Taints the non-acquire RMW's store address with the load part
[oota-llvm.git] / lib / CodeGen / MachineCSE.cpp
1 //===-- MachineCSE.cpp - Machine Common Subexpression Elimination Pass ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass performs global common subexpression elimination on machine
11 // instructions using a scoped hash table based value numbering scheme. It
12 // must be run while the machine function is still in SSA form.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "llvm/CodeGen/Passes.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/ScopedHashTable.h"
19 #include "llvm/ADT/SmallSet.h"
20 #include "llvm/ADT/Statistic.h"
21 #include "llvm/Analysis/AliasAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineInstr.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/RecyclingAllocator.h"
27 #include "llvm/Support/raw_ostream.h"
28 #include "llvm/Target/TargetInstrInfo.h"
29 #include "llvm/Target/TargetSubtargetInfo.h"
30 using namespace llvm;
31
32 #define DEBUG_TYPE "machine-cse"
33
34 STATISTIC(NumCoalesces, "Number of copies coalesced");
35 STATISTIC(NumCSEs,      "Number of common subexpression eliminated");
36 STATISTIC(NumPhysCSEs,
37           "Number of physreg referencing common subexpr eliminated");
38 STATISTIC(NumCrossBBCSEs,
39           "Number of cross-MBB physreg referencing CS eliminated");
40 STATISTIC(NumCommutes,  "Number of copies coalesced after commuting");
41
42 namespace {
43   class MachineCSE : public MachineFunctionPass {
44     const TargetInstrInfo *TII;
45     const TargetRegisterInfo *TRI;
46     AliasAnalysis *AA;
47     MachineDominatorTree *DT;
48     MachineRegisterInfo *MRI;
49   public:
50     static char ID; // Pass identification
51     MachineCSE() : MachineFunctionPass(ID), LookAheadLimit(0), CurrVN(0) {
52       initializeMachineCSEPass(*PassRegistry::getPassRegistry());
53     }
54
55     bool runOnMachineFunction(MachineFunction &MF) override;
56
57     void getAnalysisUsage(AnalysisUsage &AU) const override {
58       AU.setPreservesCFG();
59       MachineFunctionPass::getAnalysisUsage(AU);
60       AU.addRequired<AAResultsWrapperPass>();
61       AU.addPreservedID(MachineLoopInfoID);
62       AU.addRequired<MachineDominatorTree>();
63       AU.addPreserved<MachineDominatorTree>();
64     }
65
66     void releaseMemory() override {
67       ScopeMap.clear();
68       Exps.clear();
69     }
70
71   private:
72     unsigned LookAheadLimit;
73     typedef RecyclingAllocator<BumpPtrAllocator,
74         ScopedHashTableVal<MachineInstr*, unsigned> > AllocatorTy;
75     typedef ScopedHashTable<MachineInstr*, unsigned,
76         MachineInstrExpressionTrait, AllocatorTy> ScopedHTType;
77     typedef ScopedHTType::ScopeTy ScopeType;
78     DenseMap<MachineBasicBlock*, ScopeType*> ScopeMap;
79     ScopedHTType VNT;
80     SmallVector<MachineInstr*, 64> Exps;
81     unsigned CurrVN;
82
83     bool PerformTrivialCopyPropagation(MachineInstr *MI,
84                                        MachineBasicBlock *MBB);
85     bool isPhysDefTriviallyDead(unsigned Reg,
86                                 MachineBasicBlock::const_iterator I,
87                                 MachineBasicBlock::const_iterator E) const;
88     bool hasLivePhysRegDefUses(const MachineInstr *MI,
89                                const MachineBasicBlock *MBB,
90                                SmallSet<unsigned,8> &PhysRefs,
91                                SmallVectorImpl<unsigned> &PhysDefs,
92                                bool &PhysUseDef) const;
93     bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
94                           SmallSet<unsigned,8> &PhysRefs,
95                           SmallVectorImpl<unsigned> &PhysDefs,
96                           bool &NonLocal) const;
97     bool isCSECandidate(MachineInstr *MI);
98     bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
99                            MachineInstr *CSMI, MachineInstr *MI);
100     void EnterScope(MachineBasicBlock *MBB);
101     void ExitScope(MachineBasicBlock *MBB);
102     bool ProcessBlock(MachineBasicBlock *MBB);
103     void ExitScopeIfDone(MachineDomTreeNode *Node,
104                          DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
105     bool PerformCSE(MachineDomTreeNode *Node);
106   };
107 } // end anonymous namespace
108
109 char MachineCSE::ID = 0;
110 char &llvm::MachineCSEID = MachineCSE::ID;
111 INITIALIZE_PASS_BEGIN(MachineCSE, "machine-cse",
112                 "Machine Common Subexpression Elimination", false, false)
113 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
114 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
115 INITIALIZE_PASS_END(MachineCSE, "machine-cse",
116                 "Machine Common Subexpression Elimination", false, false)
117
118 /// The source register of a COPY machine instruction can be propagated to all
119 /// its users, and this propagation could increase the probability of finding
120 /// common subexpressions. If the COPY has only one user, the COPY itself can
121 /// be removed.
