo.  It is storing pointers to operands.
671   bool Reallocate = RegInfo &&
672     !Operands.empty() && Operands.size() == Operands.capacity();
673
674   // Find the insert location for the new operand.  Implicit registers go at
675   // the end, everything goes before the implicit regs.
676   unsigned OpNo = Operands.size();
677
678   // Remove all the implicit operands from RegInfo if they need to be shifted.
679   // FIXME: Allow mixed explicit and implicit operands on inline asm.
680   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
681   // implicit-defs, but they must not be moved around.  See the FIXME in
682   // InstrEmitter.cpp.
683   if (!isImpReg && !isInlineAsm()) {
684     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
685       --OpNo;
686       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
687       if (RegInfo)
688         RegInfo->removeRegOperandFromUseList(&Operands[OpNo]);
689     }
690   }
691
692   // OpNo now points as the desired insertion point.  Unless this is a variadic
693   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
694   // RegMask operands go between the explicit and implicit operands.
695   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
696           OpNo < MCID->getNumOperands()) &&
697          "Trying to add an operand to a machine instr that is already done!");
698
699   // All operands from OpNo have been removed from RegInfo.  If the Operands
700   // backing store needs to be reallocated, we also need to remove any other
701   // register operands.
702   if (Reallocate)
703     for (unsigned i = 0; i != OpNo; ++i)
704       if (Operands[i].isReg())
705         RegInfo->removeRegOperandFromUseList(&Operands[i]);
706
707   // Insert the new operand at OpNo.
708   Operands.insert(Operands.begin() + OpNo, Op);
709   Operands[OpNo].ParentMI = this;
710
711   // The Operands backing store has now been reallocated, so we can re-add the
712   // operands before OpNo.
713   if (Reallocate)
714     for (unsigned i = 0; i != OpNo; ++i)
715       if (Operands[i].isReg())
716         RegInfo->addRegOperandToUseList(&Operands[i]);
717
718   // When adding a register operand, tell RegInfo about it.
719   if (Operands[OpNo].isReg()) {
720     // Ensure isOnRegUseList() returns false, regardless of Op's status.
721     Operands[OpNo].Contents.Reg.Prev = 0;
722     // Ignore existing ties. This is not a property that can be copied.
723     Operands[OpNo].TiedTo = 0;
724     // Add the new operand to RegInfo.
725     if (RegInfo)
726       RegInfo->addRegOperandToUseList(&Operands[OpNo]);
727     // The MCID operand information isn't accurate until we start adding
728     // explicit operands. The implicit operands are added first, then the
729     // explicits are inserted before them.
730     if (!isImpReg) {
731       // Tie uses to defs as indicated in MCInstrDesc.
732       if (Operands[OpNo].isUse()) {
733         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
734         if (DefIdx != -1)
735           tieOperands(DefIdx, OpNo);
736       }
737       // If the register operand is flagged as early, mark the operand as such.
738       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
739         Operands[OpNo].setIsEarlyClobber(true);
740     }
741   }
742
743   // Re-add all the implicit ops.
744   if (RegInfo) {
745     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
746       assert(Operands[i].isReg() && "Should only be an implicit reg!");
747       RegInfo->addRegOperandToUseList(&Operands[i]);
748     }
749   }
750 }
751
752 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
753 /// fewer operand than it started with.
754 ///
755 void MachineInstr::RemoveOperand(unsigned OpNo) {
756   assert(OpNo < Operands.size() && "Invalid operand number");
757   untieRegOperand(OpNo);
758   MachineRegisterInfo *RegInfo = getRegInfo();
759
760   // Special case removing the last one.
761   if (OpNo == Operands.size()-1) {
762     // If needed, remove from the reg def/use list.
763     if (RegInfo && Operands.back().isReg() && Operands.back().isOnRegUseList())
764       RegInfo->removeRegOperandFromUseList(&Operands.back());
765
766     Operands.pop_back();
767     return;
768   }
769
770   // Otherwise, we are removing an interior operand.  If we have reginfo to
771   // update, remove all operands that will be shifted down from their reg lists,
772   // move everything down, then re-add them.
773   if (RegInfo) {
774     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
775       if (Operands[i].isReg())
776         RegInfo->removeRegOperandFromUseList(&Operands[i]);
777     }
778   }
779
780 #ifndef NDEBUG
781   // Moving tied operands would break the ties.
782   for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i)
783     if (Operands[i].isReg())
784       assert(!Operands[i].isTied() && "Cannot move tied operands");
785 #endif
786
787   Operands.erase(Operands.begin()+OpNo);
788
789   if (RegInfo) {
790     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
791       if (Operands[i].isReg())
792         RegInfo->addRegOperandToUseList(&Operands[i]);
793     }
794   }
795 }
796
797 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
798 /// This function should be used only occasionally. The setMemRefs function
799 /// is the primary method for setting up a MachineInstr's MemRefs list.
800 void MachineInstr::addMemOperand(MachineFunction &MF,
801                                  MachineMemOperand *MO) {
802   mmo_iterator OldMemRefs = MemRefs;
803   uint16_t OldNumMemRefs = NumMemRefs;
804
805   uint16_t NewNum = NumMemRefs + 1;
806   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
807
808   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
809   NewMemRefs[NewNum - 1] = MO;
810
811   MemRefs = NewMemRefs;
812   NumMemRefs = NewNum;
813 }
814
815 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
816   const MachineBasicBlock *MBB = getParent();
817   MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
818   while (MII != MBB->end() && MII->isInsideBundle()) {
819     if (MII->getDesc().getFlags() & Mask) {
820       if (Type == AnyInBundle)
821         return true;
822     } else {
823       if (Type == AllInBundle)
824         return false;
825     }
826     ++MII;
827   }
828
829   return Type == AllInBundle;
830 }
831
832 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
833                                  MICheckType Check) const {
834   // If opcodes or number of operands are not the same then the two
835   // instructions are obviously not identical.
