Move the decision logic whether it's a good idea to split a critical edge to clients...
[oota-llvm.git] / lib / CodeGen / MachineBasicBlock.cpp
1 //===-- llvm/CodeGen/MachineBasicBlock.cpp ----------------------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Collect the sequence of machine instructions for a basic block.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/BasicBlock.h"
16 #include "llvm/CodeGen/LiveVariables.h"
17 #include "llvm/CodeGen/MachineDominators.h"
18 #include "llvm/CodeGen/MachineFunction.h"
19 #include "llvm/CodeGen/MachineLoopInfo.h"
20 #include "llvm/MC/MCAsmInfo.h"
21 #include "llvm/MC/MCContext.h"
22 #include "llvm/Target/TargetRegisterInfo.h"
23 #include "llvm/Target/TargetData.h"
24 #include "llvm/Target/TargetInstrDesc.h"
25 #include "llvm/Target/TargetInstrInfo.h"
26 #include "llvm/Target/TargetMachine.h"
27 #include "llvm/Assembly/Writer.h"
28 #include "llvm/ADT/SmallString.h"
29 #include "llvm/ADT/SmallPtrSet.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/LeakDetector.h"
32 #include "llvm/Support/raw_ostream.h"
33 #include <algorithm>
34 using namespace llvm;
35
36 MachineBasicBlock::MachineBasicBlock(MachineFunction &mf, const BasicBlock *bb)
37   : BB(bb), Number(-1), xParent(&mf), Alignment(0), IsLandingPad(false),
38     AddressTaken(false) {
39   Insts.Parent = this;
40 }
41
42 MachineBasicBlock::~MachineBasicBlock() {
43   LeakDetector::removeGarbageObject(this);
44 }
45
46 /// getSymbol - Return the MCSymbol for this basic block.
47 ///
48 MCSymbol *MachineBasicBlock::getSymbol() const {
49   const MachineFunction *MF = getParent();
50   MCContext &Ctx = MF->getContext();
51   const char *Prefix = Ctx.getAsmInfo().getPrivateGlobalPrefix();
52   return Ctx.GetOrCreateSymbol(Twine(Prefix) + "BB" +
53                                Twine(MF->getFunctionNumber()) + "_" +
54                                Twine(getNumber()));
55 }
56
57
58 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineBasicBlock &MBB) {
59   MBB.print(OS);
60   return OS;
61 }
62
63 /// addNodeToList (MBB) - When an MBB is added to an MF, we need to update the 
64 /// parent pointer of the MBB, the MBB numbering, and any instructions in the
65 /// MBB to be on the right operand list for registers.
66 ///
67 /// MBBs start out as #-1. When a MBB is added to a MachineFunction, it
68 /// gets the next available unique MBB number. If it is removed from a
69 /// MachineFunction, it goes back to being #-1.
70 void ilist_traits<MachineBasicBlock>::addNodeToList(MachineBasicBlock *N) {
71   MachineFunction &MF = *N->getParent();
72   N->Number = MF.addToMBBNumbering(N);
73
74   // Make sure the instructions have their operands in the reginfo lists.
75   MachineRegisterInfo &RegInfo = MF.getRegInfo();
76   for (MachineBasicBlock::iterator I = N->begin(), E = N->end(); I != E; ++I)
77     I->AddRegOperandsToUseLists(RegInfo);
78
79   LeakDetector::removeGarbageObject(N);
80 }
81
82 void ilist_traits<MachineBasicBlock>::removeNodeFromList(MachineBasicBlock *N) {
83   N->getParent()->removeFromMBBNumbering(N->Number);
84   N->Number = -1;
85   LeakDetector::addGarbageObject(N);
86 }
87
88
89 /// addNodeToList (MI) - When we add an instruction to a basic block
90 /// list, we update its parent pointer and add its operands from reg use/def
91 /// lists if appropriate.
92 void ilist_traits<MachineInstr>::addNodeToList(MachineInstr *N) {
93   assert(N->getParent() == 0 && "machine instruction already in a basic block");
94   N->setParent(Parent);
95   
96   // Add the instruction's register operands to their corresponding
97   // use/def lists.
98   MachineFunction *MF = Parent->getParent();
99   N->AddRegOperandsToUseLists(MF->getRegInfo());
100
101   LeakDetector::removeGarbageObject(N);
102 }
103
104 /// removeNodeFromList (MI) - When we remove an instruction from a basic block
105 /// list, we update its parent pointer and remove its operands from reg use/def
106 /// lists if appropriate.
