Rename MachineInstrInfo -> TargetInstrInfo
[oota-llvm.git] / lib / CodeGen / LiveVariables.cpp
1 //===-- LiveVariables.cpp - Live Variable Analysis for Machine Code -------===//
2 // 
3 // This file implements the LiveVariable analysis pass.
4 //   
5 //===----------------------------------------------------------------------===//
6
7 #include "llvm/CodeGen/LiveVariables.h"
8 #include "llvm/CodeGen/MachineInstr.h"
9 #include "llvm/Target/TargetInstrInfo.h"
10 #include "llvm/Target/TargetMachine.h"
11 #include "llvm/Support/CFG.h"
12 #include "Support/DepthFirstIterator.h"
13
14 static RegisterAnalysis<LiveVariables> X("livevars", "Live Variable Analysis");
15
16 void LiveVariables::MarkVirtRegAliveInBlock(VarInfo &VRInfo,
17                                             const BasicBlock *BB) {
18   const std::pair<MachineBasicBlock*,unsigned> &Info = BBMap.find(BB)->second;
19   MachineBasicBlock *MBB = Info.first;
20   unsigned BBNum = Info.second;
21
22   // Check to see if this basic block is one of the killing blocks.  If so,
23   // remove it...
24   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
25     if (VRInfo.Kills[i].first == MBB) {
26       VRInfo.Kills.erase(VRInfo.Kills.begin()+i);  // Erase entry
27       break;
28     }
29
30   if (MBB == VRInfo.DefBlock) return;  // Terminate recursion
31
32   if (VRInfo.AliveBlocks.size() <= BBNum)
33     VRInfo.AliveBlocks.resize(BBNum+1);  // Make space...
34
35   if (VRInfo.AliveBlocks[BBNum])
36     return;  // We already know the block is live
37
38   // Mark the variable known alive in this bb
39   VRInfo.AliveBlocks[BBNum] = true;
40
41   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
42     MarkVirtRegAliveInBlock(VRInfo, *PI);
43 }
44
45 void LiveVariables::HandleVirtRegUse(VarInfo &VRInfo, MachineBasicBlock *MBB,
46                                      MachineInstr *MI) {
47   // Check to see if this basic block is already a kill block...
48   if (!VRInfo.Kills.empty() && VRInfo.Kills.back().first == MBB) {
49     // Yes, this register is killed in this basic block already.  Increase the
50     // live range by updating the kill instruction.
51     VRInfo.Kills.back().second = MI;
52     return;
53   }
54
55 #ifndef NDEBUG
56   for (unsigned i = 0, e = VRInfo.Kills.size(); i != e; ++i)
57     assert(VRInfo.Kills[i].first != MBB && "entry should be at end!");
58 #endif
59
60   assert(MBB != VRInfo.DefBlock && "Should have kill for defblock!");
61
62   // Add a new kill entry for this basic block.
63   VRInfo.Kills.push_back(std::make_pair(MBB, MI));
64
65   // Update all dominating blocks to mark them known live.
66   const BasicBlock *BB = MBB->getBasicBlock();
67   for (pred_const_iterator PI = pred_begin(BB), E = pred_end(BB);
68        PI != E; ++PI)
69     MarkVirtRegAliveInBlock(VRInfo, *PI);
70 }
71
72 void LiveVariables::HandlePhysRegUse(unsigned Reg, MachineInstr *MI) {
73   if (PhysRegInfo[Reg]) {
74     PhysRegInfo[Reg] = MI;
75     PhysRegUsed[Reg] = true;
76   } else if (const unsigned *AliasSet = RegInfo->getAliasSet(Reg)) {
77     for (; unsigned NReg = AliasSet[0]; ++AliasSet)
78       if (MachineInstr *LastUse = PhysRegInfo[NReg]) {
79         PhysRegInfo[NReg] = MI;
80         PhysRegUsed[NReg] = true;
81       }
82   }
83 }
84
85 void LiveVariables::HandlePhysRegDef(unsigned Reg, MachineInstr *MI) {
86   // Does this kill a previous version of this register?