836   if (Other->getOpcode() != getOpcode() ||
837       Other->getNumOperands() != getNumOperands())
838     return false;
839
840   if (isBundle()) {
841     // Both instructions are bundles, compare MIs inside the bundle.
842     MachineBasicBlock::const_instr_iterator I1 = *this;
843     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
844     MachineBasicBlock::const_instr_iterator I2 = *Other;
845     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
846     while (++I1 != E1 && I1->isInsideBundle()) {
847       ++I2;
848       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
849         return false;
850     }
851   }
852
853   // Check operands to make sure they match.
854   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
855     const MachineOperand &MO = getOperand(i);
856     const MachineOperand &OMO = Other->getOperand(i);
857     if (!MO.isReg()) {
858       if (!MO.isIdenticalTo(OMO))
859         return false;
860       continue;
861     }
862
863     // Clients may or may not want to ignore defs when testing for equality.
864     // For example, machine CSE pass only cares about finding common
865     // subexpressions, so it's safe to ignore virtual register defs.
866     if (MO.isDef()) {
867       if (Check == IgnoreDefs)
868         continue;
869       else if (Check == IgnoreVRegDefs) {
870         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
871             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
872           if (MO.getReg() != OMO.getReg())
873             return false;
874       } else {
875         if (!MO.isIdenticalTo(OMO))
876           return false;
877         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
878           return false;
879       }
880     } else {
881       if (!MO.isIdenticalTo(OMO))
882         return false;
883       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
884         return false;
885     }
886   }
887   // If DebugLoc does not match then two dbg.values are not identical.
888   if (isDebugValue())
889     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
890         && getDebugLoc() != Other->getDebugLoc())
891       return false;
892   return true;
893 }
894
895 /// removeFromParent - This method unlinks 'this' from the containing basic
896 /// block, and returns it, but does not delete it.
897 MachineInstr *MachineInstr::removeFromParent() {
898   assert(getParent() && "Not embedded in a basic block!");
899
900   // If it's a bundle then remove the MIs inside the bundle as well.
901   if (isBundle()) {
902     MachineBasicBlock *MBB = getParent();
903     MachineBasicBlock::instr_iterator MII = *this; ++MII;
904     MachineBasicBlock::instr_iterator E = MBB->instr_end();
905     while (MII != E && MII->isInsideBundle()) {
906       MachineInstr *MI = &*MII;
907       ++MII;
908       MBB->remove(MI);
909     }
910   }
911   getParent()->remove(this);
912   return this;
913 }
914
915
916 /// eraseFromParent - This method unlinks 'this' from the containing basic
917 /// block, and deletes it.
918 void MachineInstr::eraseFromParent() {
919   assert(getParent() && "Not embedded in a basic block!");
920   // If it's a bundle then remove the MIs inside the bundle as well.
921   if (isBundle()) {
922     MachineBasicBlock *MBB = getParent();
923     MachineBasicBlock::instr_iterator MII = *this; ++MII;
924     MachineBasicBlock::instr_iterator E = MBB->instr_end();
925     while (MII != E && MII->isInsideBundle()) {
926       MachineInstr *MI = &*MII;
927       ++MII;
928       MBB->erase(MI);
929     }
930   }
931   // Erase the individual instruction, which may itself be inside a bundle.
932   getParent()->erase_instr(this);
933 }
934
935
936 /// getNumExplicitOperands - Returns the number of non-implicit operands.
937 ///
938 unsigned MachineInstr::getNumExplicitOperands() const {
939   unsigned NumOperands = MCID->getNumOperands();
940   if (!MCID->isVariadic())
941     return NumOperands;
942
943   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
944     const MachineOperand &MO = getOperand(i);
945     if (!MO.isReg() || !MO.isImplicit())
946       NumOperands++;
947   }
948   return NumOperands;
949 }
950
951 /// isBundled - Return true if this instruction part of a bundle. This is true
952 /// if either itself or its following instruction is marked "InsideBundle".
953 bool MachineInstr::isBundled() const {
954   if (isInsideBundle())
955     return true;
956   MachineBasicBlock::const_instr_iterator nextMI = this;
957   ++nextMI;
958   return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
959 }
960
961 bool MachineInstr::isStackAligningInlineAsm() const {
962   if (isInlineAsm()) {
963     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
964     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
965       return true;
966   }
967   return false;
968 }
969
970 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
971                                        unsigned *GroupNo) const {
972   assert(isInlineAsm() && "Expected an inline asm instruction");
973   assert(OpIdx < getNumOperands() && "OpIdx out of range");
974
975   // Ignore queries about the initial operands.
976   if (OpIdx < InlineAsm::MIOp_FirstOperand)
977     return -1;
978
979   unsigned Group = 0;
980   unsigned NumOps;
981   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
982        i += NumOps) {
983     const MachineOperand &FlagMO = getOperand(i);
984     // If we reach the implicit register operands, stop looking.
985     if (!FlagMO.isImm())
986       return -1;
987     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
988     if (i + NumOps > OpIdx) {
989       if (GroupNo)
990         *GroupNo = Group;
991       return i;
992     }
993     ++Group;
994   }
995   return -1;
996 }
997
998 const TargetRegisterClass*
999 MachineInstr::getRegClassConstraint(unsigned OpIdx,
1000                                     const TargetInstrInfo *TII,
1001                                     const TargetRegisterInfo *TRI) const {
1002   assert(getParent() && "Can't have an MBB reference here!");
1003   assert(getParent()->getParent() && "Can't have an MF reference here!");
1004   const MachineFunction &MF = *getParent()->getParent();
1005
1006   // Most opcodes have fixed constraints in their MCInstrDesc.