107 void ilist_traits<MachineInstr>::removeNodeFromList(MachineInstr *N) {
108   assert(N->getParent() != 0 && "machine instruction not in a basic block");
109
110   // Remove from the use/def lists.
111   N->RemoveRegOperandsFromUseLists();
112   
113   N->setParent(0);
114
115   LeakDetector::addGarbageObject(N);
116 }
117
118 /// transferNodesFromList (MI) - When moving a range of instructions from one
119 /// MBB list to another, we need to update the parent pointers and the use/def
120 /// lists.
121 void ilist_traits<MachineInstr>::
122 transferNodesFromList(ilist_traits<MachineInstr> &fromList,
123                       MachineBasicBlock::iterator first,
124                       MachineBasicBlock::iterator last) {
125   assert(Parent->getParent() == fromList.Parent->getParent() &&
126         "MachineInstr parent mismatch!");
127
128   // Splice within the same MBB -> no change.
129   if (Parent == fromList.Parent) return;
130
131   // If splicing between two blocks within the same function, just update the
132   // parent pointers.
133   for (; first != last; ++first)
134     first->setParent(Parent);
135 }
136
137 void ilist_traits<MachineInstr>::deleteNode(MachineInstr* MI) {
138   assert(!MI->getParent() && "MI is still in a block!");
139   Parent->getParent()->DeleteMachineInstr(MI);
140 }
141
142 MachineBasicBlock::iterator MachineBasicBlock::getFirstNonPHI() {
143   iterator I = begin();
144   while (I != end() && I->isPHI())
145     ++I;
146   return I;
147 }
148
149 MachineBasicBlock::iterator MachineBasicBlock::getFirstTerminator() {
150   iterator I = end();
151   while (I != begin() && (--I)->getDesc().isTerminator())
152     ; /*noop */
153   if (I != end() && !I->getDesc().isTerminator()) ++I;
154   return I;
155 }
156
157 void MachineBasicBlock::dump() const {
158   print(dbgs());
159 }
160
161 static inline void OutputReg(raw_ostream &os, unsigned RegNo,
162                              const TargetRegisterInfo *TRI = 0) {
163   if (RegNo != 0 && TargetRegisterInfo::isPhysicalRegister(RegNo)) {
164     if (TRI)
165       os << " %" << TRI->get(RegNo).Name;
166     else
167       os << " %physreg" << RegNo;
168   } else
169     os << " %reg" << RegNo;
170 }
171
172 StringRef MachineBasicBlock::getName() const {
173   if (const BasicBlock *LBB = getBasicBlock())
174     return LBB->getName();
175   else
176     return "(null)";
177 }
178
179 void MachineBasicBlock::print(raw_ostream &OS) const {
180   const MachineFunction *MF = getParent();
181   if (!MF) {
182     OS << "Can't print out MachineBasicBlock because parent MachineFunction"
183        << " is null\n";
184     return;
185   }
186
187   if (Alignment) { OS << "Alignment " << Alignment << "\n"; }
188
189   OS << "BB#" << getNumber() << ": ";
190
191   const char *Comma = "";
192   if (const BasicBlock *LBB = getBasicBlock()) {
193     OS << Comma << "derived from LLVM BB ";
194     WriteAsOperand(OS, LBB, /*PrintType=*/false);
195     Comma = ", ";
196   }
197   if (isLandingPad()) { OS << Comma << "EH LANDING PAD"; Comma = ", "; }
198   if (hasAddressTaken()) { OS << Comma << "ADDRESS TAKEN"; Comma = ", "; }
199   OS << '\n';
200
201   const TargetRegisterInfo *TRI = MF->getTarget().getRegisterInfo();  
202   if (!livein_empty()) {
203     OS << "    Live Ins:";
204     for (livein_iterator I = livein_begin(),E = livein_end(); I != E; ++I)
205       OutputReg(OS, *I, TRI);
206     OS << '\n';
207   }
208   // Print the preds of this block according to the CFG.
209   if (!pred_empty()) {
210     OS << "    Predecessors according to CFG:";
211     for (const_pred_iterator PI = pred_begin(), E = pred_end(); PI != E; ++PI)
212       OS << " BB#" << (*PI)->getNumber();
213     OS << '\n';
214   }
215   
216   for (const_iterator I = begin(); I != end(); ++I) {
217     OS << '\t';
218     I->print(OS, &getParent()->getTarget());
219   }
220
221   // Print the successors of this block according to the CFG.