87   if (MachineInstr *LastUse = PhysRegInfo[Reg]) {
88     if (PhysRegUsed[Reg])
89       RegistersKilled.insert(std::make_pair(LastUse, Reg));
90     else
91       RegistersDead.insert(std::make_pair(LastUse, Reg));
92   } else if (const unsigned *AliasSet = RegInfo->getAliasSet(Reg)) {
93     for (; unsigned NReg = AliasSet[0]; ++AliasSet)
94       if (MachineInstr *LastUse = PhysRegInfo[NReg]) {
95         if (PhysRegUsed[NReg])
96           RegistersKilled.insert(std::make_pair(LastUse, NReg));
97         else
98           RegistersDead.insert(std::make_pair(LastUse, NReg));
99         PhysRegInfo[NReg] = 0;  // Kill the aliased register
100       }
101   }
102   PhysRegInfo[Reg] = MI;
103   PhysRegUsed[Reg] = false;
104 }
105
106 bool LiveVariables::runOnMachineFunction(MachineFunction &MF) {
107   // Build BBMap... 
108   unsigned BBNum = 0;
109   for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
110     BBMap[I->getBasicBlock()] = std::make_pair(I, BBNum++);
111
112   // PhysRegInfo - Keep track of which instruction was the last use of a
113   // physical register.  This is a purely local property, because all physical
114   // register references as presumed dead across basic blocks.
115   //
116   MachineInstr *PhysRegInfoA[MRegisterInfo::FirstVirtualRegister];
117   bool          PhysRegUsedA[MRegisterInfo::FirstVirtualRegister];
118   std::fill(PhysRegInfoA, PhysRegInfoA+MRegisterInfo::FirstVirtualRegister,
119             (MachineInstr*)0);
120   PhysRegInfo = PhysRegInfoA;
121   PhysRegUsed = PhysRegUsedA;
122
123   const TargetInstrInfo &TII = MF.getTarget().getInstrInfo();
124   RegInfo = MF.getTarget().getRegisterInfo();
125
126   /// Get some space for a respectable number of registers...
127   VirtRegInfo.resize(64);
128   
129   // Calculate live variable information in depth first order on the CFG of the
130   // function.  This guarantees that we will see the definition of a virtual
131   // register before its uses due to dominance properties of SSA (except for PHI
132   // nodes, which are treated as a special case).
133   //
134   const BasicBlock *Entry = MF.getFunction()->begin();
135   for (df_iterator<const BasicBlock*> DFI = df_begin(Entry), E = df_end(Entry);
136        DFI != E; ++DFI) {
137     const BasicBlock *BB = *DFI;
138     std::pair<MachineBasicBlock*, unsigned> &BBRec = BBMap.find(BB)->second;
139     MachineBasicBlock *MBB = BBRec.first;
140     unsigned BBNum = BBRec.second;
141
142     // Loop over all of the instructions, processing them.
143     for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
144          I != E; ++I) {
145       MachineInstr *MI = *I;
146       const TargetInstrDescriptor &MID = TII.get(MI->getOpcode());
147
148       // Process all of the operands of the instruction...
149       unsigned NumOperandsToProcess = MI->getNumOperands();
150
151       // Unless it is a PHI node.  In this case, ONLY process the DEF, not any
152       // of the uses.  They will be handled in other basic blocks.
153       if (MI->getOpcode() == TargetInstrInfo::PHI)      
154         NumOperandsToProcess = 1;
155
156       // Loop over implicit uses, using them.
157       if (const unsigned *ImplicitUses = MID.ImplicitUses)
158         for (unsigned i = 0; ImplicitUses[i]; ++i)
159           HandlePhysRegUse(ImplicitUses[i], MI);
160
161       // Process all explicit uses...
162       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
163         MachineOperand &MO = MI->getOperand(i);
164         if (MO.opIsUse() || MO.opIsDefAndUse()) {
165           if (MO.isVirtualRegister() && !MO.getVRegValueOrNull()) {
166             unsigned RegIdx = MO.getReg()-MRegisterInfo::FirstVirtualRegister;
167             HandleVirtRegUse(getVarInfo(RegIdx), MBB, MI);
168           } else if (MO.isPhysicalRegister() && MO.getReg() != 0
169                    /// FIXME: This is a gross hack, due to us not being able to
170                    /// say that some registers are defined on entry to the
171                    /// function.  5 = ESP
172 && MO.getReg() != 5
173 ) {
174             HandlePhysRegUse(MO.getReg(), MI);
175           }
176         }
177       }
178
179       // Loop over implicit defs, defining them.