1007   if (!isInlineAsm())
1008     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
1009
1010   if (!getOperand(OpIdx).isReg())
1011     return NULL;
1012
1013   // For tied uses on inline asm, get the constraint from the def.
1014   unsigned DefIdx;
1015   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
1016     OpIdx = DefIdx;
1017
1018   // Inline asm stores register class constraints in the flag word.
1019   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
1020   if (FlagIdx < 0)
1021     return NULL;
1022
1023   unsigned Flag = getOperand(FlagIdx).getImm();
1024   unsigned RCID;
1025   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
1026     return TRI->getRegClass(RCID);
1027
1028   // Assume that all registers in a memory operand are pointers.
1029   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
1030     return TRI->getPointerRegClass(MF);
1031
1032   return NULL;
1033 }
1034
1035 /// getBundleSize - Return the number of instructions inside the MI bundle.
1036 unsigned MachineInstr::getBundleSize() const {
1037   assert(isBundle() && "Expecting a bundle");
1038
1039   MachineBasicBlock::const_instr_iterator I = *this;
1040   unsigned Size = 0;
1041   while ((++I)->isInsideBundle()) {
1042     ++Size;
1043   }
1044   assert(Size > 1 && "Malformed bundle");
1045
1046   return Size;
1047 }
1048
1049 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
1050 /// the specific register or -1 if it is not found. It further tightens
1051 /// the search criteria to a use that kills the register if isKill is true.
1052 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
1053                                           const TargetRegisterInfo *TRI) const {
1054   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1055     const MachineOperand &MO = getOperand(i);
1056     if (!MO.isReg() || !MO.isUse())
1057       continue;
1058     unsigned MOReg = MO.getReg();
1059     if (!MOReg)
1060       continue;
1061     if (MOReg == Reg ||
1062         (TRI &&
1063          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1064          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1065          TRI->isSubRegister(MOReg, Reg)))
1066       if (!isKill || MO.isKill())
1067         return i;
1068   }
1069   return -1;
1070 }
1071
1072 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1073 /// indicating if this instruction reads or writes Reg. This also considers
1074 /// partial defines.
1075 std::pair<bool,bool>
1076 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1077                                          SmallVectorImpl<unsigned> *Ops) const {
1078   bool PartDef = false; // Partial redefine.
1079   bool FullDef = false; // Full define.
1080   bool Use = false;
1081
1082   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1083     const MachineOperand &MO = getOperand(i);
1084     if (!MO.isReg() || MO.getReg() != Reg)
1085       continue;
1086     if (Ops)
1087       Ops->push_back(i);
1088     if (MO.isUse())
1089       Use |= !MO.isUndef();
1090     else if (MO.getSubReg() && !MO.isUndef())
1091       // A partial <def,undef> doesn't count as reading the register.
1092       PartDef = true;
1093     else
1094       FullDef = true;
1095   }
1096   // A partial redefine uses Reg unless there is also a full define.
1097   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1098 }
1099
1100 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1101 /// the specified register or -1 if it is not found. If isDead is true, defs
1102 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1103 /// also checks if there is a def of a super-register.
1104 int
1105 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1106                                         const TargetRegisterInfo *TRI) const {
1107   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1108   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1109     const MachineOperand &MO = getOperand(i);
1110     // Accept regmask operands when Overlap is set.
1111     // Ignore them when looking for a specific def operand (Overlap == false).
1112     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1113       return i;
1114     if (!MO.isReg() || !MO.isDef())
1115       continue;
1116     unsigned MOReg = MO.getReg();
1117     bool Found = (MOReg == Reg);
1118     if (!Found && TRI && isPhys &&
1119         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1120       if (Overlap)
1121         Found = TRI->regsOverlap(MOReg, Reg);
1122       else
1123         Found = TRI->isSubRegister(MOReg, Reg);
1124     }
1125     if (Found && (!isDead || MO.isDead()))
1126       return i;
1127   }
1128   return -1;
1129 }
1130
1131 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1132 /// operand list that is used to represent the predicate. It returns -1 if
1133 /// none is found.
1134 int MachineInstr::findFirstPredOperandIdx() const {
1135   // Don't call MCID.findFirstPredOperandIdx() because this variant
1136   // is sometimes called on an instruction that's not yet complete, and
1137   // so the number of operands is less than the MCID indicates. In
1138   // particular, the PTX target does this.
1139   const MCInstrDesc &MCID = getDesc();
1140   if (MCID.isPredicable()) {
1141     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1142       if (MCID.OpInfo[i].isPredicate())
1143         return i;
1144   }
1145
1146   return -1;
1147 }
1148
1149 // MachineOperand::TiedTo is 4 bits wide.
1150 const unsigned TiedMax = 15;
1151
1152 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1153 ///
1154 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1155 /// field. TiedTo can have these values:
1156 ///
1157 /// 0:              Operand is not tied to anything.
1158 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1159 /// TiedMax:        Tied to an operand >= TiedMax-1.
1160 ///
1161 /// The tied def must be one of the first TiedMax operands on a normal
1162 /// instruction. INLINEASM instructions allow more tied defs.