222   if (!succ_empty()) {
223     OS << "    Successors according to CFG:";
224     for (const_succ_iterator SI = succ_begin(), E = succ_end(); SI != E; ++SI)
225       OS << " BB#" << (*SI)->getNumber();
226     OS << '\n';
227   }
228 }
229
230 void MachineBasicBlock::removeLiveIn(unsigned Reg) {
231   std::vector<unsigned>::iterator I =
232     std::find(LiveIns.begin(), LiveIns.end(), Reg);
233   assert(I != LiveIns.end() && "Not a live in!");
234   LiveIns.erase(I);
235 }
236
237 bool MachineBasicBlock::isLiveIn(unsigned Reg) const {
238   livein_iterator I = std::find(livein_begin(), livein_end(), Reg);
239   return I != livein_end();
240 }
241
242 void MachineBasicBlock::moveBefore(MachineBasicBlock *NewAfter) {
243   getParent()->splice(NewAfter, this);
244 }
245
246 void MachineBasicBlock::moveAfter(MachineBasicBlock *NewBefore) {
247   MachineFunction::iterator BBI = NewBefore;
248   getParent()->splice(++BBI, this);
249 }
250
251 void MachineBasicBlock::updateTerminator() {
252   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
253   // A block with no successors has no concerns with fall-through edges.
254   if (this->succ_empty()) return;
255
256   MachineBasicBlock *TBB = 0, *FBB = 0;
257   SmallVector<MachineOperand, 4> Cond;
258   DebugLoc dl;  // FIXME: this is nowhere
259   bool B = TII->AnalyzeBranch(*this, TBB, FBB, Cond);
260   (void) B;
261   assert(!B && "UpdateTerminators requires analyzable predecessors!");
262   if (Cond.empty()) {
263     if (TBB) {
264       // The block has an unconditional branch. If its successor is now
265       // its layout successor, delete the branch.
266       if (isLayoutSuccessor(TBB))
267         TII->RemoveBranch(*this);
268     } else {
269       // The block has an unconditional fallthrough. If its successor is not
270       // its layout successor, insert a branch.
271       TBB = *succ_begin();
272       if (!isLayoutSuccessor(TBB))
273         TII->InsertBranch(*this, TBB, 0, Cond, dl);
274     }
275   } else {
276     if (FBB) {
277       // The block has a non-fallthrough conditional branch. If one of its
278       // successors is its layout successor, rewrite it to a fallthrough
279       // conditional branch.
280       if (isLayoutSuccessor(TBB)) {
281         if (TII->ReverseBranchCondition(Cond))
282           return;
283         TII->RemoveBranch(*this);
284         TII->InsertBranch(*this, FBB, 0, Cond, dl);
285       } else if (isLayoutSuccessor(FBB)) {
286         TII->RemoveBranch(*this);
287         TII->InsertBranch(*this, TBB, 0, Cond, dl);
288       }
289     } else {
290       // The block has a fallthrough conditional branch.
291       MachineBasicBlock *MBBA = *succ_begin();
292       MachineBasicBlock *MBBB = *llvm::next(succ_begin());
293       if (MBBA == TBB) std::swap(MBBB, MBBA);
294       if (isLayoutSuccessor(TBB)) {
295         if (TII->ReverseBranchCondition(Cond)) {
296           // We can't reverse the condition, add an unconditional branch.
