Teach CodeGen's version of computeMaskedBits to understand the range metadata.
[oota-llvm.git] / lib / CodeGen / MachineInstr.cpp
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/Constants.h"
16 #include "llvm/Function.h"
17 #include "llvm/InlineAsm.h"
18 #include "llvm/LLVMContext.h"
19 #include "llvm/Metadata.h"
20 #include "llvm/Module.h"
21 #include "llvm/Type.h"
22 #include "llvm/Value.h"
23 #include "llvm/Assembly/Writer.h"
24 #include "llvm/CodeGen/MachineConstantPool.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineMemOperand.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/PseudoSourceValue.h"
30 #include "llvm/MC/MCInstrDesc.h"
31 #include "llvm/MC/MCSymbol.h"
32 #include "llvm/Target/TargetMachine.h"
33 #include "llvm/Target/TargetInstrInfo.h"
34 #include "llvm/Target/TargetRegisterInfo.h"
35 #include "llvm/Analysis/AliasAnalysis.h"
36 #include "llvm/Analysis/DebugInfo.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/LeakDetector.h"
40 #include "llvm/Support/MathExtras.h"
41 #include "llvm/Support/raw_ostream.h"
42 #include "llvm/ADT/FoldingSet.h"
43 #include "llvm/ADT/Hashing.h"
44 using namespace llvm;
45
46 //===----------------------------------------------------------------------===//
47 // MachineOperand Implementation
48 //===----------------------------------------------------------------------===//
49
50 /// AddRegOperandToRegInfo - Add this register operand to the specified
51 /// MachineRegisterInfo.  If it is null, then the next/prev fields should be
52 /// explicitly nulled out.
53 void MachineOperand::AddRegOperandToRegInfo(MachineRegisterInfo *RegInfo) {
54   assert(isReg() && "Can only add reg operand to use lists");
55
56   // If the reginfo pointer is null, just explicitly null out or next/prev
57   // pointers, to ensure they are not garbage.
58   if (RegInfo == 0) {
59     Contents.Reg.Prev = 0;
60     Contents.Reg.Next = 0;
61     return;
62   }
63
64   // Otherwise, add this operand to the head of the registers use/def list.
65   MachineOperand **Head = &RegInfo->getRegUseDefListHead(getReg());
66
67   // For SSA values, we prefer to keep the definition at the start of the list.
68   // we do this by skipping over the definition if it is at the head of the
69   // list.
70   if (*Head && (*Head)->isDef())
71     Head = &(*Head)->Contents.Reg.Next;
72
73   Contents.Reg.Next = *Head;
74   if (Contents.Reg.Next) {
75     assert(getReg() == Contents.Reg.Next->getReg() &&
76            "Different regs on the same list!");
77     Contents.Reg.Next->Contents.Reg.Prev = &Contents.Reg.Next;
78   }
79
80   Contents.Reg.Prev = Head;
81   *Head = this;
82 }
83
84 /// RemoveRegOperandFromRegInfo - Remove this register operand from the
85 /// MachineRegisterInfo it is linked with.
86 void MachineOperand::RemoveRegOperandFromRegInfo() {
87   assert(isOnRegUseList() && "Reg operand is not on a use list");
88   // Unlink this from the doubly linked list of operands.
89   MachineOperand *NextOp = Contents.Reg.Next;
90   *Contents.Reg.Prev = NextOp;
91   if (NextOp) {
92     assert(NextOp->getReg() == getReg() && "Corrupt reg use/def chain!");
93     NextOp->Contents.Reg.Prev = Contents.Reg.Prev;
94   }
95   Contents.Reg.Prev = 0;
96   Contents.Reg.Next = 0;
97 }
98
99 void MachineOperand::setReg(unsigned Reg) {
100   if (getReg() == Reg) return; // No change.
101
102   // Otherwise, we have to change the register.  If this operand is embedded
103   // into a machine function, we need to update the old and new register's
104   // use/def lists.
105   if (MachineInstr *MI = getParent())
106     if (MachineBasicBlock *MBB = MI->getParent())
107       if (MachineFunction *MF = MBB->getParent()) {
108         RemoveRegOperandFromRegInfo();
109         SmallContents.RegNo = Reg;
110         AddRegOperandToRegInfo(&MF->getRegInfo());
111         return;
112       }
113
114   // Otherwise, just change the register, no problem.  :)
115   SmallContents.RegNo = Reg;
116 }
117
118 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
119                                   const TargetRegisterInfo &TRI) {
120   assert(TargetRegisterInfo::isVirtualRegister(Reg));
121   if (SubIdx && getSubReg())
122     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
123   setReg(Reg);
124   if (SubIdx)
125     setSubReg(SubIdx);
126 }
127
128 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
129   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
130   if (getSubReg()) {
131     Reg = TRI.getSubReg(Reg, getSubReg());
132     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
133     // That won't happen in legal code.
134     setSubReg(0);
135   }
136   setReg(Reg);
137 }
138
139 /// ChangeToImmediate - Replace this operand with a new immediate operand of
140 /// the specified value.  If an operand is known to be an immediate already,
141 /// the setImm method should be used.
142 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
143   // If this operand is currently a register operand, and if this is in a
144   // function, deregister the operand from the register's use/def list.
145   if (isReg() && getParent() && getParent()->getParent() &&
146       getParent()->getParent()->getParent())
147     RemoveRegOperandFromRegInfo();
148
149   OpKind = MO_Immediate;
150   Contents.ImmVal = ImmVal;
151 }
152
153 /// ChangeToRegister - Replace this operand with a new register operand of
154 /// the specified value.  If an operand is known to be an register already,
155 /// the setReg method should be used.
156 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
157                                       bool isKill, bool isDead, bool isUndef,
158                                       bool isDebug) {
159   // If this operand is already a register operand, use setReg to update the
160   // register's use/def lists.
161   if (isReg()) {
162     assert(!isEarlyClobber());
163     setReg(Reg);
164   } else {
165     // Otherwise, change this to a register and set the reg#.
166     OpKind = MO_Register;
167     SmallContents.RegNo = Reg;
168
169     // If this operand is embedded in a function, add the operand to the
170     // register's use/def list.
171     if (MachineInstr *MI = getParent())
172       if (MachineBasicBlock *MBB = MI->getParent())
173         if (MachineFunction *MF = MBB->getParent())
174           AddRegOperandToRegInfo(&MF->getRegInfo());
175   }
176
177   IsDef = isDef;
178   IsImp = isImp;
179   IsKill = isKill;
180   IsDead = isDead;
181   IsUndef = isUndef;
182   IsInternalRead = false;
183   IsEarlyClobber = false;
184   IsDebug = isDebug;
185   SubReg = 0;
186 }
187
188 /// isIdenticalTo - Return true if this operand is identical to the specified
189 /// operand.
190 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
191   if (getType() != Other.getType() ||
192       getTargetFlags() != Other.getTargetFlags())
193     return false;
194
195   switch (getType()) {
196   case MachineOperand::MO_Register:
197     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
198            getSubReg() == Other.getSubReg();
199   case MachineOperand::MO_Immediate:
200     return getImm() == Other.getImm();
201   case MachineOperand::MO_CImmediate:
202     return getCImm() == Other.getCImm();
203   case MachineOperand::MO_FPImmediate:
204     return getFPImm() == Other.getFPImm();
205   case MachineOperand::MO_MachineBasicBlock:
206     return getMBB() == Other.getMBB();
207   case MachineOperand::MO_FrameIndex:
208     return getIndex() == Other.getIndex();
209   case MachineOperand::MO_ConstantPoolIndex:
210     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
211   case MachineOperand::MO_JumpTableIndex:
212     return getIndex() == Other.getIndex();
213   case MachineOperand::MO_GlobalAddress:
214     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
215   case MachineOperand::MO_ExternalSymbol:
216     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
217            getOffset() == Other.getOffset();
218   case MachineOperand::MO_BlockAddress:
219     return getBlockAddress() == Other.getBlockAddress();
220   case MO_RegisterMask:
221     return getRegMask() == Other.getRegMask();
222   case MachineOperand::MO_MCSymbol:
223     return getMCSymbol() == Other.getMCSymbol();
224   case MachineOperand::MO_Metadata:
225     return getMetadata() == Other.getMetadata();
226   }
227   llvm_unreachable("Invalid machine operand type");
228 }
229
230 /// print - Print the specified machine operand.