1163 ///
1164 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1165   MachineOperand &DefMO = getOperand(DefIdx);
1166   MachineOperand &UseMO = getOperand(UseIdx);
1167   assert(DefMO.isDef() && "DefIdx must be a def operand");
1168   assert(UseMO.isUse() && "UseIdx must be a use operand");
1169   assert(!DefMO.isTied() && "Def is already tied to another use");
1170   assert(!UseMO.isTied() && "Use is already tied to another def");
1171
1172   if (DefIdx < TiedMax)
1173     UseMO.TiedTo = DefIdx + 1;
1174   else {
1175     // Inline asm can use the group descriptors to find tied operands, but on
1176     // normal instruction, the tied def must be within the first TiedMax
1177     // operands.
1178     assert(isInlineAsm() && "DefIdx out of range");
1179     UseMO.TiedTo = TiedMax;
1180   }
1181
1182   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1183   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1184 }
1185
1186 /// Given the index of a tied register operand, find the operand it is tied to.
1187 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1188 /// which must exist.
1189 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1190   const MachineOperand &MO = getOperand(OpIdx);
1191   assert(MO.isTied() && "Operand isn't tied");
1192
1193   // Normally TiedTo is in range.
1194   if (MO.TiedTo < TiedMax)
1195     return MO.TiedTo - 1;
1196
1197   // Uses on normal instructions can be out of range.
1198   if (!isInlineAsm()) {
1199     // Normal tied defs must be in the 0..TiedMax-1 range.
1200     if (MO.isUse())
1201       return TiedMax - 1;
1202     // MO is a def. Search for the tied use.
1203     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1204       const MachineOperand &UseMO = getOperand(i);
1205       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1206         return i;
1207     }
1208     llvm_unreachable("Can't find tied use");
1209   }
1210
1211   // Now deal with inline asm by parsing the operand group descriptor flags.
1212   // Find the beginning of each operand group.
1213   SmallVector<unsigned, 8> GroupIdx;
1214   unsigned OpIdxGroup = ~0u;
1215   unsigned NumOps;
1216   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1217        i += NumOps) {
1218     const MachineOperand &FlagMO = getOperand(i);
1219     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1220     unsigned CurGroup = GroupIdx.size();
1221     GroupIdx.push_back(i);
1222     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1223     // OpIdx belongs to this operand group.
1224     if (OpIdx > i && OpIdx < i + NumOps)
1225       OpIdxGroup = CurGroup;
1226     unsigned TiedGroup;
1227     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1228       continue;
1229     // Operands in this group are tied to operands in TiedGroup which must be
1230     // earlier. Find the number of operands between the two groups.
1231     unsigned Delta = i - GroupIdx[TiedGroup];
1232
1233     // OpIdx is a use tied to TiedGroup.
1234     if (OpIdxGroup == CurGroup)
1235       return OpIdx - Delta;
1236
1237     // OpIdx is a def tied to this use group.
1238     if (OpIdxGroup == TiedGroup)
1239       return OpIdx + Delta;
1240   }
1241   llvm_unreachable("Invalid tied operand on inline asm");
1242 }
1243
1244 /// isRegTiedToUseOperand - Given the index of a register def operand,
1245 /// check if the register def is tied to a source operand, due to either
1246 /// two-address elimination or inline assembly constraints. Returns the
1247 /// first tied use operand index by reference is UseOpIdx is not null.
1248 bool MachineInstr::
1249 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
1250   if (isInlineAsm()) {
1251     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
1252     const MachineOperand &MO = getOperand(DefOpIdx);
1253     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
1254       return false;
1255     // Determine the actual operand index that corresponds to this index.
1256     unsigned DefNo = 0;
1257     int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1258     if (FlagIdx < 0)
1259       return false;
1260
1261     // Which part of the group is DefOpIdx?
1262     unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1263
1264     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1265          i != e; ++i) {
1266       const MachineOperand &FMO = getOperand(i);
1267       if (!FMO.isImm())
1268         continue;
1269       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1270         continue;
1271       unsigned Idx;
1272       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1273           Idx == DefNo) {
1274         if (UseOpIdx)
1275           *UseOpIdx = (unsigned)i + 1 + DefPart;
1276         return true;
1277       }
1278     }
1279     return false;
1280   }
1281
1282   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1283   const MCInstrDesc &MCID = getDesc();
1284   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1285     const MachineOperand &MO = getOperand(i);
1286     if (MO.isReg() && MO.isUse() &&
1287         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1288       if (UseOpIdx)
1289         *UseOpIdx = (unsigned)i;
1290       return true;
1291     }
1292   }
1293   return false;
1294 }
1295
1296 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1297 /// is a register use and it is tied to an def operand. It also returns the def
1298 /// operand index by reference.
1299 bool MachineInstr::
1300 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1301   if (isInlineAsm()) {
1302     const MachineOperand &MO = getOperand(UseOpIdx);
1303     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1304       return false;
1305
1306     // Find the flag operand corresponding to UseOpIdx
1307     int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1308     if (FlagIdx < 0)
1309       return false;
1310
1311     const MachineOperand &UFMO = getOperand(FlagIdx);
1312     unsigned DefNo;
1313     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1314       if (!DefOpIdx)
1315         return true;
1316
1317       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1318       // Remember to adjust the index. First operand is asm string, second is
1319       // the HasSideEffects and AlignStack bits, then there is a flag for each.
1320       while (DefNo) {
1321         const MachineOperand &FMO = getOperand(DefIdx);
1322         assert(FMO.isImm());
1323         // Skip over this def.
1324         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1325         --DefNo;
1326       }
1327       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1328       return true;
1329     }
1330     return false;
1331   }
1332
1333   const MCInstrDesc &MCID = getDesc();
1334   if (UseOpIdx >= MCID.getNumOperands())
1335     return false;
1336   const MachineOperand &MO = getOperand(UseOpIdx);
1337   if (!MO.isReg() || !MO.isUse())
1338     return false;
1339   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1340   if (DefIdx == -1)
1341     return false;
1342   if (DefOpIdx)
1343     *DefOpIdx = (unsigned)DefIdx;
1344   return true;
1345 }
1346
1347 /// clearKillInfo - Clears kill flags on all operands.