297           Cond.clear();
298           TII->InsertBranch(*this, MBBA, 0, Cond, dl);
299           return;
300         }
301         TII->RemoveBranch(*this);
302         TII->InsertBranch(*this, MBBA, 0, Cond, dl);
303       } else if (!isLayoutSuccessor(MBBA)) {
304         TII->RemoveBranch(*this);
305         TII->InsertBranch(*this, TBB, MBBA, Cond, dl);
306       }
307     }
308   }
309 }
310
311 void MachineBasicBlock::addSuccessor(MachineBasicBlock *succ) {
312   Successors.push_back(succ);
313   succ->addPredecessor(this);
314 }
315
316 void MachineBasicBlock::removeSuccessor(MachineBasicBlock *succ) {
317   succ->removePredecessor(this);
318   succ_iterator I = std::find(Successors.begin(), Successors.end(), succ);
319   assert(I != Successors.end() && "Not a current successor!");
320   Successors.erase(I);
321 }
322
323 MachineBasicBlock::succ_iterator 
324 MachineBasicBlock::removeSuccessor(succ_iterator I) {
325   assert(I != Successors.end() && "Not a current successor!");
326   (*I)->removePredecessor(this);
327   return Successors.erase(I);
328 }
329
330 void MachineBasicBlock::addPredecessor(MachineBasicBlock *pred) {
331   Predecessors.push_back(pred);
332 }
333
334 void MachineBasicBlock::removePredecessor(MachineBasicBlock *pred) {
335   std::vector<MachineBasicBlock *>::iterator I =
336     std::find(Predecessors.begin(), Predecessors.end(), pred);
337   assert(I != Predecessors.end() && "Pred is not a predecessor of this block!");
338   Predecessors.erase(I);
339 }
340
341 void MachineBasicBlock::transferSuccessors(MachineBasicBlock *fromMBB) {
342   if (this == fromMBB)
343     return;
344   
345   while (!fromMBB->succ_empty()) {
346     MachineBasicBlock *Succ = *fromMBB->succ_begin();
347     addSuccessor(Succ);
348     fromMBB->removeSuccessor(Succ);
349   }
350 }
351
352 void
353 MachineBasicBlock::transferSuccessorsAndUpdatePHIs(MachineBasicBlock *fromMBB) {
354   if (this == fromMBB)
355     return;
356   
357   while (!fromMBB->succ_empty()) {
358     MachineBasicBlock *Succ = *fromMBB->succ_begin();
359     addSuccessor(Succ);
360     fromMBB->removeSuccessor(Succ);
361
362     // Fix up any PHI nodes in the successor.
363     for (MachineBasicBlock::iterator MI = Succ->begin(), ME = Succ->end();
364          MI != ME && MI->isPHI(); ++MI)
365       for (unsigned i = 2, e = MI->getNumOperands()+1; i != e; i += 2) {
366         MachineOperand &MO = MI->getOperand(i);
367         if (MO.getMBB() == fromMBB)
368           MO.setMBB(this);
369       }
370   }
371 }
372
373 bool MachineBasicBlock::isSuccessor(const MachineBasicBlock *MBB) const {
374   std::vector<MachineBasicBlock *>::const_iterator I =
375     std::find(Successors.begin(), Successors.end(), MBB);
376   return I != Successors.end();
377 }
378
379 bool MachineBasicBlock::isLayoutSuccessor(const MachineBasicBlock *MBB) const {
380   MachineFunction::const_iterator I(this);
381   return llvm::next(I) == MachineFunction::const_iterator(MBB);
382 }
383
384 bool MachineBasicBlock::canFallThrough() {
385   MachineFunction::iterator Fallthrough = this;
386   ++Fallthrough;
387   // If FallthroughBlock is off the end of the function, it can't fall through.
388   if (Fallthrough == getParent()->end())
389     return false;
390
391   // If FallthroughBlock isn't a successor, no fallthrough is possible.
392   if (!isSuccessor(Fallthrough))
393     return false;
394
395   // Analyze the branches, if any, at the end of the block.
396   MachineBasicBlock *TBB = 0, *FBB = 0;
397   SmallVector<MachineOperand, 4> Cond;
398   const TargetInstrInfo *TII = getParent()->getTarget().getInstrInfo();
399   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond)) {
400     // If we couldn't analyze the branch, examine the last instruction.
401     // If the block doesn't end in a known control barrier, assume fallthrough
402     // is possible. The isPredicable check is needed because this code can be
403     // called during IfConversion, where an instruction which is normally a
404     // Barrier is predicated and thus no longer an actual control barrier. This
405     // is over-conservative though, because if an instruction isn't actually
406     // predicated we could still treat it like a barrier.
407     return empty() || !back().getDesc().isBarrier() ||
408            back().getDesc().isPredicable();
409   }
410
411   // If there is no branch, control always falls through.
412   if (TBB == 0) return true;
413
414   // If there is some explicit branch to the fallthrough block, it can obviously
415   // reach, even though the branch should get folded to fall through implicitly.
416   if (MachineFunction::iterator(TBB) == Fallthrough ||
417       MachineFunction::iterator(FBB) == Fallthrough)
418     return true;
419
420   // If it's an unconditional branch to some block not the fall through, it
421   // doesn't fall through.
422   if (Cond.empty()) return false;
423
424   // Otherwise, if it is conditional and has no explicit false block, it falls
425   // through.
