Removing dependency on third party library for Intel JIT event support.
[oota-llvm.git] / lib / CodeGen / LiveRangeEdit.cpp
1 //===-- LiveRangeEdit.cpp - Basic tools for editing a register live range -===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // The LiveRangeEdit class represents changes done to a virtual register when it
11 // is spilled or split.
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "regalloc"
15 #include "VirtRegMap.h"
16 #include "llvm/ADT/SetVector.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/CalcSpillWeights.h"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "llvm/CodeGen/LiveRangeEdit.h"
21 #include "llvm/CodeGen/MachineRegisterInfo.h"
22 #include "llvm/Target/TargetInstrInfo.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/raw_ostream.h"
25
26 using namespace llvm;
27
28 STATISTIC(NumDCEDeleted,     "Number of instructions deleted by DCE");
29 STATISTIC(NumDCEFoldedLoads, "Number of single use loads folded after DCE");
30 STATISTIC(NumFracRanges,     "Number of live ranges fractured by DCE");
31
32 void LiveRangeEdit::Delegate::anchor() { }
33
34 LiveInterval &LiveRangeEdit::createFrom(unsigned OldReg) {
35   unsigned VReg = MRI.createVirtualRegister(MRI.getRegClass(OldReg));
36   if (VRM) {
37     VRM->grow();
38     VRM->setIsSplitFromReg(VReg, VRM->getOriginal(OldReg));
39   }
40   LiveInterval &LI = LIS.getOrCreateInterval(VReg);
41   NewRegs.push_back(&LI);
42   return LI;
43 }
44
45 bool LiveRangeEdit::checkRematerializable(VNInfo *VNI,
46                                           const MachineInstr *DefMI,
47                                           AliasAnalysis *aa) {
48   assert(DefMI && "Missing instruction");
49   ScannedRemattable = true;
50   if (!TII.isTriviallyReMaterializable(DefMI, aa))
51     return false;
52   Remattable.insert(VNI);
53   return true;
54 }
55
56 void LiveRangeEdit::scanRemattable(AliasAnalysis *aa) {
57   for (LiveInterval::vni_iterator I = getParent().vni_begin(),
58        E = getParent().vni_end(); I != E; ++I) {
59     VNInfo *VNI = *I;
60     if (VNI->isUnused())
61       continue;
62     MachineInstr *DefMI = LIS.getInstructionFromIndex(VNI->def);
63     if (!DefMI)
64       continue;
65     checkRematerializable(VNI, DefMI, aa);
66   }
67   ScannedRemattable = true;
68 }
69
70 bool LiveRangeEdit::anyRematerializable(AliasAnalysis *aa) {
71   if (!ScannedRemattable)
72     scanRemattable(aa);
73   return !Remattable.empty();
74 }
75
76 /// allUsesAvailableAt - Return true if all registers used by OrigMI at
77 /// OrigIdx are also available with the same value at UseIdx.
78 bool LiveRangeEdit::allUsesAvailableAt(const MachineInstr *OrigMI,
79                                        SlotIndex OrigIdx,
80                                        SlotIndex UseIdx) {
81   OrigIdx = OrigIdx.getRegSlot(true);
82   UseIdx = UseIdx.getRegSlot(true);
83   for (unsigned i = 0, e = OrigMI->getNumOperands(); i != e; ++i) {
84     const MachineOperand &MO = OrigMI->getOperand(i);
85     if (!MO.isReg() || !MO.getReg() || !MO.readsReg())
86       continue;
87
88     // We can't remat physreg uses, unless it is a constant.
89     if (TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
90       if (MRI.isConstantPhysReg(MO.getReg(), *OrigMI->getParent()->getParent()))
91         continue;
92       return false;
93     }
94
95     LiveInterval &li = LIS.getInterval(MO.getReg());
96     const VNInfo *OVNI = li.getVNInfoAt(OrigIdx);
97     if (!OVNI)
98       continue;
99     if (OVNI != li.getVNInfoAt(UseIdx))
100       return false;
101   }
102   return true;
103 }
104
105 bool LiveRangeEdit::canRematerializeAt(Remat &RM,
106                                        SlotIndex UseIdx,
107                                        bool cheapAsAMove) {
108   assert(ScannedRemattable && "Call anyRematerializable first");
109
110   // Use scanRemattable info.