122 bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
123                                                MachineBasicBlock *MBB) {
124   bool Changed = false;
125   for (MachineOperand &MO : MI->operands()) {
126     if (!MO.isReg() || !MO.isUse())
127       continue;
128     unsigned Reg = MO.getReg();
129     if (!TargetRegisterInfo::isVirtualRegister(Reg))
130       continue;
131     bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
132     MachineInstr *DefMI = MRI->getVRegDef(Reg);
133     if (!DefMI->isCopy())
134       continue;
135     unsigned SrcReg = DefMI->getOperand(1).getReg();
136     if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
137       continue;
138     if (DefMI->getOperand(0).getSubReg())
139       continue;
140     // FIXME: We should trivially coalesce subregister copies to expose CSE
141     // opportunities on instructions with truncated operands (see
142     // cse-add-with-overflow.ll). This can be done here as follows:
143     // if (SrcSubReg)
144     //  RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
145     //                                     SrcSubReg);
146     // MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
147     //
148     // The 2-addr pass has been updated to handle coalesced subregs. However,
149     // some machine-specific code still can't handle it.
150     // To handle it properly we also need a way find a constrained subregister
151     // class given a super-reg class and subreg index.
152     if (DefMI->getOperand(1).getSubReg())
153       continue;
154     const TargetRegisterClass *RC = MRI->getRegClass(Reg);
155     if (!MRI->constrainRegClass(SrcReg, RC))
156       continue;
157     DEBUG(dbgs() << "Coalescing: " << *DefMI);
158     DEBUG(dbgs() << "***     to: " << *MI);
159     // Propagate SrcReg of copies to MI.
160     MO.setReg(SrcReg);
161     MRI->clearKillFlags(SrcReg);
162     // Coalesce single use copies.
163     if (OnlyOneUse) {
164       DefMI->eraseFromParent();
165       ++NumCoalesces;
166     }
167     Changed = true;
168   }
169
170   return Changed;
171 }
172
173 bool
174 MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
175                                    MachineBasicBlock::const_iterator I,
176                                    MachineBasicBlock::const_iterator E) const {
177   unsigned LookAheadLeft = LookAheadLimit;
178   while (LookAheadLeft) {
179     // Skip over dbg_value's.
180     while (I != E && I->isDebugValue())
181       ++I;
182
183     if (I == E)
184       // Reached end of block, register is obviously dead.
185       return true;
186
187     bool SeenDef = false;
188     for (const MachineOperand &MO : I->operands()) {
189       if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
190         SeenDef = true;
191       if (!MO.isReg() || !MO.getReg())
192         continue;
193       if (!TRI->regsOverlap(MO.getReg(), Reg))
194         continue;
195       if (MO.isUse())
196         // Found a use!
197         return false;
198       SeenDef = true;
199     }
200     if (SeenDef)
201       // See a def of Reg (or an alias) before encountering any use, it's
202       // trivially dead.
203       return true;
204
205     --LookAheadLeft;
206     ++I;
207   }
208   return false;
209 }
210
211 /// hasLivePhysRegDefUses - Return true if the specified instruction read/write
212 /// physical registers (except for dead defs of physical registers). It also
213 /// returns the physical register def by reference if it's the only one and the
214 /// instruction does not uses a physical register.
215 bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
216                                        const MachineBasicBlock *MBB,
217                                        SmallSet<unsigned,8> &PhysRefs,
218                                        SmallVectorImpl<unsigned> &PhysDefs,
219                                        bool &PhysUseDef) const{
220   // First, add all uses to PhysRefs.