426   return FBB == 0;
427 }
428
429 MachineBasicBlock *
430 MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock *Succ, Pass *P) {
431   MachineFunction *MF = getParent();
432   DebugLoc dl;  // FIXME: this is nowhere
433
434   // We may need to update this's terminator, but we can't do that if AnalyzeBranch
435   // fails. If this uses a jump table, we won't touch it.
436   const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
437   MachineBasicBlock *TBB = 0, *FBB = 0;
438   SmallVector<MachineOperand, 4> Cond;
439   if (TII->AnalyzeBranch(*this, TBB, FBB, Cond))
440     return NULL;
441
442   MachineBasicBlock *NMBB = MF->CreateMachineBasicBlock();
443   MF->insert(llvm::next(MachineFunction::iterator(this)), NMBB);
444   DEBUG(dbgs() << "Splitting critical edge:"
445         " BB#" << getNumber()
446         << " -- BB#" << NMBB->getNumber()
447         << " -- BB#" << Succ->getNumber() << '\n');
448
449   ReplaceUsesOfBlockWith(Succ, NMBB);
450   updateTerminator();
451
452   // Insert unconditional "jump Succ" instruction in NMBB if necessary.
453   NMBB->addSuccessor(Succ);
454   if (!NMBB->isLayoutSuccessor(Succ)) {
455     Cond.clear();
456     MF->getTarget().getInstrInfo()->InsertBranch(*NMBB, Succ, NULL, Cond, dl);
457   }
458
459   // Fix PHI nodes in Succ so they refer to NMBB instead of this
460   for (MachineBasicBlock::iterator i = Succ->begin(), e = Succ->end();
461        i != e && i->isPHI(); ++i)
462     for (unsigned ni = 1, ne = i->getNumOperands(); ni != ne; ni += 2)
463       if (i->getOperand(ni+1).getMBB() == this)
464         i->getOperand(ni+1).setMBB(NMBB);
465
466   if (LiveVariables *LV =
467         P->getAnalysisIfAvailable<LiveVariables>())
468     LV->addNewBlock(NMBB, this, Succ);
469
470   if (MachineDominatorTree *MDT =
471         P->getAnalysisIfAvailable<MachineDominatorTree>())
472     MDT->addNewBlock(NMBB, this);
473
474   if (MachineLoopInfo *MLI = P->getAnalysisIfAvailable<MachineLoopInfo>())
475     if (MachineLoop *TIL = MLI->getLoopFor(this)) {
476       // If one or the other blocks were not in a loop, the new block is not
477       // either, and thus LI doesn't need to be updated.
478       if (MachineLoop *DestLoop = MLI->getLoopFor(Succ)) {
479         if (TIL == DestLoop) {
480           // Both in the same loop, the NMBB joins loop.
481           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
482         } else if (TIL->contains(DestLoop)) {
483           // Edge from an outer loop to an inner loop.  Add to the outer loop.
484           TIL->addBasicBlockToLoop(NMBB, MLI->getBase());
485         } else if (DestLoop->contains(TIL)) {
486           // Edge from an inner loop to an outer loop.  Add to the outer loop.
487           DestLoop->addBasicBlockToLoop(NMBB, MLI->getBase());
488         } else {
489           // Edge from two loops with no containment relation.  Because these
490           // are natural loops, we know that the destination block must be the
491           // header of its loop (adding a branch into a loop elsewhere would
492           // create an irreducible loop).
493           assert(DestLoop->getHeader() == Succ &&
494                  "Should not create irreducible loops!");
495           if (MachineLoop *P = DestLoop->getParentLoop())
496             P->addBasicBlockToLoop(NMBB, MLI->getBase());
497         }
498       }
499     }
500
501   return NMBB;
502 }
503
504 /// removeFromParent - This method unlinks 'this' from the containing function,
505 /// and returns it, but does not delete it.
506 MachineBasicBlock *MachineBasicBlock::removeFromParent() {
507   assert(getParent() && "Not embedded in a function!");
508   getParent()->remove(this);
509   return this;
510 }
511
512
513 /// eraseFromParent - This method unlinks 'this' from the containing function,
514 /// and deletes it.
515 void MachineBasicBlock::eraseFromParent() {
516   assert(getParent() && "Not embedded in a function!");
517   getParent()->erase(this);
518 }
519
520
521 /// ReplaceUsesOfBlockWith - Given a machine basic block that branched to
522 /// 'Old', change the code and CFG so that it branches to 'New' instead.