180       if (const unsigned *ImplicitDefs = MID.ImplicitDefs)
181         for (unsigned i = 0; ImplicitDefs[i]; ++i)
182           HandlePhysRegDef(ImplicitDefs[i], MI);
183
184       // Process all explicit defs...
185       for (unsigned i = 0; i != NumOperandsToProcess; ++i) {
186         MachineOperand &MO = MI->getOperand(i);
187         if (MO.opIsDef() || MO.opIsDefAndUse()) {
188           if (MO.isVirtualRegister()) {
189             unsigned RegIdx = MO.getReg()-MRegisterInfo::FirstVirtualRegister;
190             VarInfo &VRInfo = getVarInfo(RegIdx);
191
192             assert(VRInfo.DefBlock == 0 && "Variable multiply defined!");
193             VRInfo.DefBlock = MBB;                           // Created here...
194             VRInfo.DefInst = MI;
195             VRInfo.Kills.push_back(std::make_pair(MBB, MI)); // Defaults to dead
196           } else if (MO.isPhysicalRegister() && MO.getReg() != 0
197                    /// FIXME: This is a gross hack, due to us not being able to
198                    /// say that some registers are defined on entry to the
199                    /// function.  5 = ESP
200 && MO.getReg() != 5
201 ) {
202             HandlePhysRegDef(MO.getReg(), MI);
203           }
204         }
205       }
206     }
207
208     // Handle any virtual assignments from PHI nodes which might be at the
209     // bottom of this basic block.  We check all of our successor blocks to see
210     // if they have PHI nodes, and if so, we simulate an assignment at the end
211     // of the current block.
212     for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I){
213       MachineBasicBlock *Succ = BBMap.find(*I)->second.first;
214       
215       // PHI nodes are guaranteed to be at the top of the block...
216       for (MachineBasicBlock::iterator I = Succ->begin(), E = Succ->end();
217            I != E && (*I)->getOpcode() == TargetInstrInfo::PHI; ++I) {
218         for (unsigned i = 1; ; i += 2)
219           if ((*I)->getOperand(i+1).getMachineBasicBlock() == MBB) {
220             MachineOperand &MO = (*I)->getOperand(i);
221             if (!MO.getVRegValueOrNull()) {
222               unsigned RegIdx = MO.getReg()-MRegisterInfo::FirstVirtualRegister;
223               VarInfo &VRInfo = getVarInfo(RegIdx);
224
225               // Only mark it alive only in the block we are representing...
226               MarkVirtRegAliveInBlock(VRInfo, BB);
227               break;   // Found the PHI entry for this block...
228             }
229           }
230       }
231     }
232     
233     // Loop over PhysRegInfo, killing any registers that are available at the
234     // end of the basic block.  This also resets the PhysRegInfo map.
235     for (unsigned i = 0, e = MRegisterInfo::FirstVirtualRegister; i != e; ++i)
236       if (PhysRegInfo[i])
237         HandlePhysRegDef(i, 0);
238   }
239
240   BBMap.clear();
241
242   // Convert the information we have gathered into VirtRegInfo and transform it
243   // into a form usable by RegistersKilled.
244   //
245   for (unsigned i = 0, e = VirtRegInfo.size(); i != e; ++i)
246     for (unsigned j = 0, e = VirtRegInfo[i].Kills.size(); j != e; ++j) {
247       if (VirtRegInfo[i].Kills[j].second == VirtRegInfo[i].DefInst)
248         RegistersDead.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
249                     i + MRegisterInfo::FirstVirtualRegister));
250
251       else
252         RegistersKilled.insert(std::make_pair(VirtRegInfo[i].Kills[j].second,
253                     i + MRegisterInfo::FirstVirtualRegister));
254     }
255   
256   return false;
257 }