1348 ///
1349 void MachineInstr::clearKillInfo() {
1350   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1351     MachineOperand &MO = getOperand(i);
1352     if (MO.isReg() && MO.isUse())
1353       MO.setIsKill(false);
1354   }
1355 }
1356
1357 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1358 ///
1359 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1360   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1361     const MachineOperand &MO = MI->getOperand(i);
1362     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1363       continue;
1364     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1365       MachineOperand &MOp = getOperand(j);
1366       if (!MOp.isIdenticalTo(MO))
1367         continue;
1368       if (MO.isKill())
1369         MOp.setIsKill();
1370       else
1371         MOp.setIsDead();
1372       break;
1373     }
1374   }
1375 }
1376
1377 /// copyPredicates - Copies predicate operand(s) from MI.
1378 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1379   assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1380
1381   const MCInstrDesc &MCID = MI->getDesc();
1382   if (!MCID.isPredicable())
1383     return;
1384   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1385     if (MCID.OpInfo[i].isPredicate()) {
1386       // Predicated operands must be last operands.
1387       addOperand(MI->getOperand(i));
1388     }
1389   }
1390 }
1391
1392 void MachineInstr::substituteRegister(unsigned FromReg,
1393                                       unsigned ToReg,
1394                                       unsigned SubIdx,
1395                                       const TargetRegisterInfo &RegInfo) {
1396   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1397     if (SubIdx)
1398       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1399     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1400       MachineOperand &MO = getOperand(i);
1401       if (!MO.isReg() || MO.getReg() != FromReg)
1402         continue;
1403       MO.substPhysReg(ToReg, RegInfo);
1404     }
1405   } else {
1406     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1407       MachineOperand &MO = getOperand(i);
1408       if (!MO.isReg() || MO.getReg() != FromReg)
1409         continue;
1410       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1411     }
1412   }
1413 }
1414
1415 /// isSafeToMove - Return true if it is safe to move this instruction. If
1416 /// SawStore is set to true, it means that there is a store (or call) between
1417 /// the instruction's location and its intended destination.
1418 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1419                                 AliasAnalysis *AA,
1420                                 bool &SawStore) const {
1421   // Ignore stuff that we obviously can't move.
1422   //
1423   // Treat volatile loads as stores. This is not strictly necessary for
1424   // volatiles, but it is required for atomic loads. It is now allowed to move
1425   // a load across an atomic load with Ordering > Monotonic.
1426   if (mayStore() || isCall() ||
1427       (mayLoad() && hasOrderedMemoryRef())) {
1428     SawStore = true;
1429     return false;
1430   }
1431
1432   if (isLabel() || isDebugValue() ||
1433       isTerminator() || hasUnmodeledSideEffects())
1434     return false;
1435
1436   // See if this instruction does a load.  If so, we have to guarantee that the
1437   // loaded value doesn't change between the load and the its intended
1438   // destination. The check for isInvariantLoad gives the targe the chance to
1439   // classify the load as always returning a constant, e.g. a constant pool
1440   // load.
1441   if (mayLoad() && !isInvariantLoad(AA))
1442     // Otherwise, this is a real load.  If there is a store between the load and
1443     // end of block, we can't move it.
1444     return !SawStore;
1445
1446   return true;
1447 }
1448
1449 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1450 /// instruction which defined the specified register instead of copying it.
1451 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1452                                  AliasAnalysis *AA,
1453                                  unsigned DstReg) const {
1454   bool SawStore = false;
1455   if (!TII->isTriviallyReMaterializable(this, AA) ||
1456       !isSafeToMove(TII, AA, SawStore))
1457     return false;
1458   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1459     const MachineOperand &MO = getOperand(i);
1460     if (!MO.isReg())
1461       continue;
1462     // FIXME: For now, do not remat any instruction with register operands.
1463     // Later on, we can loosen the restriction is the register operands have
1464     // not been modified between the def and use. Note, this is different from
1465     // MachineSink because the code is no longer in two-address form (at least
1466     // partially).
1467     if (MO.isUse())
1468       return false;
1469     else if (!MO.isDead() && MO.getReg() != DstReg)
1470       return false;
1471   }
1472   return true;
1473 }
1474
1475 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1476 /// or volatile memory reference, or if the information describing the memory
1477 /// reference is not available. Return false if it is known to have no ordered
1478 /// memory references.
1479 bool MachineInstr::hasOrderedMemoryRef() const {
1480   // An instruction known never to access memory won't have a volatile access.
1481   if (!mayStore() &&
1482       !mayLoad() &&
1483       !isCall() &&
1484       !hasUnmodeledSideEffects())
1485     return false;
1486
1487   // Otherwise, if the instruction has no memory reference information,
1488   // conservatively assume it wasn't preserved.
1489   if (memoperands_empty())
1490     return true;
1491
1492   // Check the memory reference information for ordered references.
1493   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1494     if (!(*I)->isUnordered())
1495       return true;
1496
1497   return false;
1498 }
1499
1500 /// isInvariantLoad - Return true if this instruction is loading from a
1501 /// location whose value is invariant across the function.  For example,
1502 /// loading a value from the constant pool or from the argument area
1503 /// of a function if it does not change.  This should only return true of
1504 /// *all* loads the instruction does are invariant (if it does multiple loads).
1505 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1506   // If the instruction doesn't load at all, it isn't an invariant load.
1507   if (!mayLoad())
1508     return false;
1509
1510   // If the instruction has lost its memoperands, conservatively assume that
1511   // it may not be an invariant load.