231 ///
232 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
233   // If the instruction is embedded into a basic block, we can find the
234   // target info for the instruction.
235   if (!TM)
236     if (const MachineInstr *MI = getParent())
237       if (const MachineBasicBlock *MBB = MI->getParent())
238         if (const MachineFunction *MF = MBB->getParent())
239           TM = &MF->getTarget();
240   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
241
242   switch (getType()) {
243   case MachineOperand::MO_Register:
244     OS << PrintReg(getReg(), TRI, getSubReg());
245
246     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
247         isInternalRead() || isEarlyClobber()) {
248       OS << '<';
249       bool NeedComma = false;
250       if (isDef()) {
251         if (NeedComma) OS << ',';
252         if (isEarlyClobber())
253           OS << "earlyclobber,";
254         if (isImplicit())
255           OS << "imp-";
256         OS << "def";
257         NeedComma = true;
258       } else if (isImplicit()) {
259           OS << "imp-use";
260           NeedComma = true;
261       }
262
263       if (isKill() || isDead() || isUndef() || isInternalRead()) {
264         if (NeedComma) OS << ',';
265         NeedComma = false;
266         if (isKill()) {
267           OS << "kill";
268           NeedComma = true;
269         }
270         if (isDead()) {
271           OS << "dead";
272           NeedComma = true;
273         }
274         if (isUndef()) {
275           if (NeedComma) OS << ',';
276           OS << "undef";
277           NeedComma = true;
278         }
279         if (isInternalRead()) {
280           if (NeedComma) OS << ',';
281           OS << "internal";
282           NeedComma = true;
283         }
284       }
285       OS << '>';
286     }
287     break;
288   case MachineOperand::MO_Immediate:
289     OS << getImm();
290     break;
291   case MachineOperand::MO_CImmediate:
292     getCImm()->getValue().print(OS, false);
293     break;
294   case MachineOperand::MO_FPImmediate:
295     if (getFPImm()->getType()->isFloatTy())
296       OS << getFPImm()->getValueAPF().convertToFloat();
297     else
298       OS << getFPImm()->getValueAPF().convertToDouble();
299     break;
300   case MachineOperand::MO_MachineBasicBlock:
301     OS << "<BB#" << getMBB()->getNumber() << ">";
302     break;
303   case MachineOperand::MO_FrameIndex:
304     OS << "<fi#" << getIndex() << '>';
305     break;
306   case MachineOperand::MO_ConstantPoolIndex:
307     OS << "<cp#" << getIndex();
308     if (getOffset()) OS << "+" << getOffset();
309     OS << '>';
310     break;
311   case MachineOperand::MO_JumpTableIndex:
312     OS << "<jt#" << getIndex() << '>';
313     break;
314   case MachineOperand::MO_GlobalAddress:
315     OS << "<ga:";
316     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
317     if (getOffset()) OS << "+" << getOffset();
318     OS << '>';
319     break;
320   case MachineOperand::MO_ExternalSymbol:
321     OS << "<es:" << getSymbolName();
322     if (getOffset()) OS << "+" << getOffset();
323     OS << '>';
324     break;
325   case MachineOperand::MO_BlockAddress:
326     OS << '<';
327     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
328     OS << '>';
329     break;
330   case MachineOperand::MO_RegisterMask:
331     OS << "<regmask>";
332     break;
333   case MachineOperand::MO_Metadata:
334     OS << '<';
335     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
336     OS << '>';
337     break;
338   case MachineOperand::MO_MCSymbol:
339     OS << "<MCSym=" << *getMCSymbol() << '>';
340     break;
341   }
342
343   if (unsigned TF = getTargetFlags())
344     OS << "[TF=" << TF << ']';
345 }
346
347 //===----------------------------------------------------------------------===//
348 // MachineMemOperand Implementation
349 //===----------------------------------------------------------------------===//
350
351 /// getAddrSpace - Return the LLVM IR address space number that this pointer
352 /// points into.
353 unsigned MachinePointerInfo::getAddrSpace() const {
354   if (V == 0) return 0;
355   return cast<PointerType>(V->getType())->getAddressSpace();
356 }
357
358 /// getConstantPool - Return a MachinePointerInfo record that refers to the
359 /// constant pool.
360 MachinePointerInfo MachinePointerInfo::getConstantPool() {
361   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
362 }
363
364 /// getFixedStack - Return a MachinePointerInfo record that refers to the
365 /// the specified FrameIndex.
366 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
367   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
368 }
369
370 MachinePointerInfo MachinePointerInfo::getJumpTable() {
371   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
372 }
373
374 MachinePointerInfo MachinePointerInfo::getGOT() {
375   return MachinePointerInfo(PseudoSourceValue::getGOT());
376 }
377
378 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
379   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
380 }
381
382 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
383                                      uint64_t s, unsigned int a,
384                                      const MDNode *TBAAInfo,
385                                      const MDNode *Ranges)
386   : PtrInfo(ptrinfo), Size(s),
387     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
388     TBAAInfo(TBAAInfo), Ranges(Ranges) {
389   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
390          "invalid pointer value");
391   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
392   assert((isLoad() || isStore()) && "Not a load/store!");
393 }
394
395 /// Profile - Gather unique data for the object.
396 ///
397 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
398   ID.AddInteger(getOffset());
399   ID.AddInteger(Size);
400   ID.AddPointer(getValue());
401   ID.AddInteger(Flags);
402 }
403
404 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
405   // The Value and Offset may differ due to CSE. But the flags and size
406   // should be the same.
407   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
408   assert(MMO->getSize() == getSize() && "Size mismatch!");
409
410   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
411     // Update the alignment value.
412     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
413       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
414     // Also update the base and offset, because the new alignment may
415     // not be applicable with the old ones.
416     PtrInfo = MMO->PtrInfo;
417   }
418 }
419
420 /// getAlignment - Return the minimum known alignment in bytes of the
421 /// actual memory reference.
422 uint64_t MachineMemOperand::getAlignment() const {
423   return MinAlign(getBaseAlignment(), getOffset());
424 }
425
426 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
427   assert((MMO.isLoad() || MMO.isStore()) &&
428          "SV has to be a load, store or both.");
429
430   if (MMO.isVolatile())
431     OS << "Volatile ";
432
433   if (MMO.isLoad())
434     OS << "LD";
435   if (MMO.isStore())
436     OS << "ST";
437   OS << MMO.getSize();
438
439   // Print the address information.
440   OS << "[";
441   if (!MMO.getValue())
442     OS << "<unknown>";
443   else
444     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
445
446   // If the alignment of the memory reference itself differs from the alignment
447   // of the base pointer, print the base alignment explicitly, next to the base
448   // pointer.
449   if (MMO.getBaseAlignment() != MMO.getAlignment())
450     OS << "(align=" << MMO.getBaseAlignment() << ")";
451
452   if (MMO.getOffset() != 0)
453     OS << "+" << MMO.getOffset();
454   OS << "]";
455
456   // Print the alignment of the reference.
457   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
458       MMO.getBaseAlignment() != MMO.getSize())
459     OS << "(align=" << MMO.getAlignment() << ")";
460
461   // Print TBAA info.
462   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
463     OS << "(tbaa=";
464     if (TBAAInfo->getNumOperands() > 0)
465       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
466     else
467       OS << "<unknown>";
468     OS << ")";
469   }
470
471   // Print nontemporal info.
472   if (MMO.isNonTemporal())
473     OS << "(nontemporal)";
474
475   return OS;
476 }
477
478 //===----------------------------------------------------------------------===//
479 // MachineInstr Implementation
480 //===----------------------------------------------------------------------===//
481
482 /// MachineInstr ctor - This constructor creates a dummy MachineInstr with
483 /// MCID NULL and no operands.
484 MachineInstr::MachineInstr()
485   : MCID(0), Flags(0), AsmPrinterFlags(0),
486     NumMemRefs(0), MemRefs(0),
487     Parent(0) {
488   // Make sure that we get added to a machine basicblock
489   LeakDetector::addGarbageObject(this);
490 }
491
492 void MachineInstr::addImplicitDefUseOperands() {
493   if (MCID->ImplicitDefs)
494     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
495       addOperand(MachineOperand::CreateReg(*ImpDefs, true, true));
496   if (MCID->ImplicitUses)
497     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
498       addOperand(MachineOperand::CreateReg(*ImpUses, false, true));
499 }
500
501 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
502 /// implicit operands. It reserves space for the number of operands specified by
503 /// the MCInstrDesc.