221   for (const MachineOperand &MO : MI->operands()) {
222     if (!MO.isReg() || MO.isDef())
223       continue;
224     unsigned Reg = MO.getReg();
225     if (!Reg)
226       continue;
227     if (TargetRegisterInfo::isVirtualRegister(Reg))
228       continue;
229     // Reading constant physregs is ok.
230     if (!MRI->isConstantPhysReg(Reg, *MBB->getParent()))
231       for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
232         PhysRefs.insert(*AI);
233   }
234
235   // Next, collect all defs into PhysDefs.  If any is already in PhysRefs
236   // (which currently contains only uses), set the PhysUseDef flag.
237   PhysUseDef = false;
238   MachineBasicBlock::const_iterator I = MI; I = std::next(I);
239   for (const MachineOperand &MO : MI->operands()) {
240     if (!MO.isReg() || !MO.isDef())
241       continue;
242     unsigned Reg = MO.getReg();
243     if (!Reg)
244       continue;
245     if (TargetRegisterInfo::isVirtualRegister(Reg))
246       continue;
247     // Check against PhysRefs even if the def is "dead".
248     if (PhysRefs.count(Reg))
249       PhysUseDef = true;
250     // If the def is dead, it's ok. But the def may not marked "dead". That's
251     // common since this pass is run before livevariables. We can scan
252     // forward a few instructions and check if it is obviously dead.
253     if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
254       PhysDefs.push_back(Reg);
255   }
256
257   // Finally, add all defs to PhysRefs as well.
258   for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
259     for (MCRegAliasIterator AI(PhysDefs[i], TRI, true); AI.isValid(); ++AI)
260       PhysRefs.insert(*AI);
261
262   return !PhysRefs.empty();
263 }
264
265 bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
266                                   SmallSet<unsigned,8> &PhysRefs,
267                                   SmallVectorImpl<unsigned> &PhysDefs,
268                                   bool &NonLocal) const {
269   // For now conservatively returns false if the common subexpression is
270   // not in the same basic block as the given instruction. The only exception
271   // is if the common subexpression is in the sole predecessor block.
272   const MachineBasicBlock *MBB = MI->getParent();
273   const MachineBasicBlock *CSMBB = CSMI->getParent();
274
275   bool CrossMBB = false;
276   if (CSMBB != MBB) {
277     if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
278       return false;
279
280     for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
281       if (MRI->isAllocatable(PhysDefs[i]) || MRI->isReserved(PhysDefs[i]))
282         // Avoid extending live range of physical registers if they are
283         //allocatable or reserved.
284         return false;
285     }
286     CrossMBB = true;
287   }
288   MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
289   MachineBasicBlock::const_iterator E = MI;
290   MachineBasicBlock::const_iterator EE = CSMBB->end();
291   unsigned LookAheadLeft = LookAheadLimit;
292   while (LookAheadLeft) {
293     // Skip over dbg_value's.
294     while (I != E && I != EE && I->isDebugValue())
295       ++I;
296
297     if (I == EE) {
298       assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
299       (void)CrossMBB;
300       CrossMBB = false;
301       NonLocal = true;
302       I = MBB->begin();
303       EE = MBB->end();
304       continue;
305     }
306
307     if (I == E)
308       return true;
309
310     for (const MachineOperand &MO : I->operands()) {
311       // RegMasks go on instructions like calls that clobber lots of physregs.
312       // Don't attempt to CSE across such an instruction.
313       if (MO.isRegMask())
314         return false;
315       if (!MO.isReg() || !MO.isDef())
316         continue;
317       unsigned MOReg = MO.getReg();
318       if (TargetRegisterInfo::isVirtualRegister(MOReg))
319         continue;
320       if (PhysRefs.count(MOReg))
321         return false;
322     }
323
324     --LookAheadLeft;
325     ++I;
326   }
327
328   return false;
329 }
330
331 bool MachineCSE::isCSECandidate(MachineInstr *MI) {
332   if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
333       MI->isInlineAsm() || MI->isDebugValue())
334     return false;
335
336   // Ignore copies.
337   if (MI->isCopyLike())
338     return false;
339
340   // Ignore stuff that we obviously can't move.