1512   if (memoperands_empty())
1513     return false;
1514
1515   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1516
1517   for (mmo_iterator I = memoperands_begin(),
1518        E = memoperands_end(); I != E; ++I) {
1519     if ((*I)->isVolatile()) return false;
1520     if ((*I)->isStore()) return false;
1521     if ((*I)->isInvariant()) return true;
1522
1523     if (const Value *V = (*I)->getValue()) {
1524       // A load from a constant PseudoSourceValue is invariant.
1525       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1526         if (PSV->isConstant(MFI))
1527           continue;
1528       // If we have an AliasAnalysis, ask it whether the memory is constant.
1529       if (AA && AA->pointsToConstantMemory(
1530                       AliasAnalysis::Location(V, (*I)->getSize(),
1531                                               (*I)->getTBAAInfo())))
1532         continue;
1533     }
1534
1535     // Otherwise assume conservatively.
1536     return false;
1537   }
1538
1539   // Everything checks out.
1540   return true;
1541 }
1542
1543 /// isConstantValuePHI - If the specified instruction is a PHI that always
1544 /// merges together the same virtual register, return the register, otherwise
1545 /// return 0.
1546 unsigned MachineInstr::isConstantValuePHI() const {
1547   if (!isPHI())
1548     return 0;
1549   assert(getNumOperands() >= 3 &&
1550          "It's illegal to have a PHI without source operands");
1551
1552   unsigned Reg = getOperand(1).getReg();
1553   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1554     if (getOperand(i).getReg() != Reg)
1555       return 0;
1556   return Reg;
1557 }
1558
1559 bool MachineInstr::hasUnmodeledSideEffects() const {
1560   if (hasProperty(MCID::UnmodeledSideEffects))
1561     return true;
1562   if (isInlineAsm()) {
1563     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1564     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1565       return true;
1566   }
1567
1568   return false;
1569 }
1570
1571 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1572 ///
1573 bool MachineInstr::allDefsAreDead() const {
1574   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1575     const MachineOperand &MO = getOperand(i);
1576     if (!MO.isReg() || MO.isUse())
1577       continue;
1578     if (!MO.isDead())
1579       return false;
1580   }
1581   return true;
1582 }
1583
1584 /// copyImplicitOps - Copy implicit register operands from specified
1585 /// instruction to this instruction.
1586 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1587   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1588        i != e; ++i) {
1589     const MachineOperand &MO = MI->getOperand(i);
1590     if (MO.isReg() && MO.isImplicit())
1591       addOperand(MO);
1592   }
1593 }
1594
1595 void MachineInstr::dump() const {
1596   dbgs() << "  " << *this;
1597 }
1598
1599 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1600                          raw_ostream &CommentOS) {
1601   const LLVMContext &Ctx = MF->getFunction()->getContext();
1602   if (!DL.isUnknown()) {          // Print source line info.
1603     DIScope Scope(DL.getScope(Ctx));
1604     // Omit the directory, because it's likely to be long and uninteresting.
1605     if (Scope.Verify())
1606       CommentOS << Scope.getFilename();
1607     else
1608       CommentOS << "<unknown>";
1609     CommentOS << ':' << DL.getLine();
1610     if (DL.getCol() != 0)
1611       CommentOS << ':' << DL.getCol();
1612     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1613     if (!InlinedAtDL.isUnknown()) {
1614       CommentOS << " @[ ";
1615       printDebugLoc(InlinedAtDL, MF, CommentOS);
1616       CommentOS << " ]";
1617     }
1618   }
1619 }
1620
1621 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1622   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1623   const MachineFunction *MF = 0;
1624   const MachineRegisterInfo *MRI = 0;
1625   if (const MachineBasicBlock *MBB = getParent()) {
1626     MF = MBB->getParent();
1627     if (!TM && MF)
1628       TM = &MF->getTarget();
1629     if (MF)
1630       MRI = &MF->getRegInfo();
1631   }
1632
1633   // Save a list of virtual registers.
1634   SmallVector<unsigned, 8> VirtRegs;
1635
1636   // Print explicitly defined operands on the left of an assignment syntax.
1637   unsigned StartOp = 0, e = getNumOperands();
1638   for (; StartOp < e && getOperand(StartOp).isReg() &&
1639          getOperand(StartOp).isDef() &&
1640          !getOperand(StartOp).isImplicit();
1641        ++StartOp) {
1642     if (StartOp != 0) OS << ", ";
1643     getOperand(StartOp).print(OS, TM);
1644     unsigned Reg = getOperand(StartOp).getReg();
1645     if (TargetRegisterInfo::isVirtualRegister(Reg))
1646       VirtRegs.push_back(Reg);
1647   }
1648
1649   if (StartOp != 0)
1650     OS << " = ";
1651
1652   // Print the opcode name.
1653   if (TM && TM->getInstrInfo())
1654     OS << TM->getInstrInfo()->getName(getOpcode());
1655   else
1656     OS << "UNKNOWN";
1657
1658   // Print the rest of the operands.
1659   bool OmittedAnyCallClobbers = false;
1660   bool FirstOp = true;
1661   unsigned AsmDescOp = ~0u;
1662   unsigned AsmOpCount = 0;
1663
1664   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1665     // Print asm string.