504 MachineInstr::MachineInstr(const MCInstrDesc &tid, bool NoImp)
505   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
506     NumMemRefs(0), MemRefs(0), Parent(0) {
507   unsigned NumImplicitOps = 0;
508   if (!NoImp)
509     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
510   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
511   if (!NoImp)
512     addImplicitDefUseOperands();
513   // Make sure that we get added to a machine basicblock
514   LeakDetector::addGarbageObject(this);
515 }
516
517 /// MachineInstr ctor - As above, but with a DebugLoc.
518 MachineInstr::MachineInstr(const MCInstrDesc &tid, const DebugLoc dl,
519                            bool NoImp)
520   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
521     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
522   unsigned NumImplicitOps = 0;
523   if (!NoImp)
524     NumImplicitOps = MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
525   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
526   if (!NoImp)
527     addImplicitDefUseOperands();
528   // Make sure that we get added to a machine basicblock
529   LeakDetector::addGarbageObject(this);
530 }
531
532 /// MachineInstr ctor - Work exactly the same as the ctor two above, except
533 /// that the MachineInstr is created and added to the end of the specified
534 /// basic block.
535 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const MCInstrDesc &tid)
536   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
537     NumMemRefs(0), MemRefs(0), Parent(0) {
538   assert(MBB && "Cannot use inserting ctor with null basic block!");
539   unsigned NumImplicitOps =
540     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
541   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
542   addImplicitDefUseOperands();
543   // Make sure that we get added to a machine basicblock
544   LeakDetector::addGarbageObject(this);
545   MBB->push_back(this);  // Add instruction to end of basic block!
546 }
547
548 /// MachineInstr ctor - As above, but with a DebugLoc.
549 ///
550 MachineInstr::MachineInstr(MachineBasicBlock *MBB, const DebugLoc dl,
551                            const MCInstrDesc &tid)
552   : MCID(&tid), Flags(0), AsmPrinterFlags(0),
553     NumMemRefs(0), MemRefs(0), Parent(0), debugLoc(dl) {
554   assert(MBB && "Cannot use inserting ctor with null basic block!");
555   unsigned NumImplicitOps =
556     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses();
557   Operands.reserve(NumImplicitOps + MCID->getNumOperands());
558   addImplicitDefUseOperands();
559   // Make sure that we get added to a machine basicblock
560   LeakDetector::addGarbageObject(this);
561   MBB->push_back(this);  // Add instruction to end of basic block!
562 }
563
564 /// MachineInstr ctor - Copies MachineInstr arg exactly
565 ///
566 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
567   : MCID(&MI.getDesc()), Flags(0), AsmPrinterFlags(0),
568     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
569     Parent(0), debugLoc(MI.getDebugLoc()) {
570   Operands.reserve(MI.getNumOperands());
571
572   // Add operands
573   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
574     addOperand(MI.getOperand(i));
575
576   // Copy all the flags.
577   Flags = MI.Flags;
578
579   // Set parent to null.
580   Parent = 0;
581
582   LeakDetector::addGarbageObject(this);
583 }
584
585 MachineInstr::~MachineInstr() {
586   LeakDetector::removeGarbageObject(this);
587 #ifndef NDEBUG
588   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
589     assert(Operands[i].ParentMI == this && "ParentMI mismatch!");
590     assert((!Operands[i].isReg() || !Operands[i].isOnRegUseList()) &&
591            "Reg operand def/use list corrupted");
592   }
593 #endif
594 }
595
596 /// getRegInfo - If this instruction is embedded into a MachineFunction,
597 /// return the MachineRegisterInfo object for the current function, otherwise
598 /// return null.
599 MachineRegisterInfo *MachineInstr::getRegInfo() {
600   if (MachineBasicBlock *MBB = getParent())
601     return &MBB->getParent()->getRegInfo();
602   return 0;
603 }
604
605 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
606 /// this instruction from their respective use lists.  This requires that the
607 /// operands already be on their use lists.
608 void MachineInstr::RemoveRegOperandsFromUseLists() {
609   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
610     if (Operands[i].isReg())
611       Operands[i].RemoveRegOperandFromRegInfo();
612   }
613 }
614
615 /// AddRegOperandsToUseLists - Add all of the register operands in
616 /// this instruction from their respective use lists.  This requires that the
617 /// operands not be on their use lists yet.
618 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &RegInfo) {
619   for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
620     if (Operands[i].isReg())
621       Operands[i].AddRegOperandToRegInfo(&RegInfo);
622   }
623 }
624
625
626 /// addOperand - Add the specified operand to the instruction.  If it is an
627 /// implicit operand, it is added to the end of the operand list.  If it is
628 /// an explicit operand it is added at the end of the explicit operand list
629 /// (before the first implicit operand).
630 void MachineInstr::addOperand(const MachineOperand &Op) {
631   assert(MCID && "Cannot add operands before providing an instr descriptor");
632   bool isImpReg = Op.isReg() && Op.isImplicit();
633   MachineRegisterInfo *RegInfo = getRegInfo();
634
635   // If the Operands backing store is reallocated, all register operands must
636   // be removed and re-added to RegInfo.  It is storing pointers to operands.
637   bool Reallocate = RegInfo &&
638     !Operands.empty() && Operands.size() == Operands.capacity();
639
640   // Find the insert location for the new operand.  Implicit registers go at
641   // the end, everything goes before the implicit regs.
642   unsigned OpNo = Operands.size();
643
644   // Remove all the implicit operands from RegInfo if they need to be shifted.
645   // FIXME: Allow mixed explicit and implicit operands on inline asm.
646   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
647   // implicit-defs, but they must not be moved around.  See the FIXME in
648   // InstrEmitter.cpp.
649   if (!isImpReg && !isInlineAsm()) {
650     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
651       --OpNo;
652       if (RegInfo)
653         Operands[OpNo].RemoveRegOperandFromRegInfo();
654     }
655   }
656
657   // OpNo now points as the desired insertion point.  Unless this is a variadic
658   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
659   assert((isImpReg || MCID->isVariadic() || OpNo < MCID->getNumOperands()) &&
660          "Trying to add an operand to a machine instr that is already done!");
661
662   // All operands from OpNo have been removed from RegInfo.  If the Operands
663   // backing store needs to be reallocated, we also need to remove any other
664   // register operands.
665   if (Reallocate)
666     for (unsigned i = 0; i != OpNo; ++i)
667       if (Operands[i].isReg())
668         Operands[i].RemoveRegOperandFromRegInfo();
669
670   // Insert the new operand at OpNo.
671   Operands.insert(Operands.begin() + OpNo, Op);
672   Operands[OpNo].ParentMI = this;
673
674   // The Operands backing store has now been reallocated, so we can re-add the
675   // operands before OpNo.
676   if (Reallocate)
677     for (unsigned i = 0; i != OpNo; ++i)
678       if (Operands[i].isReg())
679         Operands[i].AddRegOperandToRegInfo(RegInfo);
680
681   // When adding a register operand, tell RegInfo about it.
682   if (Operands[OpNo].isReg()) {
683     // Add the new operand to RegInfo, even when RegInfo is NULL.
684     // This will initialize the linked list pointers.
685     Operands[OpNo].AddRegOperandToRegInfo(RegInfo);
686     // If the register operand is flagged as early, mark the operand as such.
687     if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
688       Operands[OpNo].setIsEarlyClobber(true);
689   }
690
691   // Re-add all the implicit ops.
692   if (RegInfo) {
693     for (unsigned i = OpNo + 1, e = Operands.size(); i != e; ++i) {
694       assert(Operands[i].isReg() && "Should only be an implicit reg!");
695       Operands[i].AddRegOperandToRegInfo(RegInfo);
696     }
697   }
698 }
699
700 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
701 /// fewer operand than it started with.
702 ///
703 void MachineInstr::RemoveOperand(unsigned OpNo) {
704   assert(OpNo < Operands.size() && "Invalid operand number");
705
706   // Special case removing the last one.
707   if (OpNo == Operands.size()-1) {
708     // If needed, remove from the reg def/use list.