341   if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
342       MI->hasUnmodeledSideEffects())
343     return false;
344
345   if (MI->mayLoad()) {
346     // Okay, this instruction does a load. As a refinement, we allow the target
347     // to decide whether the loaded value is actually a constant. If so, we can
348     // actually use it as a load.
349     if (!MI->isInvariantLoad(AA))
350       // FIXME: we should be able to hoist loads with no other side effects if
351       // there are no other instructions which can change memory in this loop.
352       // This is a trivial form of alias analysis.
353       return false;
354   }
355   return true;
356 }
357
358 /// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
359 /// common expression that defines Reg.
360 bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
361                                    MachineInstr *CSMI, MachineInstr *MI) {
362   // FIXME: Heuristics that works around the lack the live range splitting.
363
364   // If CSReg is used at all uses of Reg, CSE should not increase register
365   // pressure of CSReg.
366   bool MayIncreasePressure = true;
367   if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
368       TargetRegisterInfo::isVirtualRegister(Reg)) {
369     MayIncreasePressure = false;
370     SmallPtrSet<MachineInstr*, 8> CSUses;
371     for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
372       CSUses.insert(&MI);
373     }
374     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
375       if (!CSUses.count(&MI)) {
376         MayIncreasePressure = true;
377         break;
378       }
379     }
380   }
381   if (!MayIncreasePressure) return true;
382
383   // Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
384   // an immediate predecessor. We don't want to increase register pressure and
385   // end up causing other computation to be spilled.
386   if (TII->isAsCheapAsAMove(MI)) {
387     MachineBasicBlock *CSBB = CSMI->getParent();
388     MachineBasicBlock *BB = MI->getParent();
389     if (CSBB != BB && !CSBB->isSuccessor(BB))
390       return false;
391   }
392
393   // Heuristics #2: If the expression doesn't not use a vr and the only use
394   // of the redundant computation are copies, do not cse.
395   bool HasVRegUse = false;
396   for (const MachineOperand &MO : MI->operands()) {
397     if (MO.isReg() && MO.isUse() &&
398         TargetRegisterInfo::isVirtualRegister(MO.getReg())) {
399       HasVRegUse = true;
400       break;
401     }
402   }
403   if (!HasVRegUse) {
404     bool HasNonCopyUse = false;
405     for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
406       // Ignore copies.
407       if (!MI.isCopyLike()) {
408         HasNonCopyUse = true;
409         break;
410       }
411     }
412     if (!HasNonCopyUse)
413       return false;
414   }
415
416   // Heuristics #3: If the common subexpression is used by PHIs, do not reuse
417   // it unless the defined value is already used in the BB of the new use.
418   bool HasPHI = false;
419   SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
420   for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
421     HasPHI |= MI.isPHI();
422     CSBBs.insert(MI.getParent());
423   }
424
425   if (!HasPHI)
426     return true;
427   return CSBBs.count(MI->getParent());
428 }
429
430 void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
431   DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
432   ScopeType *Scope = new ScopeType(VNT);
433   ScopeMap[MBB] = Scope;
434 }
435
436 void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
437   DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
438   DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
439   assert(SI != ScopeMap.end());
440   delete SI->second;
441   ScopeMap.erase(SI);
442 }
443
444 bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
445   bool Changed = false;
446
447   SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
448   SmallVector<unsigned, 2> ImplicitDefsToUpdate;
449   SmallVector<unsigned, 2> ImplicitDefs;
450   for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
451     MachineInstr *MI = &*I;
452     ++I;
453
454     if (!isCSECandidate(MI))
455       continue;
456
457     bool FoundCSE = VNT.count(MI);
458     if (!FoundCSE) {
459       // Using trivial copy propagation to find more CSE opportunities.
460       if (PerformTrivialCopyPropagation(MI, MBB)) {
461         Changed = true;
462
463         // After coalescing MI itself may become a copy.
464         if (MI->isCopyLike())
465           continue;
466
467         // Try again to see if CSE is possible.
468         FoundCSE = VNT.count(MI);
469       }
470     }
471
472     // Commute commutable instructions.
473     bool Commuted = false;
474     if (!FoundCSE && MI->isCommutable()) {
475       MachineInstr *NewMI = TII->commuteInstruction(MI);
476       if (NewMI) {
477         Commuted = true;
478         FoundCSE = VNT.count(NewMI);
479         if (NewMI != MI) {
480           // New instruction. It doesn't need to be kept.