111   if (!Remattable.count(RM.ParentVNI))
112     return false;
113
114   // No defining instruction provided.
115   SlotIndex DefIdx;
116   if (RM.OrigMI)
117     DefIdx = LIS.getInstructionIndex(RM.OrigMI);
118   else {
119     DefIdx = RM.ParentVNI->def;
120     RM.OrigMI = LIS.getInstructionFromIndex(DefIdx);
121     assert(RM.OrigMI && "No defining instruction for remattable value");
122   }
123
124   // If only cheap remats were requested, bail out early.
125   if (cheapAsAMove && !RM.OrigMI->isAsCheapAsAMove())
126     return false;
127
128   // Verify that all used registers are available with the same values.
129   if (!allUsesAvailableAt(RM.OrigMI, DefIdx, UseIdx))
130     return false;
131
132   return true;
133 }
134
135 SlotIndex LiveRangeEdit::rematerializeAt(MachineBasicBlock &MBB,
136                                          MachineBasicBlock::iterator MI,
137                                          unsigned DestReg,
138                                          const Remat &RM,
139                                          const TargetRegisterInfo &tri,
140                                          bool Late) {
141   assert(RM.OrigMI && "Invalid remat");
142   TII.reMaterialize(MBB, MI, DestReg, 0, RM.OrigMI, tri);
143   Rematted.insert(RM.ParentVNI);
144   return LIS.getSlotIndexes()->insertMachineInstrInMaps(--MI, Late)
145            .getRegSlot();
146 }
147
148 void LiveRangeEdit::eraseVirtReg(unsigned Reg) {
149   if (TheDelegate && TheDelegate->LRE_CanEraseVirtReg(Reg))
150     LIS.removeInterval(Reg);
151 }
152
153 bool LiveRangeEdit::foldAsLoad(LiveInterval *LI,
154                                SmallVectorImpl<MachineInstr*> &Dead) {
155   MachineInstr *DefMI = 0, *UseMI = 0;
156
157   // Check that there is a single def and a single use.
158   for (MachineRegisterInfo::reg_nodbg_iterator I = MRI.reg_nodbg_begin(LI->reg),
159        E = MRI.reg_nodbg_end(); I != E; ++I) {
160     MachineOperand &MO = I.getOperand();
161     MachineInstr *MI = MO.getParent();
162     if (MO.isDef()) {
163       if (DefMI && DefMI != MI)
164         return false;
165       if (!MI->canFoldAsLoad())
166         return false;
167       DefMI = MI;
168     } else if (!MO.isUndef()) {
169       if (UseMI && UseMI != MI)
170         return false;
171       // FIXME: Targets don't know how to fold subreg uses.
172       if (MO.getSubReg())
173         return false;
174       UseMI = MI;
175     }
176   }
177   if (!DefMI || !UseMI)
178     return false;
179
180   // Since we're moving the DefMI load, make sure we're not extending any live
181   // ranges.
182   if (!allUsesAvailableAt(DefMI,
183                           LIS.getInstructionIndex(DefMI),
184                           LIS.getInstructionIndex(UseMI)))
185     return false;
186
187   // We also need to make sure it is safe to move the load.
188   // Assume there are stores between DefMI and UseMI.