709     if (Operands.back().isReg() && Operands.back().isOnRegUseList())
710       Operands.back().RemoveRegOperandFromRegInfo();
711
712     Operands.pop_back();
713     return;
714   }
715
716   // Otherwise, we are removing an interior operand.  If we have reginfo to
717   // update, remove all operands that will be shifted down from their reg lists,
718   // move everything down, then re-add them.
719   MachineRegisterInfo *RegInfo = getRegInfo();
720   if (RegInfo) {
721     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
722       if (Operands[i].isReg())
723         Operands[i].RemoveRegOperandFromRegInfo();
724     }
725   }
726
727   Operands.erase(Operands.begin()+OpNo);
728
729   if (RegInfo) {
730     for (unsigned i = OpNo, e = Operands.size(); i != e; ++i) {
731       if (Operands[i].isReg())
732         Operands[i].AddRegOperandToRegInfo(RegInfo);
733     }
734   }
735 }
736
737 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
738 /// This function should be used only occasionally. The setMemRefs function
739 /// is the primary method for setting up a MachineInstr's MemRefs list.
740 void MachineInstr::addMemOperand(MachineFunction &MF,
741                                  MachineMemOperand *MO) {
742   mmo_iterator OldMemRefs = MemRefs;
743   uint16_t OldNumMemRefs = NumMemRefs;
744
745   uint16_t NewNum = NumMemRefs + 1;
746   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
747
748   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
749   NewMemRefs[NewNum - 1] = MO;
750
751   MemRefs = NewMemRefs;
752   NumMemRefs = NewNum;
753 }
754
755 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
756   const MachineBasicBlock *MBB = getParent();
757   MachineBasicBlock::const_instr_iterator MII = *this; ++MII;
758   while (MII != MBB->end() && MII->isInsideBundle()) {
759     if (MII->getDesc().getFlags() & Mask) {
760       if (Type == AnyInBundle)
761         return true;
762     } else {
763       if (Type == AllInBundle)
764         return false;
765     }
766     ++MII;
767   }
768
769   return Type == AllInBundle;
770 }
771
772 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
773                                  MICheckType Check) const {
774   // If opcodes or number of operands are not the same then the two
775   // instructions are obviously not identical.
776   if (Other->getOpcode() != getOpcode() ||
777       Other->getNumOperands() != getNumOperands())
778     return false;
779
780   if (isBundle()) {
781     // Both instructions are bundles, compare MIs inside the bundle.
782     MachineBasicBlock::const_instr_iterator I1 = *this;
783     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
784     MachineBasicBlock::const_instr_iterator I2 = *Other;
785     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
786     while (++I1 != E1 && I1->isInsideBundle()) {
787       ++I2;
788       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
789         return false;
790     }
791   }
792
793   // Check operands to make sure they match.
794   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
795     const MachineOperand &MO = getOperand(i);
796     const MachineOperand &OMO = Other->getOperand(i);
797     if (!MO.isReg()) {
798       if (!MO.isIdenticalTo(OMO))
799         return false;
800       continue;
801     }
802
803     // Clients may or may not want to ignore defs when testing for equality.
804     // For example, machine CSE pass only cares about finding common
805     // subexpressions, so it's safe to ignore virtual register defs.
806     if (MO.isDef()) {
807       if (Check == IgnoreDefs)
808         continue;
809       else if (Check == IgnoreVRegDefs) {
810         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
811             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
812           if (MO.getReg() != OMO.getReg())
813             return false;
814       } else {
815         if (!MO.isIdenticalTo(OMO))
816           return false;
817         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
818           return false;
819       }
820     } else {
821       if (!MO.isIdenticalTo(OMO))
822         return false;
823       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
824         return false;
825     }
826   }
827   // If DebugLoc does not match then two dbg.values are not identical.
828   if (isDebugValue())
829     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
830         && getDebugLoc() != Other->getDebugLoc())
831       return false;
832   return true;
833 }
834
835 /// removeFromParent - This method unlinks 'this' from the containing basic
836 /// block, and returns it, but does not delete it.
837 MachineInstr *MachineInstr::removeFromParent() {
838   assert(getParent() && "Not embedded in a basic block!");
839
840   // If it's a bundle then remove the MIs inside the bundle as well.
841   if (isBundle()) {
842     MachineBasicBlock *MBB = getParent();
843     MachineBasicBlock::instr_iterator MII = *this; ++MII;
844     MachineBasicBlock::instr_iterator E = MBB->instr_end();
845     while (MII != E && MII->isInsideBundle()) {
846       MachineInstr *MI = &*MII;
847       ++MII;
848       MBB->remove(MI);
849     }
850   }
851   getParent()->remove(this);
852   return this;
853 }
854
855
856 /// eraseFromParent - This method unlinks 'this' from the containing basic
857 /// block, and deletes it.
858 void MachineInstr::eraseFromParent() {
859   assert(getParent() && "Not embedded in a basic block!");
860   // If it's a bundle then remove the MIs inside the bundle as well.
861   if (isBundle()) {
862     MachineBasicBlock *MBB = getParent();
863     MachineBasicBlock::instr_iterator MII = *this; ++MII;
864     MachineBasicBlock::instr_iterator E = MBB->instr_end();
865     while (MII != E && MII->isInsideBundle()) {
866       MachineInstr *MI = &*MII;
867       ++MII;
868       MBB->erase(MI);
869     }
870   }
871   getParent()->erase(this);
872 }
873
874
875 /// getNumExplicitOperands - Returns the number of non-implicit operands.
876 ///
877 unsigned MachineInstr::getNumExplicitOperands() const {
878   unsigned NumOperands = MCID->getNumOperands();
879   if (!MCID->isVariadic())
880     return NumOperands;
881
882   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
883     const MachineOperand &MO = getOperand(i);
884     if (!MO.isReg() || !MO.isImplicit())
885       NumOperands++;
886   }
887   return NumOperands;
888 }
889
890 /// isBundled - Return true if this instruction part of a bundle. This is true
891 /// if either itself or its following instruction is marked "InsideBundle".
892 bool MachineInstr::isBundled() const {
893   if (isInsideBundle())
894     return true;
895   MachineBasicBlock::const_instr_iterator nextMI = this;
896   ++nextMI;
897   return nextMI != Parent->instr_end() && nextMI->isInsideBundle();
898 }
899
900 bool MachineInstr::isStackAligningInlineAsm() const {
901   if (isInlineAsm()) {
902     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
903     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
904       return true;
905   }
906   return false;
907 }
908
909 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
910                                        unsigned *GroupNo) const {
911   assert(isInlineAsm() && "Expected an inline asm instruction");
912   assert(OpIdx < getNumOperands() && "OpIdx out of range");
913
914   // Ignore queries about the initial operands.
915   if (OpIdx < InlineAsm::MIOp_FirstOperand)
916     return -1;
917
918   unsigned Group = 0;
919   unsigned NumOps;
920   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
921        i += NumOps) {
922     const MachineOperand &FlagMO = getOperand(i);
923     // If we reach the implicit register operands, stop looking.
924     if (!FlagMO.isImm())
925       return -1;
926     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
927     if (i + NumOps > OpIdx) {
928       if (GroupNo)
929         *GroupNo = Group;
930       return i;
931     }
932     ++Group;
933   }
934   return -1;
935 }
936
937 const TargetRegisterClass*
938 MachineInstr::getRegClassConstraint(unsigned OpIdx,
939                                     const TargetInstrInfo *TII,
940                                     const TargetRegisterInfo *TRI) const {
941   // Most opcodes have fixed constraints in their MCInstrDesc.
942   if (!isInlineAsm())
943     return TII->getRegClass(getDesc(), OpIdx, TRI);
944
945   if (!getOperand(OpIdx).isReg())
946     return NULL;
947
948   // For tied uses on inline asm, get the constraint from the def.
949   unsigned DefIdx;
950   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
951     OpIdx = DefIdx;
952
953   // Inline asm stores register class constraints in the flag word.
954   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
955   if (FlagIdx < 0)
956     return NULL;
957
958   unsigned Flag = getOperand(FlagIdx).getImm();
959   unsigned RCID;
960   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
961     return TRI->getRegClass(RCID);
962
963   // Assume that all registers in a memory operand are pointers.
964   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
965     return TRI->getPointerRegClass();
966
967   return NULL;
968 }
969
970 /// getBundleSize - Return the number of instructions inside the MI bundle.