1666     OS << " ";
1667     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1668
1669     // Print HasSideEffects, IsAlignStack
1670     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1671     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1672       OS << " [sideeffect]";
1673     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1674       OS << " [alignstack]";
1675
1676     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1677     FirstOp = false;
1678   }
1679
1680
1681   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1682     const MachineOperand &MO = getOperand(i);
1683
1684     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1685       VirtRegs.push_back(MO.getReg());
1686
1687     // Omit call-clobbered registers which aren't used anywhere. This makes
1688     // call instructions much less noisy on targets where calls clobber lots
1689     // of registers. Don't rely on MO.isDead() because we may be called before
1690     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1691     if (MF && isCall() &&
1692         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1693       unsigned Reg = MO.getReg();
1694       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1695         const MachineRegisterInfo &MRI = MF->getRegInfo();
1696         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1697           bool HasAliasLive = false;
1698           for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1699                AI.isValid(); ++AI) {
1700             unsigned AliasReg = *AI;
1701             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1702               HasAliasLive = true;
1703               break;
1704             }
1705           }
1706           if (!HasAliasLive) {
1707             OmittedAnyCallClobbers = true;
1708             continue;
1709           }
1710         }
1711       }
1712     }
1713
1714     if (FirstOp) FirstOp = false; else OS << ",";
1715     OS << " ";
1716     if (i < getDesc().NumOperands) {
1717       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1718       if (MCOI.isPredicate())
1719         OS << "pred:";
1720       if (MCOI.isOptionalDef())
1721         OS << "opt:";
1722     }
1723     if (isDebugValue() && MO.isMetadata()) {
1724       // Pretty print DBG_VALUE instructions.
1725       const MDNode *MD = MO.getMetadata();
1726       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1727         OS << "!\"" << MDS->getString() << '\"';
1728       else
1729         MO.print(OS, TM);
1730     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1731       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1732     } else if (i == AsmDescOp && MO.isImm()) {
1733       // Pretty print the inline asm operand descriptor.
1734       OS << '$' << AsmOpCount++;
1735       unsigned Flag = MO.getImm();
1736       switch (InlineAsm::getKind(Flag)) {
1737       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1738       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1739       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1740       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1741       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1742       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1743       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1744       }
1745
1746       unsigned RCID = 0;
1747       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1748         if (TM)
1749           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1750         else
1751           OS << ":RC" << RCID;
1752       }
1753
1754       unsigned TiedTo = 0;
1755       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1756         OS << " tiedto:$" << TiedTo;
1757
1758       OS << ']';
1759
1760       // Compute the index of the next operand descriptor.
1761       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1762     } else
1763       MO.print(OS, TM);
1764   }
1765
1766   // Briefly indicate whether any call clobbers were omitted.
1767   if (OmittedAnyCallClobbers) {
1768     if (!FirstOp) OS << ",";
1769     OS << " ...";
1770   }
1771
1772   bool HaveSemi = false;
1773   if (Flags) {
1774     if (!HaveSemi) OS << ";"; HaveSemi = true;
1775     OS << " flags: ";
1776
1777     if (Flags & FrameSetup)
1778       OS << "FrameSetup";
1779   }
1780
1781   if (!memoperands_empty()) {
1782     if (!HaveSemi) OS << ";"; HaveSemi = true;
1783
1784     OS << " mem:";
1785     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1786          i != e; ++i) {
1787       OS << **i;
1788       if (llvm::next(i) != e)
1789         OS << " ";
1790     }
1791   }
1792
1793   // Print the regclass of any virtual registers encountered.
1794   if (MRI && !VirtRegs.empty()) {
1795     if (!HaveSemi) OS << ";"; HaveSemi = true;
1796     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1797       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1798       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1799       for (unsigned j = i+1; j != VirtRegs.size();) {
1800         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1801           ++j;
1802           continue;
1803         }
1804         if (VirtRegs[i] != VirtRegs[j])
1805           OS << "," << PrintReg(VirtRegs[j]);
1806         VirtRegs.erase(VirtRegs.begin()+j);
1807       }
1808     }
1809   }
1810
1811   // Print debug location information.
1812   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1813     if (!HaveSemi) OS << ";"; HaveSemi = true;
1814     DIVariable DV(getOperand(e - 1).getMetadata());
1815     OS << " line no:" <<  DV.getLineNumber();
1816     if (MDNode *InlinedAt = DV.getInlinedAt()) {
1817       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1818       if (!InlinedAtDL.isUnknown()) {
1819         OS << " inlined @[ ";
1820         printDebugLoc(InlinedAtDL, MF, OS);
1821         OS << " ]";
1822       }
1823     }
1824   } else if (!debugLoc.isUnknown() && MF) {
1825     if (!HaveSemi) OS << ";"; HaveSemi = true;
1826     OS << " dbg:";
1827     printDebugLoc(debugLoc, MF, OS);
1828   }
1829
1830   OS << '\n';
1831 }
1832
1833 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1834                                      const TargetRegisterInfo *RegInfo,
1835                                      bool AddIfNotFound) {
1836   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1837   bool hasAliases = isPhysReg &&
1838     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1839   bool Found = false;
1840   SmallVector<unsigned,4> DeadOps;
1841   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1842     MachineOperand &MO = getOperand(i);
1843     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1844       continue;
1845     unsigned Reg = MO.getReg();
1846     if (!Reg)
1847       continue;
1848
1849     if (Reg == IncomingReg) {
1850       if (!Found) {
1851         if (MO.isKill())
1852           // The register is already marked kill.
1853           return true;
1854         if (isPhysReg && isRegTiedToDefOperand(i))
1855           // Two-address uses of physregs must not be marked kill.
1856           return true;
1857         MO.setIsKill();
1858         Found = true;
1859       }
1860     } else if (hasAliases && MO.isKill() &&
1861                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1862       // A super-register kill already exists.
1863       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1864         return true;
1865       if (RegInfo->isSubRegister(IncomingReg, Reg))
1866         DeadOps.push_back(i);
1867     }
1868   }
1869
1870   // Trim unneeded kill operands.