189   bool SawStore = true;
190   if (!DefMI->isSafeToMove(&TII, 0, SawStore))
191     return false;
192
193   DEBUG(dbgs() << "Try to fold single def: " << *DefMI
194                << "       into single use: " << *UseMI);
195
196   SmallVector<unsigned, 8> Ops;
197   if (UseMI->readsWritesVirtualRegister(LI->reg, &Ops).second)
198     return false;
199
200   MachineInstr *FoldMI = TII.foldMemoryOperand(UseMI, Ops, DefMI);
201   if (!FoldMI)
202     return false;
203   DEBUG(dbgs() << "                folded: " << *FoldMI);
204   LIS.ReplaceMachineInstrInMaps(UseMI, FoldMI);
205   UseMI->eraseFromParent();
206   DefMI->addRegisterDead(LI->reg, 0);
207   Dead.push_back(DefMI);
208   ++NumDCEFoldedLoads;
209   return true;
210 }
211
212 void LiveRangeEdit::eliminateDeadDefs(SmallVectorImpl<MachineInstr*> &Dead,
213                                       ArrayRef<unsigned> RegsBeingSpilled) {
214   SetVector<LiveInterval*,
215             SmallVector<LiveInterval*, 8>,
216             SmallPtrSet<LiveInterval*, 8> > ToShrink;
217
218   for (;;) {
219     // Erase all dead defs.
220     while (!Dead.empty()) {
221       MachineInstr *MI = Dead.pop_back_val();
222       assert(MI->allDefsAreDead() && "Def isn't really dead");
223       SlotIndex Idx = LIS.getInstructionIndex(MI).getRegSlot();
224
225       // Never delete inline asm.
226       if (MI->isInlineAsm()) {
227         DEBUG(dbgs() << "Won't delete: " << Idx << '\t' << *MI);
228         continue;
229       }
230
231       // Use the same criteria as DeadMachineInstructionElim.
232       bool SawStore = false;
233       if (!MI->isSafeToMove(&TII, 0, SawStore)) {
234         DEBUG(dbgs() << "Can't delete: " << Idx << '\t' << *MI);
235         continue;
236       }
237
238       DEBUG(dbgs() << "Deleting dead def " << Idx << '\t' << *MI);
239
240       // Collect virtual registers to be erased after MI is gone.
241       SmallVector<unsigned, 8> RegsToErase;
242       bool ReadsPhysRegs = false;
243
244       // Check for live intervals that may shrink
245       for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
246              MOE = MI->operands_end(); MOI != MOE; ++MOI) {
247         if (!MOI->isReg())
248           continue;
249         unsigned Reg = MOI->getReg();
250         if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
251           // Check if MI reads any unreserved physregs.
252           if (Reg && MOI->readsReg() && !LIS.isReserved(Reg))
253             ReadsPhysRegs = true;
254           continue;
255         }
256         LiveInterval &LI = LIS.getInterval(Reg);
257
258         // Shrink read registers, unless it is likely to be expensive and
259         // unlikely to change anything. We typically don't want to shrink the
260         // PIC base register that has lots of uses everywhere.
261         // Always shrink COPY uses that probably come from live range splitting.
262         if (MI->readsVirtualRegister(Reg) &&
263             (MI->isCopy() || MOI->isDef() || MRI.hasOneNonDBGUse(Reg) ||
264              LI.killedAt(Idx)))
265           ToShrink.insert(&LI);
266
267         // Remove defined value.
268         if (MOI->isDef()) {
269           if (VNInfo *VNI = LI.getVNInfoAt(Idx)) {
270             if (TheDelegate)
271               TheDelegate->LRE_WillShrinkVirtReg(LI.reg);
272             LI.removeValNo(VNI);
273             if (LI.empty())
274               RegsToErase.push_back(Reg);
275           }
276         }
277       }
278
279       // Currently, we don't support DCE of physreg live ranges. If MI reads
280       // any unreserved physregs, don't erase the instruction, but turn it into
281       // a KILL instead. This way, the physreg live ranges don't end up
282       // dangling.
283       // FIXME: It would be better to have something like shrinkToUses() for
284       // physregs. That could potentially enable more DCE and it would free up
285       // the physreg. It would not happen often, though.
286       if (ReadsPhysRegs) {
287         MI->setDesc(TII.get(TargetOpcode::KILL));
288         // Remove all operands that aren't physregs.