971 unsigned MachineInstr::getBundleSize() const {
972   assert(isBundle() && "Expecting a bundle");
973
974   MachineBasicBlock::const_instr_iterator I = *this;
975   unsigned Size = 0;
976   while ((++I)->isInsideBundle()) {
977     ++Size;
978   }
979   assert(Size > 1 && "Malformed bundle");
980
981   return Size;
982 }
983
984 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
985 /// the specific register or -1 if it is not found. It further tightens
986 /// the search criteria to a use that kills the register if isKill is true.
987 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
988                                           const TargetRegisterInfo *TRI) const {
989   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
990     const MachineOperand &MO = getOperand(i);
991     if (!MO.isReg() || !MO.isUse())
992       continue;
993     unsigned MOReg = MO.getReg();
994     if (!MOReg)
995       continue;
996     if (MOReg == Reg ||
997         (TRI &&
998          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
999          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1000          TRI->isSubRegister(MOReg, Reg)))
1001       if (!isKill || MO.isKill())
1002         return i;
1003   }
1004   return -1;
1005 }
1006
1007 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1008 /// indicating if this instruction reads or writes Reg. This also considers
1009 /// partial defines.
1010 std::pair<bool,bool>
1011 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1012                                          SmallVectorImpl<unsigned> *Ops) const {
1013   bool PartDef = false; // Partial redefine.
1014   bool FullDef = false; // Full define.
1015   bool Use = false;
1016
1017   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1018     const MachineOperand &MO = getOperand(i);
1019     if (!MO.isReg() || MO.getReg() != Reg)
1020       continue;
1021     if (Ops)
1022       Ops->push_back(i);
1023     if (MO.isUse())
1024       Use |= !MO.isUndef();
1025     else if (MO.getSubReg() && !MO.isUndef())
1026       // A partial <def,undef> doesn't count as reading the register.
1027       PartDef = true;
1028     else
1029       FullDef = true;
1030   }
1031   // A partial redefine uses Reg unless there is also a full define.
1032   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1033 }
1034
1035 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1036 /// the specified register or -1 if it is not found. If isDead is true, defs
1037 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1038 /// also checks if there is a def of a super-register.
1039 int
1040 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1041                                         const TargetRegisterInfo *TRI) const {
1042   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1043   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1044     const MachineOperand &MO = getOperand(i);
1045     // Accept regmask operands when Overlap is set.
1046     // Ignore them when looking for a specific def operand (Overlap == false).
1047     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1048       return i;
1049     if (!MO.isReg() || !MO.isDef())
1050       continue;
1051     unsigned MOReg = MO.getReg();
1052     bool Found = (MOReg == Reg);
1053     if (!Found && TRI && isPhys &&
1054         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1055       if (Overlap)
1056         Found = TRI->regsOverlap(MOReg, Reg);
1057       else
1058         Found = TRI->isSubRegister(MOReg, Reg);
1059     }
1060     if (Found && (!isDead || MO.isDead()))
1061       return i;
1062   }
1063   return -1;
1064 }
1065
1066 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1067 /// operand list that is used to represent the predicate. It returns -1 if
1068 /// none is found.
1069 int MachineInstr::findFirstPredOperandIdx() const {
1070   // Don't call MCID.findFirstPredOperandIdx() because this variant
1071   // is sometimes called on an instruction that's not yet complete, and
1072   // so the number of operands is less than the MCID indicates. In
1073   // particular, the PTX target does this.
1074   const MCInstrDesc &MCID = getDesc();
1075   if (MCID.isPredicable()) {
1076     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1077       if (MCID.OpInfo[i].isPredicate())
1078         return i;
1079   }
1080
1081   return -1;
1082 }
1083
1084 /// isRegTiedToUseOperand - Given the index of a register def operand,
1085 /// check if the register def is tied to a source operand, due to either
1086 /// two-address elimination or inline assembly constraints. Returns the
1087 /// first tied use operand index by reference is UseOpIdx is not null.
1088 bool MachineInstr::
1089 isRegTiedToUseOperand(unsigned DefOpIdx, unsigned *UseOpIdx) const {
1090   if (isInlineAsm()) {
1091     assert(DefOpIdx > InlineAsm::MIOp_FirstOperand);
1092     const MachineOperand &MO = getOperand(DefOpIdx);
1093     if (!MO.isReg() || !MO.isDef() || MO.getReg() == 0)
1094       return false;
1095     // Determine the actual operand index that corresponds to this index.
1096     unsigned DefNo = 0;
1097     int FlagIdx = findInlineAsmFlagIdx(DefOpIdx, &DefNo);
1098     if (FlagIdx < 0)
1099       return false;
1100
1101     // Which part of the group is DefOpIdx?
1102     unsigned DefPart = DefOpIdx - (FlagIdx + 1);
1103
1104     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands();
1105          i != e; ++i) {
1106       const MachineOperand &FMO = getOperand(i);
1107       if (!FMO.isImm())
1108         continue;
1109       if (i+1 >= e || !getOperand(i+1).isReg() || !getOperand(i+1).isUse())
1110         continue;
1111       unsigned Idx;
1112       if (InlineAsm::isUseOperandTiedToDef(FMO.getImm(), Idx) &&
1113           Idx == DefNo) {
1114         if (UseOpIdx)
1115           *UseOpIdx = (unsigned)i + 1 + DefPart;
1116         return true;
1117       }
1118     }
1119     return false;
1120   }
1121
1122   assert(getOperand(DefOpIdx).isDef() && "DefOpIdx is not a def!");
1123   const MCInstrDesc &MCID = getDesc();
1124   for (unsigned i = 0, e = MCID.getNumOperands(); i != e; ++i) {
1125     const MachineOperand &MO = getOperand(i);
1126     if (MO.isReg() && MO.isUse() &&
1127         MCID.getOperandConstraint(i, MCOI::TIED_TO) == (int)DefOpIdx) {
1128       if (UseOpIdx)
1129         *UseOpIdx = (unsigned)i;
1130       return true;
1131     }
1132   }
1133   return false;
1134 }
1135
1136 /// isRegTiedToDefOperand - Return true if the operand of the specified index
1137 /// is a register use and it is tied to an def operand. It also returns the def
1138 /// operand index by reference.
1139 bool MachineInstr::
1140 isRegTiedToDefOperand(unsigned UseOpIdx, unsigned *DefOpIdx) const {
1141   if (isInlineAsm()) {
1142     const MachineOperand &MO = getOperand(UseOpIdx);
1143     if (!MO.isReg() || !MO.isUse() || MO.getReg() == 0)
1144       return false;
1145
1146     // Find the flag operand corresponding to UseOpIdx
1147     int FlagIdx = findInlineAsmFlagIdx(UseOpIdx);
1148     if (FlagIdx < 0)
1149       return false;
1150
1151     const MachineOperand &UFMO = getOperand(FlagIdx);
1152     unsigned DefNo;
1153     if (InlineAsm::isUseOperandTiedToDef(UFMO.getImm(), DefNo)) {
1154       if (!DefOpIdx)
1155         return true;
1156
1157       unsigned DefIdx = InlineAsm::MIOp_FirstOperand;
1158       // Remember to adjust the index. First operand is asm string, second is
1159       // the HasSideEffects and AlignStack bits, then there is a flag for each.
1160       while (DefNo) {
1161         const MachineOperand &FMO = getOperand(DefIdx);
1162         assert(FMO.isImm());
1163         // Skip over this def.
1164         DefIdx += InlineAsm::getNumOperandRegisters(FMO.getImm()) + 1;
1165         --DefNo;
1166       }
1167       *DefOpIdx = DefIdx + UseOpIdx - FlagIdx;
1168       return true;
1169     }
1170     return false;
1171   }
1172
1173   const MCInstrDesc &MCID = getDesc();
1174   if (UseOpIdx >= MCID.getNumOperands())
1175     return false;
1176   const MachineOperand &MO = getOperand(UseOpIdx);
1177   if (!MO.isReg() || !MO.isUse())
1178     return false;
1179   int DefIdx = MCID.getOperandConstraint(UseOpIdx, MCOI::TIED_TO);
1180   if (DefIdx == -1)
1181     return false;
1182   if (DefOpIdx)
1183     *DefOpIdx = (unsigned)DefIdx;
1184   return true;
1185 }
1186
1187 /// clearKillInfo - Clears kill flags on all operands.