481           NewMI->eraseFromParent();
482           Changed = true;
483         } else if (!FoundCSE)
484           // MI was changed but it didn't help, commute it back!
485           (void)TII->commuteInstruction(MI);
486       }
487     }
488
489     // If the instruction defines physical registers and the values *may* be
490     // used, then it's not safe to replace it with a common subexpression.
491     // It's also not safe if the instruction uses physical registers.
492     bool CrossMBBPhysDef = false;
493     SmallSet<unsigned, 8> PhysRefs;
494     SmallVector<unsigned, 2> PhysDefs;
495     bool PhysUseDef = false;
496     if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
497                                           PhysDefs, PhysUseDef)) {
498       FoundCSE = false;
499
500       // ... Unless the CS is local or is in the sole predecessor block
501       // and it also defines the physical register which is not clobbered
502       // in between and the physical register uses were not clobbered.
503       // This can never be the case if the instruction both uses and
504       // defines the same physical register, which was detected above.
505       if (!PhysUseDef) {
506         unsigned CSVN = VNT.lookup(MI);
507         MachineInstr *CSMI = Exps[CSVN];
508         if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
509           FoundCSE = true;
510       }
511     }
512
513     if (!FoundCSE) {
514       VNT.insert(MI, CurrVN++);
515       Exps.push_back(MI);
516       continue;
517     }
518
519     // Found a common subexpression, eliminate it.
520     unsigned CSVN = VNT.lookup(MI);
521     MachineInstr *CSMI = Exps[CSVN];
522     DEBUG(dbgs() << "Examining: " << *MI);
523     DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
524
525     // Check if it's profitable to perform this CSE.
526     bool DoCSE = true;
527     unsigned NumDefs = MI->getDesc().getNumDefs() +
528                        MI->getDesc().getNumImplicitDefs();
529
530     for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
531       MachineOperand &MO = MI->getOperand(i);
532       if (!MO.isReg() || !MO.isDef())
533         continue;
534       unsigned OldReg = MO.getReg();
535       unsigned NewReg = CSMI->getOperand(i).getReg();
536
537       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
538       // we should make sure it is not dead at CSMI.
539       if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
540         ImplicitDefsToUpdate.push_back(i);
541
542       // Keep track of implicit defs of CSMI and MI, to clear possibly
543       // made-redundant kill flags.
544       if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
545         ImplicitDefs.push_back(OldReg);
546
547       if (OldReg == NewReg) {
548         --NumDefs;
549         continue;
550       }
551
552       assert(TargetRegisterInfo::isVirtualRegister(OldReg) &&
553              TargetRegisterInfo::isVirtualRegister(NewReg) &&
554              "Do not CSE physical register defs!");
555
556       if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
557         DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
558         DoCSE = false;
559         break;
560       }
561
562       // Don't perform CSE if the result of the old instruction cannot exist
563       // within the register class of the new instruction.
564       const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
565       if (!MRI->constrainRegClass(NewReg, OldRC)) {
566         DEBUG(dbgs() << "*** Not the same register class, avoid CSE!\n");
567         DoCSE = false;
568         break;
569       }
570
571       CSEPairs.push_back(std::make_pair(OldReg, NewReg));
572       --NumDefs;
573     }
574
575     // Actually perform the elimination.
576     if (DoCSE) {
577       for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
578         unsigned OldReg = CSEPair.first;
579         unsigned NewReg = CSEPair.second;
580         // OldReg may have been unused but is used now, clear the Dead flag
581         MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
582         assert(Def != nullptr && "CSEd register has no unique definition?");
583         Def->clearRegisterDeads(NewReg);
584         // Replace with NewReg and clear kill flags which may be wrong now.
585         MRI->replaceRegWith(OldReg, NewReg);
586         MRI->clearKillFlags(NewReg);
587       }
588
589       // Go through implicit defs of CSMI and MI, if a def is not dead at MI,
590       // we should make sure it is not dead at CSMI.
591       for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
592         CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
593
594       // Go through implicit defs of CSMI and MI, and clear the kill flags on
595       // their uses in all the instructions between CSMI and MI.