289         for (unsigned i = MI->getNumOperands(); i; --i) {
290           const MachineOperand &MO = MI->getOperand(i-1);
291           if (MO.isReg() && TargetRegisterInfo::isPhysicalRegister(MO.getReg()))
292             continue;
293           MI->RemoveOperand(i-1);
294         }
295         DEBUG(dbgs() << "Converted physregs to:\t" << *MI);
296       } else {
297         if (TheDelegate)
298           TheDelegate->LRE_WillEraseInstruction(MI);
299         LIS.RemoveMachineInstrFromMaps(MI);
300         MI->eraseFromParent();
301         ++NumDCEDeleted;
302       }
303
304       // Erase any virtregs that are now empty and unused. There may be <undef>
305       // uses around. Keep the empty live range in that case.
306       for (unsigned i = 0, e = RegsToErase.size(); i != e; ++i) {
307         unsigned Reg = RegsToErase[i];
308         if (LIS.hasInterval(Reg) && MRI.reg_nodbg_empty(Reg)) {
309           ToShrink.remove(&LIS.getInterval(Reg));
310           eraseVirtReg(Reg);
311         }
312       }
313     }
314
315     if (ToShrink.empty())
316       break;
317
318     // Shrink just one live interval. Then delete new dead defs.
319     LiveInterval *LI = ToShrink.back();
320     ToShrink.pop_back();
321     if (foldAsLoad(LI, Dead))
322       continue;
323     if (TheDelegate)
324       TheDelegate->LRE_WillShrinkVirtReg(LI->reg);
325     if (!LIS.shrinkToUses(LI, &Dead))
326       continue;
327     
328     // Don't create new intervals for a register being spilled.
329     // The new intervals would have to be spilled anyway so its not worth it.
330     // Also they currently aren't spilled so creating them and not spilling
331     // them results in incorrect code.
332     bool BeingSpilled = false;
333     for (unsigned i = 0, e = RegsBeingSpilled.size(); i != e; ++i) {
334       if (LI->reg == RegsBeingSpilled[i]) {
335         BeingSpilled = true;
336         break;
337       }
338     }
339     
340     if (BeingSpilled) continue;
341
342     // LI may have been separated, create new intervals.
343     LI->RenumberValues(LIS);
344     ConnectedVNInfoEqClasses ConEQ(LIS);
345     unsigned NumComp = ConEQ.Classify(LI);
346     if (NumComp <= 1)
347       continue;
348     ++NumFracRanges;
349     bool IsOriginal = VRM && VRM->getOriginal(LI->reg) == LI->reg;
350     DEBUG(dbgs() << NumComp << " components: " << *LI << '\n');
351     SmallVector<LiveInterval*, 8> Dups(1, LI);
352     for (unsigned i = 1; i != NumComp; ++i) {
353       Dups.push_back(&createFrom(LI->reg));
354       // If LI is an original interval that hasn't been split yet, make the new
355       // intervals their own originals instead of referring to LI. The original
356       // interval must contain all the split products, and LI doesn't.
357       if (IsOriginal)
358         VRM->setIsSplitFromReg(Dups.back()->reg, 0);
359       if (TheDelegate)
360         TheDelegate->LRE_DidCloneVirtReg(Dups.back()->reg, LI->reg);
361     }
362     ConEQ.Distribute(&Dups[0], MRI);
363     DEBUG({
364       for (unsigned i = 0; i != NumComp; ++i)
365         dbgs() << '\t' << *Dups[i] << '\n';
366     });
367   }
368 }
369
370 void LiveRangeEdit::calculateRegClassAndHint(MachineFunction &MF,
371                                              const MachineLoopInfo &Loops) {
372   VirtRegAuxInfo VRAI(MF, LIS, Loops);
373   for (iterator I = begin(), E = end(); I != E; ++I) {
374     LiveInterval &LI = **I;
375     if (MRI.recomputeRegClass(LI.reg, MF.getTarget()))
376       DEBUG(dbgs() << "Inflated " << PrintReg(LI.reg) << " to "
377                    << MRI.getRegClass(LI.reg)->getName() << '\n');
378     VRAI.CalculateWeightAndHint(LI);
379   }
380 }