523 void MachineBasicBlock::ReplaceUsesOfBlockWith(MachineBasicBlock *Old,
524                                                MachineBasicBlock *New) {
525   assert(Old != New && "Cannot replace self with self!");
526
527   MachineBasicBlock::iterator I = end();
528   while (I != begin()) {
529     --I;
530     if (!I->getDesc().isTerminator()) break;
531
532     // Scan the operands of this machine instruction, replacing any uses of Old
533     // with New.
534     for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
535       if (I->getOperand(i).isMBB() &&
536           I->getOperand(i).getMBB() == Old)
537         I->getOperand(i).setMBB(New);
538   }
539
540   // Update the successor information.
541   removeSuccessor(Old);
542   addSuccessor(New);
543 }
544
545 /// CorrectExtraCFGEdges - Various pieces of code can cause excess edges in the
546 /// CFG to be inserted.  If we have proven that MBB can only branch to DestA and
547 /// DestB, remove any other MBB successors from the CFG.  DestA and DestB can be
548 /// null.
549 /// 
550 /// Besides DestA and DestB, retain other edges leading to LandingPads
551 /// (currently there can be only one; we don't check or require that here).
552 /// Note it is possible that DestA and/or DestB are LandingPads.
553 bool MachineBasicBlock::CorrectExtraCFGEdges(MachineBasicBlock *DestA,
554                                              MachineBasicBlock *DestB,
555                                              bool isCond) {
556   // The values of DestA and DestB frequently come from a call to the
557   // 'TargetInstrInfo::AnalyzeBranch' method. We take our meaning of the initial
558   // values from there.
559   //
560   // 1. If both DestA and DestB are null, then the block ends with no branches
561   //    (it falls through to its successor).
562   // 2. If DestA is set, DestB is null, and isCond is false, then the block ends
563   //    with only an unconditional branch.
564   // 3. If DestA is set, DestB is null, and isCond is true, then the block ends
565   //    with a conditional branch that falls through to a successor (DestB).
566   // 4. If DestA and DestB is set and isCond is true, then the block ends with a
567   //    conditional branch followed by an unconditional branch. DestA is the
568   //    'true' destination and DestB is the 'false' destination.
569
570   bool Changed = false;
571
572   MachineFunction::iterator FallThru =
573     llvm::next(MachineFunction::iterator(this));
574
575   if (DestA == 0 && DestB == 0) {
576     // Block falls through to successor.
577     DestA = FallThru;
578     DestB = FallThru;
579   } else if (DestA != 0 && DestB == 0) {
580     if (isCond)
581       // Block ends in conditional jump that falls through to successor.
582       DestB = FallThru;
583   } else {
584     assert(DestA && DestB && isCond &&
585            "CFG in a bad state. Cannot correct CFG edges");
586   }
587
588   // Remove superfluous edges. I.e., those which aren't destinations of this
589   // basic block, duplicate edges, or landing pads.
590   SmallPtrSet<const MachineBasicBlock*, 8> SeenMBBs;
591   MachineBasicBlock::succ_iterator SI = succ_begin();
592   while (SI != succ_end()) {
593     const MachineBasicBlock *MBB = *SI;
594     if (!SeenMBBs.insert(MBB) ||
595         (MBB != DestA && MBB != DestB && !MBB->isLandingPad())) {
596       // This is a superfluous edge, remove it.
597       SI = removeSuccessor(SI);
598       Changed = true;
599     } else {
600       ++SI;
601     }
602   }
603
604   return Changed;
605 }
606
607 /// findDebugLoc - find the next valid DebugLoc starting at MBBI, skipping
608 /// any DBG_VALUE instructions.  Return UnknownLoc if there is none.
609 DebugLoc
610 MachineBasicBlock::findDebugLoc(MachineBasicBlock::iterator &MBBI) {
611   DebugLoc DL;
612   MachineBasicBlock::iterator E = end();
613   if (MBBI != E) {
614     // Skip debug declarations, we don't want a DebugLoc from them.
615     MachineBasicBlock::iterator MBBI2 = MBBI;
616     while (MBBI2 != E && MBBI2->isDebugValue())
617       MBBI2++;
618     if (MBBI2 != E)
619       DL = MBBI2->getDebugLoc();
620   }
621   return DL;
622 }
623
624 void llvm::WriteAsOperand(raw_ostream &OS, const MachineBasicBlock *MBB,
625                           bool t) {
626   OS << "BB#" << MBB->getNumber();
627 }
628