1188 ///
1189 void MachineInstr::clearKillInfo() {
1190   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1191     MachineOperand &MO = getOperand(i);
1192     if (MO.isReg() && MO.isUse())
1193       MO.setIsKill(false);
1194   }
1195 }
1196
1197 /// copyKillDeadInfo - Copies kill / dead operand properties from MI.
1198 ///
1199 void MachineInstr::copyKillDeadInfo(const MachineInstr *MI) {
1200   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1201     const MachineOperand &MO = MI->getOperand(i);
1202     if (!MO.isReg() || (!MO.isKill() && !MO.isDead()))
1203       continue;
1204     for (unsigned j = 0, ee = getNumOperands(); j != ee; ++j) {
1205       MachineOperand &MOp = getOperand(j);
1206       if (!MOp.isIdenticalTo(MO))
1207         continue;
1208       if (MO.isKill())
1209         MOp.setIsKill();
1210       else
1211         MOp.setIsDead();
1212       break;
1213     }
1214   }
1215 }
1216
1217 /// copyPredicates - Copies predicate operand(s) from MI.
1218 void MachineInstr::copyPredicates(const MachineInstr *MI) {
1219   assert(!isBundle() && "MachineInstr::copyPredicates() can't handle bundles");
1220
1221   const MCInstrDesc &MCID = MI->getDesc();
1222   if (!MCID.isPredicable())
1223     return;
1224   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1225     if (MCID.OpInfo[i].isPredicate()) {
1226       // Predicated operands must be last operands.
1227       addOperand(MI->getOperand(i));
1228     }
1229   }
1230 }
1231
1232 void MachineInstr::substituteRegister(unsigned FromReg,
1233                                       unsigned ToReg,
1234                                       unsigned SubIdx,
1235                                       const TargetRegisterInfo &RegInfo) {
1236   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1237     if (SubIdx)
1238       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1239     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1240       MachineOperand &MO = getOperand(i);
1241       if (!MO.isReg() || MO.getReg() != FromReg)
1242         continue;
1243       MO.substPhysReg(ToReg, RegInfo);
1244     }
1245   } else {
1246     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1247       MachineOperand &MO = getOperand(i);
1248       if (!MO.isReg() || MO.getReg() != FromReg)
1249         continue;
1250       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1251     }
1252   }
1253 }
1254
1255 /// isSafeToMove - Return true if it is safe to move this instruction. If
1256 /// SawStore is set to true, it means that there is a store (or call) between
1257 /// the instruction's location and its intended destination.
1258 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1259                                 AliasAnalysis *AA,
1260                                 bool &SawStore) const {
1261   // Ignore stuff that we obviously can't move.
1262   if (mayStore() || isCall()) {
1263     SawStore = true;
1264     return false;
1265   }
1266
1267   if (isLabel() || isDebugValue() ||
1268       isTerminator() || hasUnmodeledSideEffects())
1269     return false;
1270
1271   // See if this instruction does a load.  If so, we have to guarantee that the
1272   // loaded value doesn't change between the load and the its intended
1273   // destination. The check for isInvariantLoad gives the targe the chance to
1274   // classify the load as always returning a constant, e.g. a constant pool
1275   // load.
1276   if (mayLoad() && !isInvariantLoad(AA))
1277     // Otherwise, this is a real load.  If there is a store between the load and
1278     // end of block, or if the load is volatile, we can't move it.
1279     return !SawStore && !hasVolatileMemoryRef();
1280
1281   return true;
1282 }
1283
1284 /// isSafeToReMat - Return true if it's safe to rematerialize the specified
1285 /// instruction which defined the specified register instead of copying it.
1286 bool MachineInstr::isSafeToReMat(const TargetInstrInfo *TII,
1287                                  AliasAnalysis *AA,
1288                                  unsigned DstReg) const {
1289   bool SawStore = false;
1290   if (!TII->isTriviallyReMaterializable(this, AA) ||
1291       !isSafeToMove(TII, AA, SawStore))
1292     return false;
1293   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1294     const MachineOperand &MO = getOperand(i);
1295     if (!MO.isReg())
1296       continue;
1297     // FIXME: For now, do not remat any instruction with register operands.
1298     // Later on, we can loosen the restriction is the register operands have
1299     // not been modified between the def and use. Note, this is different from
1300     // MachineSink because the code is no longer in two-address form (at least
1301     // partially).
1302     if (MO.isUse())
1303       return false;
1304     else if (!MO.isDead() && MO.getReg() != DstReg)
1305       return false;
1306   }
1307   return true;
1308 }
1309
1310 /// hasVolatileMemoryRef - Return true if this instruction may have a
1311 /// volatile memory reference, or if the information describing the
1312 /// memory reference is not available. Return false if it is known to
1313 /// have no volatile memory references.
1314 bool MachineInstr::hasVolatileMemoryRef() const {
1315   // An instruction known never to access memory won't have a volatile access.
1316   if (!mayStore() &&
1317       !mayLoad() &&
1318       !isCall() &&
1319       !hasUnmodeledSideEffects())
1320     return false;
1321
1322   // Otherwise, if the instruction has no memory reference information,
1323   // conservatively assume it wasn't preserved.
1324   if (memoperands_empty())
1325     return true;
1326
1327   // Check the memory reference information for volatile references.
1328   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1329     if ((*I)->isVolatile())
1330       return true;
1331
1332   return false;
1333 }
1334
1335 /// isInvariantLoad - Return true if this instruction is loading from a
1336 /// location whose value is invariant across the function.  For example,
1337 /// loading a value from the constant pool or from the argument area
1338 /// of a function if it does not change.  This should only return true of
1339 /// *all* loads the instruction does are invariant (if it does multiple loads).
1340 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1341   // If the instruction doesn't load at all, it isn't an invariant load.
1342   if (!mayLoad())
1343     return false;
1344
1345   // If the instruction has lost its memoperands, conservatively assume that
1346   // it may not be an invariant load.
1347   if (memoperands_empty())
1348     return false;
1349
1350   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1351
1352   for (mmo_iterator I = memoperands_begin(),
1353        E = memoperands_end(); I != E; ++I) {
1354     if ((*I)->isVolatile()) return false;
1355     if ((*I)->isStore()) return false;
1356     if ((*I)->isInvariant()) return true;
1357
1358     if (const Value *V = (*I)->getValue()) {
1359       // A load from a constant PseudoSourceValue is invariant.
1360       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1361         if (PSV->isConstant(MFI))
1362           continue;
1363       // If we have an AliasAnalysis, ask it whether the memory is constant.
1364       if (AA && AA->pointsToConstantMemory(
1365                       AliasAnalysis::Location(V, (*I)->getSize(),
1366                                               (*I)->getTBAAInfo())))
1367         continue;
1368     }
1369
1370     // Otherwise assume conservatively.
1371     return false;
1372   }
1373
1374   // Everything checks out.
1375   return true;
1376 }
1377
1378 /// isConstantValuePHI - If the specified instruction is a PHI that always
1379 /// merges together the same virtual register, return the register, otherwise
1380 /// return 0.
1381 unsigned MachineInstr::isConstantValuePHI() const {
1382   if (!isPHI())
1383     return 0;
1384   assert(getNumOperands() >= 3 &&
1385          "It's illegal to have a PHI without source operands");
1386
1387   unsigned Reg = getOperand(1).getReg();
1388   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1389     if (getOperand(i).getReg() != Reg)
1390       return 0;
1391   return Reg;
1392 }
1393
1394 bool MachineInstr::hasUnmodeledSideEffects() const {
1395   if (hasProperty(MCID::UnmodeledSideEffects))
1396     return true;
1397   if (isInlineAsm()) {
1398     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1399     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1400       return true;
1401   }
1402
1403   return false;
1404 }
1405
1406 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1407 ///
1408 bool MachineInstr::allDefsAreDead() const {
1409   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1410     const MachineOperand &MO = getOperand(i);
1411     if (!MO.isReg() || MO.isUse())
1412       continue;
1413     if (!MO.isDead())
1414       return false;
1415   }
1416   return true;
1417 }
1418
1419 /// copyImplicitOps - Copy implicit register operands from specified
1420 /// instruction to this instruction.