596       // We might have made some of the kill flags redundant, consider:
597       //   subs  ... %NZCV<imp-def>        <- CSMI
598       //   csinc ... %NZCV<imp-use,kill>   <- this kill flag isn't valid anymore
599       //   subs  ... %NZCV<imp-def>        <- MI, to be eliminated
600       //   csinc ... %NZCV<imp-use,kill>
601       // Since we eliminated MI, and reused a register imp-def'd by CSMI
602       // (here %NZCV), that register, if it was killed before MI, should have
603       // that kill flag removed, because it's lifetime was extended.
604       if (CSMI->getParent() == MI->getParent()) {
605         for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
606           for (auto ImplicitDef : ImplicitDefs)
607             if (MachineOperand *MO = II->findRegisterUseOperand(
608                     ImplicitDef, /*isKill=*/true, TRI))
609               MO->setIsKill(false);
610       } else {
611         // If the instructions aren't in the same BB, bail out and clear the
612         // kill flag on all uses of the imp-def'd register.
613         for (auto ImplicitDef : ImplicitDefs)
614           MRI->clearKillFlags(ImplicitDef);
615       }
616
617       if (CrossMBBPhysDef) {
618         // Add physical register defs now coming in from a predecessor to MBB
619         // livein list.
620         while (!PhysDefs.empty()) {
621           unsigned LiveIn = PhysDefs.pop_back_val();
622           if (!MBB->isLiveIn(LiveIn))
623             MBB->addLiveIn(LiveIn);
624         }
625         ++NumCrossBBCSEs;
626       }
627
628       MI->eraseFromParent();
629       ++NumCSEs;
630       if (!PhysRefs.empty())
631         ++NumPhysCSEs;
632       if (Commuted)
633         ++NumCommutes;
634       Changed = true;
635     } else {
636       VNT.insert(MI, CurrVN++);
637       Exps.push_back(MI);
638     }
639     CSEPairs.clear();
640     ImplicitDefsToUpdate.clear();
641     ImplicitDefs.clear();
642   }
643
644   return Changed;
645 }
646
647 /// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
648 /// dominator tree node if its a leaf or all of its children are done. Walk
649 /// up the dominator tree to destroy ancestors which are now done.
650 void
651 MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
652                         DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
653   if (OpenChildren[Node])
654     return;
655
656   // Pop scope.
657   ExitScope(Node->getBlock());
658
659   // Now traverse upwards to pop ancestors whose offsprings are all done.
660   while (MachineDomTreeNode *Parent = Node->getIDom()) {
661     unsigned Left = --OpenChildren[Parent];
662     if (Left != 0)
663       break;
664     ExitScope(Parent->getBlock());
665     Node = Parent;
666   }
667 }
668
669 bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
670   SmallVector<MachineDomTreeNode*, 32> Scopes;
671   SmallVector<MachineDomTreeNode*, 8> WorkList;
672   DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
673
674   CurrVN = 0;
675
676   // Perform a DFS walk to determine the order of visit.
677   WorkList.push_back(Node);
678   do {
679     Node = WorkList.pop_back_val();
680     Scopes.push_back(Node);
681     const std::vector<MachineDomTreeNode*> &Children = Node->getChildren();
682     OpenChildren[Node] = Children.size();
683     for (MachineDomTreeNode *Child : Children)
684       WorkList.push_back(Child);
685   } while (!WorkList.empty());
686
687   // Now perform CSE.
688   bool Changed = false;
689   for (MachineDomTreeNode *Node : Scopes) {
690     MachineBasicBlock *MBB = Node->getBlock();
691     EnterScope(MBB);
692     Changed |= ProcessBlock(MBB);
693     // If it's a leaf node, it's done. Traverse upwards to pop ancestors.
694     ExitScopeIfDone(Node, OpenChildren);
695   }
696
697   return Changed;
698 }
699
700 bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
701   if (skipOptnoneFunction(*MF.getFunction()))
702     return false;
703
704   TII = MF.getSubtarget().getInstrInfo();
705   TRI = MF.getSubtarget().getRegisterInfo();
706   MRI = &MF.getRegInfo();
707   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
708   DT = &getAnalysis<MachineDominatorTree>();
709   LookAheadLimit = TII->getMachineCSELookAheadLimit();
710   return PerformCSE(DT->getRootNode());
711 }