1871   while (!DeadOps.empty()) {
1872     unsigned OpIdx = DeadOps.back();
1873     if (getOperand(OpIdx).isImplicit())
1874       RemoveOperand(OpIdx);
1875     else
1876       getOperand(OpIdx).setIsKill(false);
1877     DeadOps.pop_back();
1878   }
1879
1880   // If not found, this means an alias of one of the operands is killed. Add a
1881   // new implicit operand if required.
1882   if (!Found && AddIfNotFound) {
1883     addOperand(MachineOperand::CreateReg(IncomingReg,
1884                                          false /*IsDef*/,
1885                                          true  /*IsImp*/,
1886                                          true  /*IsKill*/));
1887     return true;
1888   }
1889   return Found;
1890 }
1891
1892 void MachineInstr::clearRegisterKills(unsigned Reg,
1893                                       const TargetRegisterInfo *RegInfo) {
1894   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1895     RegInfo = 0;
1896   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1897     MachineOperand &MO = getOperand(i);
1898     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1899       continue;
1900     unsigned OpReg = MO.getReg();
1901     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1902       MO.setIsKill(false);
1903   }
1904 }
1905
1906 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1907                                    const TargetRegisterInfo *RegInfo,
1908                                    bool AddIfNotFound) {
1909   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1910   bool hasAliases = isPhysReg &&
1911     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1912   bool Found = false;
1913   SmallVector<unsigned,4> DeadOps;
1914   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1915     MachineOperand &MO = getOperand(i);
1916     if (!MO.isReg() || !MO.isDef())
1917       continue;
1918     unsigned Reg = MO.getReg();
1919     if (!Reg)
1920       continue;
1921
1922     if (Reg == IncomingReg) {
1923       MO.setIsDead();
1924       Found = true;
1925     } else if (hasAliases && MO.isDead() &&
1926                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1927       // There exists a super-register that's marked dead.
1928       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1929         return true;
1930       if (RegInfo->isSubRegister(IncomingReg, Reg))
1931         DeadOps.push_back(i);
1932     }
1933   }
1934
1935   // Trim unneeded dead operands.
1936   while (!DeadOps.empty()) {
1937     unsigned OpIdx = DeadOps.back();
1938     if (getOperand(OpIdx).isImplicit())
1939       RemoveOperand(OpIdx);
1940     else
1941       getOperand(OpIdx).setIsDead(false);
1942     DeadOps.pop_back();
1943   }
1944
1945   // If not found, this means an alias of one of the operands is dead. Add a
1946   // new implicit operand if required.
1947   if (Found || !AddIfNotFound)
1948     return Found;
1949
1950   addOperand(MachineOperand::CreateReg(IncomingReg,
1951                                        true  /*IsDef*/,
1952                                        true  /*IsImp*/,
1953                                        false /*IsKill*/,
1954                                        true  /*IsDead*/));
1955   return true;
1956 }
1957
1958 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1959                                       const TargetRegisterInfo *RegInfo) {
1960   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1961     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1962     if (MO)
1963       return;
1964   } else {
1965     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1966       const MachineOperand &MO = getOperand(i);
1967       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1968           MO.getSubReg() == 0)
1969         return;
1970     }
1971   }
1972   addOperand(MachineOperand::CreateReg(IncomingReg,
1973                                        true  /*IsDef*/,
1974                                        true  /*IsImp*/));
1975 }
1976
1977 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1978                                          const TargetRegisterInfo &TRI) {
1979   bool HasRegMask = false;
1980   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1981     MachineOperand &MO = getOperand(i);
1982     if (MO.isRegMask()) {
1983       HasRegMask = true;
1984       continue;
1985     }
1986     if (!MO.isReg() || !MO.isDef()) continue;
1987     unsigned Reg = MO.getReg();
1988     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1989     bool Dead = true;
1990     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1991          I != E; ++I)
1992       if (TRI.regsOverlap(*I, Reg)) {
1993         Dead = false;
1994         break;
1995       }
1996     // If there are no uses, including partial uses, the def is dead.
1997     if (Dead) MO.setIsDead();
1998   }
1999
2000   // This is a call with a register mask operand.
2001   // Mask clobbers are always dead, so add defs for the non-dead defines.
2002   if (HasRegMask)
2003     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
2004          I != E; ++I)
2005       addRegisterDefined(*I, &TRI);
2006 }
2007
2008 unsigned
2009 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
2010   // Build up a buffer of hash code components.
2011   SmallVector<size_t, 8> HashComponents;
2012   HashComponents.reserve(MI->getNumOperands() + 1);
2013   HashComponents.push_back(MI->getOpcode());
2014   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
2015     const MachineOperand &MO = MI->getOperand(i);
2016     if (MO.isReg() && MO.isDef() &&
2017         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
2018       continue;  // Skip virtual register defs.
2019
2020     HashComponents.push_back(hash_value(MO));
2021   }
2022   return hash_combine_range(HashComponents.begin(), HashComponents.end());
2023 }
2024
2025 void MachineInstr::emitError(StringRef Msg) const {
2026   // Find the source location cookie.
2027   unsigned LocCookie = 0;
2028   const MDNode *LocMD = 0;
2029   for (unsigned i = getNumOperands(); i != 0; --i) {
2030     if (getOperand(i-1).isMetadata() &&
2031         (LocMD = getOperand(i-1).getMetadata()) &&
2032         LocMD->getNumOperands() != 0) {
2033       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
2034         LocCookie = CI->getZExtValue();
2035         break;
2036       }
2037     }
2038   }
2039
2040   if (const MachineBasicBlock *MBB = getParent())
2041     if (const MachineFunction *MF = MBB->getParent())
2042       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
2043   report_fatal_error(Msg);
2044 }