1421 void MachineInstr::copyImplicitOps(const MachineInstr *MI) {
1422   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1423        i != e; ++i) {
1424     const MachineOperand &MO = MI->getOperand(i);
1425     if (MO.isReg() && MO.isImplicit())
1426       addOperand(MO);
1427   }
1428 }
1429
1430 void MachineInstr::dump() const {
1431   dbgs() << "  " << *this;
1432 }
1433
1434 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1435                          raw_ostream &CommentOS) {
1436   const LLVMContext &Ctx = MF->getFunction()->getContext();
1437   if (!DL.isUnknown()) {          // Print source line info.
1438     DIScope Scope(DL.getScope(Ctx));
1439     // Omit the directory, because it's likely to be long and uninteresting.
1440     if (Scope.Verify())
1441       CommentOS << Scope.getFilename();
1442     else
1443       CommentOS << "<unknown>";
1444     CommentOS << ':' << DL.getLine();
1445     if (DL.getCol() != 0)
1446       CommentOS << ':' << DL.getCol();
1447     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1448     if (!InlinedAtDL.isUnknown()) {
1449       CommentOS << " @[ ";
1450       printDebugLoc(InlinedAtDL, MF, CommentOS);
1451       CommentOS << " ]";
1452     }
1453   }
1454 }
1455
1456 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM) const {
1457   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1458   const MachineFunction *MF = 0;
1459   const MachineRegisterInfo *MRI = 0;
1460   if (const MachineBasicBlock *MBB = getParent()) {
1461     MF = MBB->getParent();
1462     if (!TM && MF)
1463       TM = &MF->getTarget();
1464     if (MF)
1465       MRI = &MF->getRegInfo();
1466   }
1467
1468   // Save a list of virtual registers.
1469   SmallVector<unsigned, 8> VirtRegs;
1470
1471   // Print explicitly defined operands on the left of an assignment syntax.
1472   unsigned StartOp = 0, e = getNumOperands();
1473   for (; StartOp < e && getOperand(StartOp).isReg() &&
1474          getOperand(StartOp).isDef() &&
1475          !getOperand(StartOp).isImplicit();
1476        ++StartOp) {
1477     if (StartOp != 0) OS << ", ";
1478     getOperand(StartOp).print(OS, TM);
1479     unsigned Reg = getOperand(StartOp).getReg();
1480     if (TargetRegisterInfo::isVirtualRegister(Reg))
1481       VirtRegs.push_back(Reg);
1482   }
1483
1484   if (StartOp != 0)
1485     OS << " = ";
1486
1487   // Print the opcode name.
1488   if (TM && TM->getInstrInfo())
1489     OS << TM->getInstrInfo()->getName(getOpcode());
1490   else
1491     OS << "UNKNOWN";
1492
1493   // Print the rest of the operands.
1494   bool OmittedAnyCallClobbers = false;
1495   bool FirstOp = true;
1496   unsigned AsmDescOp = ~0u;
1497   unsigned AsmOpCount = 0;
1498
1499   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1500     // Print asm string.
1501     OS << " ";
1502     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1503
1504     // Print HasSideEffects, IsAlignStack
1505     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1506     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1507       OS << " [sideeffect]";
1508     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1509       OS << " [alignstack]";
1510
1511     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1512     FirstOp = false;
1513   }
1514
1515
1516   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1517     const MachineOperand &MO = getOperand(i);
1518
1519     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1520       VirtRegs.push_back(MO.getReg());
1521
1522     // Omit call-clobbered registers which aren't used anywhere. This makes
1523     // call instructions much less noisy on targets where calls clobber lots
1524     // of registers. Don't rely on MO.isDead() because we may be called before
1525     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1526     if (MF && isCall() &&
1527         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1528       unsigned Reg = MO.getReg();
1529       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1530         const MachineRegisterInfo &MRI = MF->getRegInfo();
1531         if (MRI.use_empty(Reg) && !MRI.isLiveOut(Reg)) {
1532           bool HasAliasLive = false;
1533           for (const uint16_t *Alias = TM->getRegisterInfo()->getAliasSet(Reg);
1534                unsigned AliasReg = *Alias; ++Alias)
1535             if (!MRI.use_empty(AliasReg) || MRI.isLiveOut(AliasReg)) {
1536               HasAliasLive = true;
1537               break;
1538             }
1539           if (!HasAliasLive) {
1540             OmittedAnyCallClobbers = true;
1541             continue;
1542           }
1543         }
1544       }
1545     }
1546
1547     if (FirstOp) FirstOp = false; else OS << ",";
1548     OS << " ";
1549     if (i < getDesc().NumOperands) {
1550       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1551       if (MCOI.isPredicate())
1552         OS << "pred:";
1553       if (MCOI.isOptionalDef())
1554         OS << "opt:";
1555     }
1556     if (isDebugValue() && MO.isMetadata()) {
1557       // Pretty print DBG_VALUE instructions.
1558       const MDNode *MD = MO.getMetadata();
1559       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1560         OS << "!\"" << MDS->getString() << '\"';
1561       else
1562         MO.print(OS, TM);
1563     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1564       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1565     } else if (i == AsmDescOp && MO.isImm()) {
1566       // Pretty print the inline asm operand descriptor.
1567       OS << '$' << AsmOpCount++;
1568       unsigned Flag = MO.getImm();
1569       switch (InlineAsm::getKind(Flag)) {
1570       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1571       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1572       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1573       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1574       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1575       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1576       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1577       }
1578
1579       unsigned RCID = 0;
1580       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1581         if (TM)
1582           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1583         else
1584           OS << ":RC" << RCID;
1585       }
1586
1587       unsigned TiedTo = 0;
1588       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1589         OS << " tiedto:$" << TiedTo;
1590
1591       OS << ']';
1592
1593       // Compute the index of the next operand descriptor.
1594       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1595     } else
1596       MO.print(OS, TM);
1597   }
1598
1599   // Briefly indicate whether any call clobbers were omitted.
1600   if (OmittedAnyCallClobbers) {
1601     if (!FirstOp) OS << ",";
1602     OS << " ...";
1603   }
1604
1605   bool HaveSemi = false;
1606   if (Flags) {
1607     if (!HaveSemi) OS << ";"; HaveSemi = true;
1608     OS << " flags: ";
1609
1610     if (Flags & FrameSetup)
1611       OS << "FrameSetup";
1612   }
1613
1614   if (!memoperands_empty()) {
1615     if (!HaveSemi) OS << ";"; HaveSemi = true;
1616
1617     OS << " mem:";
1618     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1619          i != e; ++i) {
1620       OS << **i;
1621       if (llvm::next(i) != e)
1622         OS << " ";
1623     }
1624   }
1625
1626   // Print the regclass of any virtual registers encountered.
1627   if (MRI && !VirtRegs.empty()) {
1628     if (!HaveSemi) OS << ";"; HaveSemi = true;
1629     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1630       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1631       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1632       for (unsigned j = i+1; j != VirtRegs.size();) {
1633         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1634           ++j;
1635           continue;
1636         }
1637         if (VirtRegs[i] != VirtRegs[j])
1638           OS << "," << PrintReg(VirtRegs[j]);
1639         VirtRegs.erase(VirtRegs.begin()+j);
1640       }
1641     }
1642   }
1643
1644   // Print debug location information.
1645   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1646     if (!HaveSemi) OS << ";"; HaveSemi = true;
1647     DIVariable DV(getOperand(e - 1).getMetadata());
1648     OS << " line no:" <<  DV.getLineNumber();
1649     if (MDNode *InlinedAt = DV.getInlinedAt()) {
1650       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1651       if (!InlinedAtDL.isUnknown()) {
1652         OS << " inlined @[ ";
1653         printDebugLoc(InlinedAtDL, MF, OS);
1654         OS << " ]";
1655       }
1656     }
1657   } else if (!debugLoc.isUnknown() && MF) {
1658     if (!HaveSemi) OS << ";"; HaveSemi = true;
1659     OS << " dbg:";
1660     printDebugLoc(debugLoc, MF, OS);
1661   }
1662
1663   OS << '\n';
1664 }
1665
1666 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1667                                      const TargetRegisterInfo *RegInfo,
1668                                      bool AddIfNotFound) {
1669   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1670   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1671   bool Found = false;
1672   SmallVector<unsigned,4> DeadOps;
1673   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1674     MachineOperand &MO = getOperand(i);
1675     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1676       continue;
1677     unsigned Reg = MO.getReg();
1678     if (!Reg)
1679       continue;
1680
1681     if (Reg == IncomingReg) {
1682       if (!Found) {
1683         if (MO.isKill())
1684           // The register is already marked kill.
1685           return true;
1686         if (isPhysReg && isRegTiedToDefOperand(i))
1687           // Two-address uses of physregs must not be marked kill.
1688           return true;
1689         MO.setIsKill();
1690         Found = true;
1691       }
1692     } else if (hasAliases && MO.isKill() &&
1693                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1694       // A super-register kill already exists.
1695       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1696         return true;
1697       if (RegInfo->isSubRegister(IncomingReg, Reg))
1698         DeadOps.push_back(i);
1699     }
1700   }
1701
1702   // Trim unneeded kill operands.
1703   while (!DeadOps.empty()) {
1704     unsigned OpIdx = DeadOps.back();
1705     if (getOperand(OpIdx).isImplicit())
1706       RemoveOperand(OpIdx);
1707     else
1708       getOperand(OpIdx).setIsKill(false);
1709     DeadOps.pop_back();
1710   }
1711
1712   // If not found, this means an alias of one of the operands is killed. Add a
1713   // new implicit operand if required.
1714   if (!Found && AddIfNotFound) {
1715     addOperand(MachineOperand::CreateReg(IncomingReg,
1716                                          false /*IsDef*/,
1717                                          true  /*IsImp*/,
1718                                          true  /*IsKill*/));
1719     return true;
1720   }
1721   return Found;
1722 }
1723
1724 void MachineInstr::clearRegisterKills(unsigned Reg,
1725                                       const TargetRegisterInfo *RegInfo) {
1726   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1727     RegInfo = 0;
1728   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1729     MachineOperand &MO = getOperand(i);
1730     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1731       continue;
1732     unsigned OpReg = MO.getReg();
1733     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1734       MO.setIsKill(false);
1735   }
1736 }
1737
1738 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1739                                    const TargetRegisterInfo *RegInfo,
1740                                    bool AddIfNotFound) {
1741   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1742   bool hasAliases = isPhysReg && RegInfo->getAliasSet(IncomingReg);
1743   bool Found = false;
1744   SmallVector<unsigned,4> DeadOps;
1745   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1746     MachineOperand &MO = getOperand(i);
1747     if (!MO.isReg() || !MO.isDef())
1748       continue;
1749     unsigned Reg = MO.getReg();
1750     if (!Reg)
1751       continue;
1752
1753     if (Reg == IncomingReg) {
1754       MO.setIsDead();
1755       Found = true;
1756     } else if (hasAliases && MO.isDead() &&
1757                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1758       // There exists a super-register that's marked dead.
1759       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1760         return true;
1761       if (RegInfo->getSubRegisters(IncomingReg) &&
1762           RegInfo->getSuperRegisters(Reg) &&
1763           RegInfo->isSubRegister(IncomingReg, Reg))
1764         DeadOps.push_back(i);
1765     }
1766   }
1767
1768   // Trim unneeded dead operands.
1769   while (!DeadOps.empty()) {
1770     unsigned OpIdx = DeadOps.back();
1771     if (getOperand(OpIdx).isImplicit())
1772       RemoveOperand(OpIdx);
1773     else
1774       getOperand(OpIdx).setIsDead(false);
1775     DeadOps.pop_back();
1776   }
1777
1778   // If not found, this means an alias of one of the operands is dead. Add a
1779   // new implicit operand if required.
1780   if (Found || !AddIfNotFound)
1781     return Found;
1782
1783   addOperand(MachineOperand::CreateReg(IncomingReg,
1784                                        true  /*IsDef*/,
1785                                        true  /*IsImp*/,
1786                                        false /*IsKill*/,
1787                                        true  /*IsDead*/));
1788   return true;
1789 }
1790
1791 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1792                                       const TargetRegisterInfo *RegInfo) {
1793   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1794     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1795     if (MO)
1796       return;
1797   } else {
1798     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1799       const MachineOperand &MO = getOperand(i);
1800       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1801           MO.getSubReg() == 0)
1802         return;
1803     }
1804   }
1805   addOperand(MachineOperand::CreateReg(IncomingReg,
1806                                        true  /*IsDef*/,
1807                                        true  /*IsImp*/));
1808 }
1809
1810 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1811                                          const TargetRegisterInfo &TRI) {
1812   bool HasRegMask = false;
1813   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1814     MachineOperand &MO = getOperand(i);
1815     if (MO.isRegMask()) {
1816       HasRegMask = true;
1817       continue;
1818     }
1819     if (!MO.isReg() || !MO.isDef()) continue;
1820     unsigned Reg = MO.getReg();
1821     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1822     bool Dead = true;
1823     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1824          I != E; ++I)
1825       if (TRI.regsOverlap(*I, Reg)) {
1826         Dead = false;
1827         break;
1828       }
1829     // If there are no uses, including partial uses, the def is dead.
1830     if (Dead) MO.setIsDead();
1831   }
1832
1833   // This is a call with a register mask operand.
1834   // Mask clobbers are always dead, so add defs for the non-dead defines.
1835   if (HasRegMask)
1836     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1837          I != E; ++I)
1838       addRegisterDefined(*I, &TRI);
1839 }
1840
1841 unsigned
1842 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1843   // Build up a buffer of hash code components.
1844   //
1845   // FIXME: This is a total hack. We should have a hash_value overload for
1846   // MachineOperand, but currently that doesn't work because there are many
1847   // different ideas of "equality" and thus different sets of information that
1848   // contribute to the hash code. This one happens to want to take a specific
1849   // subset. And it's still not clear that this routine uses the *correct*
1850   // subset of information when computing the hash code. The goal is to use the
1851   // same inputs for the hash code here that MachineInstr::isIdenticalTo uses to
1852   // test for equality when passed the 'IgnoreVRegDefs' filter flag. It would
1853   // be very useful to factor the selection of relevant inputs out of the two
1854   // functions and into a common routine, but it's not clear how that can be
1855   // done.
1856   SmallVector<size_t, 8> HashComponents;
1857   HashComponents.reserve(MI->getNumOperands() + 1);
1858   HashComponents.push_back(MI->getOpcode());
1859   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1860     const MachineOperand &MO = MI->getOperand(i);
1861     switch (MO.getType()) {
1862     default: break;
1863     case MachineOperand::MO_Register:
1864       if (MO.isDef() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1865         continue;  // Skip virtual register defs.
1866       HashComponents.push_back(hash_combine(MO.getType(), MO.getReg()));
1867       break;
1868     case MachineOperand::MO_Immediate:
1869       HashComponents.push_back(hash_combine(MO.getType(), MO.getImm()));
1870       break;
1871     case MachineOperand::MO_FrameIndex:
1872     case MachineOperand::MO_ConstantPoolIndex:
1873     case MachineOperand::MO_JumpTableIndex:
1874       HashComponents.push_back(hash_combine(MO.getType(), MO.getIndex()));
1875       break;
1876     case MachineOperand::MO_MachineBasicBlock:
1877       HashComponents.push_back(hash_combine(MO.getType(), MO.getMBB()));
1878       break;
1879     case MachineOperand::MO_GlobalAddress:
1880       HashComponents.push_back(hash_combine(MO.getType(), MO.getGlobal()));
1881       break;
1882     case MachineOperand::MO_BlockAddress:
1883       HashComponents.push_back(hash_combine(MO.getType(),
1884                                             MO.getBlockAddress()));
1885       break;
1886     case MachineOperand::MO_MCSymbol:
1887       HashComponents.push_back(hash_combine(MO.getType(), MO.getMCSymbol()));
1888       break;
1889     }
1890   }
1891   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1892 }
1893
1894 void MachineInstr::emitError(StringRef Msg) const {
1895   // Find the source location cookie.
1896   unsigned LocCookie = 0;
1897   const MDNode *LocMD = 0;
1898   for (unsigned i = getNumOperands(); i != 0; --i) {
1899     if (getOperand(i-1).isMetadata() &&
1900         (LocMD = getOperand(i-1).getMetadata()) &&
1901         LocMD->getNumOperands() != 0) {
1902       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1903         LocCookie = CI->getZExtValue();
1904         break;
1905       }
1906     }
1907   }
1908
1909   if (const MachineBasicBlock *MBB = getParent())
1910     if (const MachineFunction *MF = MBB->getParent())
1911       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1912   report_fatal_error(Msg);
1913 }